废弃水氯镁石热解制备高纯镁砂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海察尔汗盐湖蕴藏着丰富而宝贵的光卤石资源,是我国最大的钾肥生产基地,有力保障了我国农业生产和粮食安全。在盐湖钾肥提取过程中,大量的废弃水氯镁石尚未得到有效利用,造成资源的浪费和矿产环境的破坏。本文以废弃水氯镁石为原料,开发高效短流程的高纯优质镁砂制备工艺为目标,开展水氯镁石热解机理及动力学、镁砂制备工艺、镁砂制备过程中杂质及添加剂行为、氧化镁烧结与晶粒生长动力学等理论和应用研究,为实现盐湖资源综合利用和节能减排做出贡献。
     首先研究了空气气氛下MgCl2·6H2O的热解机理及动力学。采用热重分析、X射线衍射、扫描电镜、能谱分析和化学分析等方法研究中间产物及其形貌。MgCl2·6H2O热解过程分六个阶段,在342K时生成MgCl2·4H2O,402K时生成MgCl2·2H2O,440K时生成MgCl2·nH2O(1≤n≤2)和MgOHCl,476K时MgCl2·nH2O(1≤n≤2)水解与脱水同时进行生成Mg(OH)C1·0.3H2O,508K时Mg(OH)C1·0.3H2O脱水转变为MgOHCl,688K时MgOHCl分解生成MgO。水氯镁石热解的前两个阶段为简单的MgCl2·6H2O和MgCl2·4H2O脱水过程,最后阶段为MgOHCl热分解过程,反应相对简单,反应机理比较明确。而中间阶段反应非常复杂,第三阶段MgCl2·2H2O同时水解与脱水生成MgCl2·nH2O(1≤n≤2)和MgOHCl,反应机理为以成核及核成长为控制步骤的A3机理;温度达到476K时,MgCl2·nH2O(1≤n≤2)以2-维相界面反应为控制步骤的R2机理同时进行水解和脱水反应生成Mg(OH)C1·0.3H2O,再脱水转变成MgOHCl,最后分解生成MgO。
     在升温至476K前通过HCl气氛抑制水氯镁石水解,获得MgCl2·H2O后在476K空气气氛下煅烧得到中间产物Mg3Cl2(OH)4·2H2O和Mg3(OH)4Cl2,继续升温在633K下分解为MgO,使最终获得MgO的反应温度较常规条件下降低55K,这是由于MgCl2·2H2O和MgCl2·H2O晶体结构不同所致。
     水氯镁石在微波场中脱水生成MgCl2·2H2O后,开始水解生成Mg3Cl2(OH)4·2H2O和MgOHCl,最后生成MgO。微波作用下反应速度快,加热效率高,但难以控制。
     在空气气氛下中间产物MgOHCl颗粒形状不规则,为多孔结构,Mg(OH)C1·0.3H2O颗粒表面平整,MgO为柱状颗粒。在HCl气氛下中间产物Mg3Cl2(OH)4·2H2O颗粒形状不规则,表面布满微小针状结构,Mg3(OH)4Cl2颗粒表面凹凸不平,有较多孔隙,而最终获得的MgO为片状结构,不同于常规条件下的柱状颗粒。在微波作用下中间产物Mg3Cl2(OH)4·2H2O颗粒边缘有少量针状结构,与HCl气氛下的相比,针状结构明显减少,MgO颗粒形状不规则,与无外场强化作用下的相比,颗粒大,均匀性差,无特定的片状或柱状结构。由此表明水氯镁石热解过程的复杂性和产物的多样性。通过控制气氛或增加外场,可以降低反应温度,提高反应速度,改变反应机理和产物形貌,该结果对理论研究和实际功能产品开发和性能控制具有重要意义。
     提出了以废弃水氯镁石为原料“轻烧—球磨—成形—烧结”短流程镁砂制备工艺,研究了轻烧温度、球磨时间、成形压力、烧结时间等对镁砂性能的影响,获得制备高纯、高密度烧结镁砂的最优条件。该工艺流程短,煅烧温度低,设备腐蚀性小,氯化氢易于回收,高效节能。研究了氯化钠、硫酸盐、硼等杂质和金属氧化物、锂盐等添加剂在镁砂烧结过程中的行为以及它们对镁砂性能的影响。Ti02是镁砂最合适的烧结助剂,在盐湖卤水、工业控制结晶水氯镁石以及分析纯MgCl2·6H2O为原料时,Ti02在轻烧氧化镁中的最佳添加量不同,分别为1wt%、1.5wt%、0.2wt%,镁砂最大体积密度为3.49g/cm3,MgO含量均高于98wt%;氯化钠、硫酸镁、硫酸钾、硼对镁砂的烧结有不利影响,原料轻烧氧化镁中含量分别为0.2wt%.0.15wt%、0.15wt%、0.014wt%以下时,对镁砂的体积密度影响不大。
     研究了镁砂烧结过程中MgO的烧结初期动力学以及MgO的晶粒生长动力学,结果表明MgO烧结初期为体积扩散控制;Ti02的加入降低了MgO晶粒的生长活化能,加速MgO晶粒的生长。无添加剂时,晶粒生长指数n=3,为体积扩散控制,晶粒生长活化能Q=556.9kJ·mol-1;添加0.2wt%Ti02时,n=2,为界面扩散控制,Q=272.8kJ·mol-1。TiO2在MgO晶粒生长中的作用机理为:Ti02在MgO中固溶,形成不等价置换式固溶体,产生阳离子空位,提高了扩散系数,因此TiO2对镁砂烧结与性能提高具有促进作用。
Carnallite (KCl·MgCl2·6H2O) resources were abundant in Qinghai Qarhan salt lake, usually which were used as raw materials for the production of potash fertilizer. After potassium chloride was extracted from carnallite, a large amount of bischofite was deposited in Qinghai Qarhan salt lake, which would result in the pollution to environment. In this paper, a high-efficiency process was developed for the preparation of high-purity magnesia from the waste bischofite in Qinghai Qarhan salt lake. Furthermore, the mechanism and kinetics of thermal decomposition of MgCl2·6H2O, preparation process of magnesia from bischofite, and sintering and grain growth kinetics of MgO were investigated in details.
