功能化电极界面的构筑及在分析化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分五部分,包括绪论、层-柱结构金属有机骨架材料(MOF)修饰碳糊电极的制作及其在多巴胺测量中的应用、含二茂铁的rho-ZMOF修饰电极的制作及其在对乙酰氨基酚测量中的应用、分子印迹聚合物膜修饰电极的制作及其在香草醛测量中的应用、分子印迹聚合物凝胶修饰电极的制作及其在牛血清白蛋白测量中的应用。
     第一章为绪论部分。对化学修饰电极的基本原理、发展历史、现状;MOF的特点、制作、应用;分子印迹技术的原理、制作、应用进行了评述,对本文的选题思路、研究内容和创新点作了总结。
     第二章是层-柱结构MOF修饰碳糊电极的制作及其在多巴胺测量中的应用。我们首次制成了MOF修饰碳糊电极,并研究了这种电极对多巴胺的吸附性质。我们使用这种电极对多巴胺的浓度进行了测定,发现使用这种电极可通过MOF的吸附作用对溶液中的多巴胺进行富集,从而提高检测的灵敏度。
     第三章是含二茂铁的rho-ZMOF修饰电极的制作及其在对乙酰氨基酚测量中的应用。我们参考文献采用一步合成法在电极表面原位合成了含有催化剂二茂铁的rho-ZMOF,从而制成了MOF修饰电极并使用这种电极对对乙酰氨基酚的浓度进行了测定。发现使用这种电极可催化对乙酰氨基酚的电化学氧化从而提高测定的灵敏度。这种电极可排除常见的干扰物干扰,并可用于药片、血样等样品中的对乙酰氨基酚的检测。
     第四章是分子印迹聚合物膜修饰电极的制作及其在香草醛测量中的应用。我们采用两种方法制作了香草醛的印迹聚合物膜修饰电极,并从印迹原理、合成、吸附性质等方面进行了对比。
     第五章是分子印迹聚合物凝胶修饰电极的制作及其在牛血清白蛋白测量中的应用。我们使用化学法合成了牛血清白蛋白的分子印迹聚合物凝胶,并以此为活性物质制作了分子印迹聚合物膜修饰电极。这种电极可用于牛血清白蛋白浓度的测量,其测量响应时间短、操作简单。
This thesis consists of five chapters, including the introduction, the preparationof the pillared-layer metal-organic framework(MOF) modified electrode and itsapplication in the determination of dopamine, the preparation of ferroceneimmobilized rho-ZMOF modified electrode for the determination of acetaminophen,the preparation and application of electrodes modified with molecularly imprintedpolymer films, the preparation of potentiometric sensor for bovine serum albumin.
     In chapter one, the basal knowledge, developing history and advance ofmodified electrodes; the properties, preparation and application of MOF; the principle,preparation and application of molecular imprinting technique are reviewed. Also, thecharacteristic, innovation and innovation point of this thesis are given.
     In chapter two, a MOF modified carbon paste electrode was firstly prepared. Theadsorption properties for dopamine were studied. The amount of dopamine wasevaluated by linear sweep voltammetry. The sensitivity was enhanced by theabsorption of dopamine into MOF modified on the surface of the electrode.
     In chapter three, a ferrocene immobilized rho-ZMOF modified electrode wasprepared by one-step method following the literature. The amount of acetaminophenwas evaluated by differential pulse voltammetry. The sensitivity was enhanced by thecatalysis of the oxidization.
     In chapter four, two kind of molecularly imprinted polymer films weresynthesized in situ on the surface of the electrodes by chemical method andelectrochemical method. The principle, preparation and adsorption properties werecompared.
     In chapter five, a potentiometric sensor based on molecularly imprinted polymergel for bovine serum albumin was developed. The amount of bovine serum albumincan be detected easily and fast.
引文
[1]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社.1995
    [2] Moses P R, Wier L, Murray R W. Chemically modified tin oxideelectrode. Anal. Chem.,1975,47(12):1882~1886
    [3] Evans J F, Kuwana T. Radiofrequency oxygen plasma treatment of pyrolytic graphite electrodesurfaces. Anal. Chem.,1977,49(11):1632~1635
    [4] Fujihira M, Tamura A, Osa T. Covalent Modificationg of a Glassy Carbon. Chem. Lett.,1977,6(4):361~366
    [5] Yacynych A M, Kuwana T, Cyanuric chloride as a general linking agent for modified electrodes:attachment of redox groups to pyrolytic graphite. Anal. Chem.,1978,50(4):640~645
    [6]董绍俊.化学修饰电极.化学通报,1981,(12):9~17
    [7] Bockris J, Jeng K T. In-situ studies of adsorption of organic compounds on platinum electrodes. J.Electroanal. Chem.,1992,330(1-2):541~581
    [8] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group8noble metalssupported on titanium dioxide. J. Am. Chem. Soc.,1978,100(1):170~175
    [9] Miller L L, Vande M R. Electrode surface modification via polymer adsorption. J. Am. Chem.Soc.,1978,100(2):639~640
    [10] Daum P, Murry R W. Charge-transfer diffusion rates and activity relationships during oxidationand reduction of plasma-polymerized vinylferrocene films. J. Phys. Chem.,1981,85(4):389~396
    [11] Kaufman F B, Schroeder A H, Engler E M, et al. Ion and electron transport in stable,electroactive tetrathiafulvalene polymer coated electrodes. J. Am. Chem. Soc.,1980,102(2):483~488
    [12] Adams R N. Carbon Pasta Electrode. Anal. Chem.,1958,30(9):1576~1582
    [13] Chang S H, Druen S L, Garcia-Rubio L H. Modelling and analysis of fibre optic pH sensors:effect of the ionic strength. SPIE Proceedings Advances in Fluorescence Sensing Technology II,1995,2388:540~555
    [14] Güell A G, Meadows K E, Unwin P R, et al. Trace voltammetric detection of serotonin at carbonelectrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube networkelectrodes. Phys. Chem. Chem. Phys.,2010,12(34):10108~10114
    [15] Yue R, Lu Q, Zhou Y. A novel nitrite biosensor based on single-layer graphenenanoplatelet–protein composite film. Biosens. Bioelectron.,2011,26(11):4436~4441
    [16] Apetrei C, Apetrei I M, Saja J A D. Carbon Paste Electrodes Made from Different CarbonaceousMaterials: Application in the Study of Antioxidants. Sensors,2011,11(2):1328~1344
    [17]叶建农,金平,金利通,方禹之.聚苯胺修饰电极催化氧化测定维生素C的色谱电化学研究.华东师范大学学报(自然科学版),1991,(4):57~61
    [18] Li Z, Wang X, Wen G, et al. Application of hydrophobic palladium nanoparticles for thedevelopment of electrochemical glucose biosensor. Biosens. Bioelectron.,2011,26(11):4619~4623
    [19] James S L. Metal-organic frameworks. Chem. Soc. Rev.,2003,32(5):276~288.
    [20]魏文英,方键,孔海宁等.金属有机骨架材料的合成及应用.化学进展,2005,17(4):1110~1115
    [21] Yaghi O M, Li H. Hydrothermal Synthesis of a Metal-Organic Framework Containing LargeRectangular