     Firstly, the mechanism and kinetics of thermal decomposition of MgCl2·6H2O in air were studied. The kinds and morphologies of intermediate products obtained during this thermal decomposition process were investigated using integrated thermal analysis, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectrum and chemical analysis. It was found that there existed six stages in the thermal decomposition process of MgCl2·6H2O. In the first two stages, four crystallized waters were lost with intermediate products MgCl2·4H2O at342K, MgCl2·2H2O at402K, respectively. The dehydration and hydrolysis coexisted during the third and fourth stages with intermediate products MgCl2·nH2O(1≤n≤2) and MgOHCl at440K, and Mg(OH)C1·0.3H2O and MgOHCl at476K, respectively. In the fifth stage Mg(OH)C1·0.3H2O was dehydrated to produce MgOHCl at508K, and in the last stage MgOHCl was converted into MgO at688K.
     To restrain the sample hydrolysis, the thermal decomposition of MgCl2·6H2O was carried out under HCl atmosphere until476K when MgCl2H2O was obtained. Then HCl gas was turned off and the decomposing process continued with products Mg3Cl2(OH)4·2H2O at476K, Mg3(OH)4Cl2at493K and MgO at633K. The decomposing temperatures to produce MgO were different between that done under air atmosphere (688K) and that done under HCl atmosphere (633K), because of the crystal structure difference between MgCl2·2H2O and MgCl2·H2O. In microwave field, MgCl2·6H2O was firstly dehydrated to produce MgCl2·2H2O, and then converted into Mg3Cl2(OH)4·2H2O and MgOHCl, last into MgO. Microwave irradiation had high reaction rate, high heating efficiency, but the process was hard to control.
     Morphology analysis showed that, in air, MgOHCl particle was irregular and had porous structure, Mg(OH)Cl·0.3H2O particle had relatively flat surface, and MgO particle was cylindrical. In HCl atmosphere, Mg3Cl2(OH)4·2H2O particle had irregular shape and tiny needle-like structure, Mg3(OH)4Cl2particle had porous structure and uneven surface, MgO particle had a flake structure. In microwave field, Mg3Cl2(OH)4·2H2O particle had a little tiny needle-like structure, and MgO particle was irregular, without specific structure such as cylindrical or flake. Therefore, the thermal decomposition process of MgCl2·6H2O was very complicated and many kinds of intermediate products would occur with different morphologies, the preparation conditions should be optimized for the production of high-purity magnesia in the further work.
     Based on the above theoretical research for the thermal decomposition process of MgCl2·6H2O, the preparation process of magnesia from waste bischofite was proposed, that is "calcining-milling-forming-sintering". This proposed process had advantages of lower calcination temperature, high-efficiency and energy-saving. The effects of calcining temperature, milling time, forming pressure and sintering time on the performance of magnesia were studied. The effects of impurities of raw materials and additives on performance of magnesia product were researched. When the contents of NaCl, K2SO4, MgSO4and B impurities were less than0.2wt%,0.15wt%,0.15wt%and0.014wt%in light-burned MgO from raw materials, respectively, there were no adverse effects on bulk density of magnesia. The results showed that TiO2was the best additive for magnesia production, and the optimum amounts were added in the light-burned MgO from raw materials as1wt%in brine,1.5wt%in crystalline bischofite, and0.2wt%in MgCl2·6H2O(AR), respectively. The obtained magnesia purity exceed98wt%, and the bulk density reached3.49g·cm-3
     Furthermore, the sintering and grain growth kinetics of MgO were studied. Results suggested that the initial stage of sintering was volume diffusion-controlled. The addition of TiO2decreased the activation energy of MgO grain growth, accelerated the growth rate of MgO grain, and markedly promoted the sintering of MgO. Without TiO2addition, MgO grain growth exponent n was3, grain growth activation energy Q was556.9kJ·mol-1, and the process was considered as volume diffusion-controlled. With0.2wt%TiO2addition, MgO grain growth exponent n was2, grain growth activation energy Q was272.8kJ·mol-1, and the process was considered as interface diffusion-controlled. The main mechanism of TiO2promoting the sintering of MgO was that TiO2solubilized in MgO formed unequivalence substitutional solid solutions and cation vacancies which were favorable to cation diffusion.
引文
[1]徐徽,蔡勇,陈白珍,等.用低品位菱镁矿制取高纯镁砂[J].中南大学学报(自然科学版),2006,37(4):698-702
    [2]Kondakov D F, Danilov V P. Manufacturing of magnesium hydroxide from natural magnesium chloride sources [J]. Theoretical of Chemical Engineering,2007,41(5): 572-576
    [3]Qin L Q, Yu J H, Qin Z Y. Synthesis of magnesium oxychloride nanowhisker by microemulsion method [J]. Advanced Materials Research,2012,535-537:357-361
    [4]Wang X T, Zhao J H, Song X F, et al. Preparation of anhydrous magnesium chloride from bischofite (MgCl2·6H2O) [J]. Materials Science Forum,2005,488-489:57-60
    [5]Zhou N B, Chen B Z, He X K, et al. Preparation and characteristic research of anhydrous magnesium chloride with dehydrated ammonium carnallite [J]. Journal of Central South University of Technology,2006,13(4):373-378
    [6]Zhao J H, Lai Y P. Surface modification and preparation of high purity nanometer magnesium hydroxide using impinging stream [J]. Materials Science Forum,2011, 675-677:847-851
    [7]Yuan G Q, Shan Y J, Jiang H F, et al. Mg(OH)Cl/Kl as a highly active heterogeneous catalyst for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions [J]. Chinese Journal of Chemistry,2008,26(5):947-951
    [8]Fan W L, Song X Y, Sun S X, et al. Hydrothermal formation and characterization of magnesium hydroxide chloride hydrate nanowires [J]. Journal of Crystal Growth,2007, 305(1):167-174
    [9]Kashani-Nejad S, Ng K W, Harris R. Chlorination of MgOHCl with HC1 gas [J]. Mineral Processing and Extractive Metallurgy,2006,115(3):121-122
    [10]Ng K W, Kashani-Nejad S, Harris R. Kinetics of MgO Chlorination with HCl Gas [J]. Metallurgical and Materials Transactions B,2005,36B(3):405-409
    [11]He Y L, Wang J K, Deng H Y. Comparison of different methods to prepare MgO whiskers [J]. Ceramics International,2008,34(6):1399-1403
    [12]赵爱东,申玉双,翟学良.一种制备氧化镁纤维的方法[J].无机材料学报,2005,20(1):215-219
    [13]Mironyuk I F, Gun'ko V M, Povazhnyak M O, et al. Magnesia formed on calcination of Mg(OH)2 prepared from natual bischofite [J]. Applied Surface Science,2006,252(12): 4071-4082
    [14]Sharma M, Jeevanandam P. Synthesis of magnesium oxide particles with stacks of plates morphology [J]. Journal of Alloys and Compounds,2011,509(30):7881-7885
    [15]Selvamani T, Sinhamahapatra A, Bhattacharjya D, et al. Rectangular MgO microsheets with strong catalytic activity [J]. Materials Chemistry and Physics,2011,129(3): 853-861
    [16]Yang Y F, Wu X F, Hu G S, et al. Effects of stearic acid on synthesis of magnesium hydroxide via direct precipitation [J]. Journal of Crystal Growth,2008,310(15): 3557-3560
    [17]Xu H, Deng X R. Preparation and properties of superfine Mg(OH)2 flame retardant [J]. Transactions of Nonferrous Metals Society of China,2006,16(2):488-492
    [18]El-Sebaii A A, Al-Amir S, Al-Marzouki F M, et al. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking [J]. Energy Conversion and Management,2009,50(12):3104-3111
    [19]El-Sebaii A A, A1-Heniti S, A1-Agel F, et al. One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking [J]. Energy Conversion and Management.2011,52(4):1771-1777
    [20]Pilar R, Svoboda L, Honcova P, et al. Study of magnesium chloride hexahydrate as heat storage material [J]. Thermochimica Acta,2012,546:81-86
    [21]Jong C C, Sang D K. Heat transfer in a latent heat-storage system using MgCl2·6H2O at the melting point [J]. Energy,1995,20(1):13-25
    [22]Nagano K, Ogawa K, Mochida T. et al. Performance of heat charge-discharge of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture to a single vertical tube for a latent heat storage system [J]. Applied Thermal Engineering,2004, 24(2-3):209-220
    [23]Nagano K, Ogawa K, Mochida T, et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat [J]. Applied Thermal Engineering,2004,24(2-3): 221-232
    [24]Wang H Y, Jing Y, Wang X H, et al. Ionic liquid analogous formed from magnesium chloride hexahydrate and its physico-chemical properties [J]. Journal of Molecular Liquids,2011,163(2):77-82
    [25]Salekh A I S, Gritsishin A M. Deicing. antifogging and nontoxic detergent composition for glass surfaces in automobiles [P]. RU 2340646 Cl,2008
    [26]Choudhary V R, Pataskar S G, Zope G B, et al. Surface properties of magnesium oxide obtained from basic magnesium carbonate:influence of preparation conditions of magnesium carbonate [J]. Jpurnal of Chemical Technology & Biotechnology,1995, 64(4):407-413
    [27]Gulkova D, Solcova O, Zdrazil M. Preparation of MgO catalytic support in shaped mesoporous high surface area form [J]. Microporous and Mesoporous Materials,2004, 76(1-3):137-149
    [28]Chen L M, Sun X M, Liu Y N. Preparation and characterization porous MgO and NiO/MgO nanocomposites [J]. Applied Catalysis A:General,2004,265(1):123-128
    [29]Wei Z Q, Qi H. A new route to prepare magnesium oxide whisker [J]. Inorganic Chemistry Communications,2002,5(2):147-149
    [30]Wang X L, Xue D F. Direct observation of the shape evolution of MgO whiskers in a solution system [J]. Materials Letters,2006,60(25-26):3160-3164
    [31]Duan G R, Yang X J, Chen J, et al. The catalytic effect of nanosized MgO on the decomposition of ammonium perchlorate [J]. Powder Technology,2007,172(1):27-29
    [32]Mishakov I V, Bedilo A F. Nanocrystalline MgO as a dehydrohalogenation catalyst [J]. Journal of Catalysis,2002,206(1):40-48
    [33]Yamamoto K, Umeya K. Production of high density magnesia [J]. The American Ceramic Society Bulletin,1981,60(6):636-639
    [34]Nogueira H, Lana S L B, Morato A G, et al. Dead-burned magnesia from Brazilian magnesite [J]. The American Ceramic Society Bulletin,3983,62(9):978-981
    [35]Dunean L R. Synthetic and natural magnesium:their past, present, and future [J]. Industrial Minerals,1986,226:43-49
    [36]Henrist C, Mathieu J P, Vogels C, et al. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution [J]. Journal of Crystal Growth,2003, 249(1-2):321-330
    [37]Alvarado E, Torres-Martinez L M. Fuentes A F, et al. Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite [J]. Polyhedron,2000,19(22-23):2345-2351
    [38]Bondoux C, Prene P, Belleville P, et al. MgO insulating films prepared by sol-gel route for SiC substrate [J]. Journal of the European Ceramic Society,2005,25(12):2795-2798
    [39]Thostenson E T, Chou T W. Microwave processing fundamentals and applications [J]. Composites:Part A,1999, (30):1055-1071
    [40]Kingman S W, Rowson N A. Microwave treatment of minerals-a review [J]. Minerals Engineering,1998,11(11):1081-1087
    [41]Clark D E, Folz D C, West J K. Processing materials with microwave energy [J]. Materials Science and Engineering.2000, A287(2):153-158
    [42]Haque K E. Microwave energy for mineral treatment processes-a brief review [J]. International Journal Mineral Processing,1999,57(1):1-24
    [43]Huang J H, Rowson N A. Hydrometallurgical decomposition of pyrite and marcasite in a microwave field [J]. Hydrometallurgy,2002,64(3):169-179
    [44]Yong C H, Han S U. Synthesis of MgO nanopowder in atmospheric microwave plasma torch [J]. Chemical Physics Letters,2006,422(1-3):174-178
    [45]Takahashi N. Simple and rapid synthesis of MgO with nano-cube shape by means of a domestic microwave oven [J]. Solid State Sciences,2007,9(8):722-724
    [46]Raschman P. Leaching of calcined magnesite using ammonium chloride at constant pH [J]. Hydrometallurgy,2000,56(1):109-123
    [47]Wang Z, Wang N H, Li T. Computational analysis of a twin-electrode DC submerged arcfurnace for MgO crystal production [J], Journal of Materials Processing Technology, 2011,211(3):388-395
    [48]Wang Z, Wang N H, Li T, et al.3D numerical analysis of the arc plasma behavior in a submerged DC electric arc furnace for the production of fused MgO [J], Plasma Science and Technology,2012,14(4):321-326
    [49]Georges J K, Donald R S. A thermochemical analysis of the production of anhydrous MgCl2 [J]. Journal of Light Metals,2001,(1):111-117
    [50]Galwey A K, Laverty G M. The thermal decomposition of magnesium chloride dihydrate [J].Thermochimica Acta.1989,138(1):115-127
    [51]Eom H C, Yoon H S, Park H K, et al. Dehydration characteristics of magnesium chloride hydrate [J]. Chawon Rissaikuring,2007,16(5):8-12.
    [52]Shimada N, Kawamoto H, Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2008, 81(1):80-87
    [53]Kirsh Y, Yariv S, Shoval S. Kinetic analysis of thermal dehydration and hydrolysis of MgCl2·6H2O by DTA and TG [J]. Thermal Analysis,1987,32(2):392-408
    [54]Sugimoto K. Dinnebier R E. Hanson J C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2·nH2O; n=1,2,4) [J]. Acta Crystallographica,2007. B63(2):235-242
    [55]Dinnebier R E, Runcevski T. Sugimoto K. Dehydration of Magnesium Bromide Hexahydrate Studied by in situ X-ray Powder Diffraction [J]. Zeitschrift fuer Anorganische und Allgemeine Chemie. DOI:10.1002/zaac.201200445
    [56]Sugimoto K. Dinnebier R E. Crystal structure of dehydrated chlorartinite by X-ray powder diffraction [J]. Powder Diffraction,2007,22(1):64-67
    [57]Sugimoto K, Dinnebier R E, Schlecht T. Chlorartinite, a volcanic exhalation product also found in industrial magnesia screed [J]. Journal of Applied Crystallography,2006,39(5): 739-744
    [58]Sugimoto K, Dinnebier R E, Schlecht T. Structure determination of Mg3(OH)5Cl·4H2O (F5 phase) from laboratory powder diffraction data and its impact on the analysis of problematic magnesia floors [J]. Acta Crystallographica,2007, B63(6):805-811
    [59]Sugimoto K, Dinnebier R E, Schlecht T. Structure analysis of cement and concrete materials using X-ray powder diffraction technique [J]. Rigaku Journal,2008,24(1): 16-20
    [60]Liu G S, Song X F, Yu J G. Comparative study on the molecular and electronic structure of MgCl2·6NH3 and MgCl2·6H2O [J]. Inorganic Chemistry:An Indian Journal,2007, 2(1):40-45
    [61]Liu G S, Song X F, Yu J G. Density functional theoretical study on dehydration process of MgCl2·6H2O [J]. Materials Science Forum,2005,488-489(1):53-55
    [62]Gurevich L M, Rommel I F, Polyakov Y A. Infrared spectra and characteristic structural features of the hydrates of magnesium chloride [J]. Zhurnal Strukturnoi Khimii,1977, 18(5):858-864
    [63]贾茜,陈镇,吴玉龙,等.一元氯化镁化合物热分解的热力学研究[J].无机化学学报,2011,27(8):1529-1535
    [64]Eom H C, Park H, Yoon H S. Preparation of anhydrous magnesium chloride from ammonium magnesium chloride hexahydrate [J]. Advanced Powder Technology,2010, 21(2):125-130
    [65]Zhang Z M, Lu X C, Pan F, et al. Preparation of Anhydrous Magnesium Chloride from Magnesium Chloride Hexahydrate [J]. Metallurgical and Materials Transactions B,2012, DOI:10.1007/s11663-012-9777-5
    [66]Long G M, Ma P H. The reaction of MgCl2·4H2O with CC12F2 [J]. Thermochimica Acta, 2003,403(2):231-235
    [67]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature, 1964,201(4914):68-69
    [68]Doyle C D. Kinetic analysis of thermogravimetric data [J]. Journal of Applied Polymer Science,1961,5:285-292
    [69]Eftimic E, Segal E. BASIC language programs for automatic processing non-isothermal kinetic data [J]. Thermochimica Acta,1987,111:359-367
    [70]Criado J M, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data [J]. Thermochimica Acta,1989,147(2):377-385
    [71]Long G M, Ma P H, Wu Z M. Investigation of thermal decomposition of hexammoniate and MgCl2 biglycollate biammoniate by DTA-TG, XRD and chemical analysis [J]. Thermochimca Acta,2004,412(1-2):149-153
    [72]Wu Y L, Huang X F, Yang M D, et al. Study on the mechanisms and kinetics of complex's thermal decomposition getting anhydrous magnesium chloride [J]. Journal of Analytical and Applied Pyrolysis,2008,81(1):133-135
    [73]吴玉龙,黄小芳,杨明德,等.复盐法制备无水氯化镁的热解机理及动力学研究[J].无机化学学报,2007,23(1):149-154
    [74]Song X F, Wang J, Wang X T, et al. Preparation of anhydrous magnesium chloride from MgCl2·6H2O ⅡThermal decomposition mechanism of the intermediate product [J]. Materials Science Forum,2005,489-489:61-64
    [75]宋兴福,汪瑾,罗妍,等.六氨氯化镁热解过程及其非等温动力学[J].化工学报,2008,59(9):2255-2259
    [76]宋兴福.反应结晶—热分解制备无水氯化镁过程研究[D].华东理工大学博士论文,2008
    [77]Kashani-Nejad S, Ng K W, Harris R. MgOHCl thermal decomposition kinetics [J]. Metallurgical and Materials Transactions B,2005,36B(1):153-157
    [78]Kashani-Nejad S, Ng K W, Harris R. Preparation of MgOHCl by controlled dehydration of MgCl2·6H2O [J]. Metallurgical and Materials Transactions B,2004,35B(2):405-406
    [79]Kashani-Nejad S, Ng K W, Harris R. Properties of MgOHCl [J]. Metallurgical and Materials Transactions B,2004,35B(2):406-408
    [80]Kashani-Nejad S, Harris R. Oxides formed during the dehydration of magnesium chloride hexahydrate [C]. Magnesium Technology in the Global Age,2006:81-92
    [81]Kashani-Nejad S, Ng K W, Harris R. Characterization of MgOHCl/MgO mixtures with infrared spectroscopy (IR) [C]. Proceedings of the Symposium held during the TMS Annual Meeting,2004:161-165
    [82]黄小芳,吴玉龙,杨明德.水氯镁石的热解机理及动力学[J].过程工程学报,2006,6(5):729-733
    [83]Exner H E. Solid-state sintering:critical assessment of theoretical concepts and experimental methods [J]. Powder Metallurgy,1980,23(4):203-209
    [84]Coble R L. Sintering crystalline solids I. Intermediate and final state diffusion models [J], Journal of Applied Physics,1961,32(5):787-792
    [85]Coble R L. Sintering crystalline solids Ⅱ. Experimental test of diffusion models in powder compacts [J], Journal of Applied Physics,1961,32(5):793-799
    [86]Ashby M F. Sintering diagrams [J]. Acta Metallurgica 1974,22(3):275-289
    [87]李蔚,高濂,归林华,等.纳米Y-TZP材料烧结过程晶粒生长的分析[J].无机材料学报,2000,15(3):536-540
    [88]Lee B K, Chung S Y, Kang S L, et al. Grain boundary faceting and abnormal grain growth in BaTiO3 [J]. Acta Materialia,2000,48(7):1575-1580
    [89]Zhang H F, Wong H. Coupled grooving and migration of inclined grain boundaries Regime I [J]. Acta Materialia,2002,50(8):1983-1994
    [90]施剑林.固相烧结—Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为[J].硅酸盐学报,1998,26(1):1-13
    [91]Yurkov A L, Sarkisyan T A, Ivanov D A, et al. Final stages of sintering of ceramic materials:Effect of residual porosity and microstructure on mechanical characteristics of surface [J]. Ceramics International,1997,23(5):389-399
    [92]Sakai T, Iwata M. On the final stage in pressure sintering process [J]. Japanese Journal of Applied Physics,1976,15(3):537-542
    [93]Fantozzi G, Chevalier J, Guilhot B. Processing, microstructure, and thermomechanical behavior of ceramics [J]. Advanced Engineering Materials,2001,3(8):563-569
    [94]饶东生,林彬荫,朱伯铨.降低高纯镁砂烧结温度的研究[J].硅酸盐学报,1989,17(1):75-80
    [95]Martinac V, Labor M, Petric N. Effect of TiO2, SiO2 and Al2O3 on properties of sintered magnesium oxide from sea water [J]. Materials Chemistry and Physics,1996,46(1): 23-30
    [96]Lee Y B, Park H C, Oh K D. Sintering and microstructure development in the system MgO-TiO2 [J]. Journal of Materials Science,1998,33(17):4321-4325
    [97]Sarkar R, Bannerjee G. Effect of addition of TiO2 on reaction sintered MgO-Al2O3 spinels [J]. Journal of European Ceramic Society,2000,20(12):2133-2141
    [98]Maitra S, Das S, Sen A. The role of TiO2 in the densification of low cement Al2O3-MgO spinel castable [J]. Ceramics International,2007,33(2):239-243
    [99]Chaudhuri M, Banerjee G. Secondary phases in natural magnesite sintered with addition of titania, ilmenite and zirconia [J]. Journal of Materials Science,1999.34(23): 5821-5825
    [100]Kalpakli Y K. Investigation of TiO2-added refractory brick properties from calcined magnesite raw material [J]. Refractories and Industrial Ceramics,2008,49(4):314-319
    [101]Lucion T, Duvigneaud P H. Laudet A, et al. Effect of TiO2 additions on the densification of MgO and MgO-CaO mixtures [J]. Key Engineering Materials,2004. (264-268):209-212
    [102]Petric N, Martinac V, Labor M, et al. Activated sintering of magnesium oxide from seawater [J]. Chemical Engineering & Technology,1999,22(5):451-456
    [103]Petric N, Martinac V, Labor M, et al. Isothermal and activated sintering of magnesium oxide from sea water [J]. Materials Chemistry and Physics,1998,53(1):83-87
    [104]Kan A, Moriyama T, Takahashi S, et al. Low-temperature sintering and microwave dielectric properties of MgO ceramic with LiF addition [J]. Japanese Journal of Applied Physics,2011,50(09NF02):1-5
    [105]Kan A, Ogawa H, Moriyama T. Crystal structure and microwave dielectric properties of low temperature sintered MgO ceramic with LiF addition [J]. Journal of Materials Research,2012,27(6):915-921
    [106]Nelson J W, Cutler I B. Effect of oxide additions on sintering of magnesia [J]. Journal of the American Ceramic Society,2006,41(10):406-409
    [107]Layden G K, Mcquarrie M C. Effect of minor additions on sintering of MgO [J]. Journal of the American Ceramic Society,1959,42(2):89-92
    [108]Han B Q, Li Y S, Guo C C, et al. Sintering of MgO-based refractories with added WO3 [J]. Ceramics International,2007,33(8):1563-1567
    [109]Chen M, Lu C Y, Yu J K. Sintering and performance of MgO-CaO materials with nano-sized ZrO2 addition [J]. Materials Science Forum,2007, (561-565):623-626
    [110]张文政,刘正,毛萍莉,等.氟化物对低温烧结氧化镁陶瓷的影响[J].陶瓷学报,2011,32(2):160-163
    [111]赵惠忠,张文杰,孙殿双.Ce02对镁钙系材料烧结和抗水化性的影响[J].稀土,1995,16(6):31-34
    [112]李楠.团聚氧化镁粉料压块的烧结机理与动力学模型[J].硅酸盐学报,1994,22(1):77-82
    [113]Li N. Formation, compressibility, and sintering of aggregated magnesia powder [J]. Journal of Material Science,1989,24(2):485-492
    [114]李君,王俭,钟香崇MgO-SiC复合材料烧结初期动力学研究[J].陶瓷学报,2000,21(1):28-31
    [115]Nasar R S, Cerqueira M, Longo E, et al. The effect of ZnO on the sintering and stabilization of ZrO2·MgO system [J]. Ceramics International,1999,25(7):593-599
    [116]Nasar R S. Cerqueira M, Longo E, et al. Sintering mechanisms of ZrO2 MgO with addition of TiO2 and CuO [J]. Ceramics International,2004,30(4):571-577
    [117]Baldo J B, Bradt R C. Grain growth of the lime and periclase phases in a synthetic doloma [J]. Journal of the American Ceramic Society,1988,71(9):720-725
    [118]赵惠忠,张文杰,汪厚植.掺Ce02用MgO-CaO系中CaO和MgO的晶粒生长动力 学[J].武汉冶金科技大学学报,1996,19(4):432-436
    [119]Huang Q Z, Lu G M, Wang J, et al. Mechanism and kinetics of thermal decomposition of MgCl2·6H2O [J]. Metallurgical and Materials Transactions B,2010,41(5): 1059-1066
    [120]Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O [J]. Journal of Analytical and Applied Pyrolysis,2011, 91(1):159-164
    [121]Ozawa T. Thermal analysis- review and prospect [J]. Thermochim Acta,2000,355: 35-42
    [122]Gao X, Dollimore D. The Thermal Decomposition of Oxalates 26:A Kinetic Study of the Thermal Decomposition of Manganess (II) Oxalate Dihydrate [J]. Thermochim Acta,1993,215(1-2):47-63
    [123]李峰,何静,杜以波,等.α-磷酸锆的制备及热分解非等温动力学[J].无机化学学报,1999,15(1):55-60
    [124]Ozawa T. Kinetic analysis by repeated temperature scanning. Part Ⅰ. Theory and methods [J]. Thermochim Acta,2000,356(1-2):173-180
    [125]张伟南,袁誉洪,李丽清,等.二水草酸锌脱水的热分解动力学研究[J].物理化学学报,2004,20(1):33-37
    [126]Opfermann J. Kinetic analysis using multivariate non-linear regression:I. Basic concepts [J]. Journal of Thermal Analysis and Calorimetry,2000,60(2):641-658
    [127]Brown M E, Maciejewski M, Vyazovkin S, et al. Computational aspects of kinetics analysis Part A:The ICTAC kinetics project-data, methods and results [J]. Thermochim Acta,2000,355(1-2):125-143
    [128]Bocanegra-Bernal M H. Agglomeration of magnesia powders precipitated from sea water and its effects on uniaxial compaction [J]. Materials Science and Engineering, 2002,A333(1-2):176-186
    [129]李奕,李俊篯,吴立明,等.MgO缺陷和不规则表面吸附CO的能带和电子结构研究[J].化学学报,2000,58(8):975-980
    [130]Thomas D K, Baker T W. X-ray Study of the factors causing variation in the heats of solution of magnesium oxide [J]. Proceeding of the Physisal Society.1959, (74): 673-679
    [131]刘春静,王新,魏雨,等.软磁锰锌铁氧体的晶粒生长动力学实验分析[J].稀有金属材料与工程,2009,38(1):515-519

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700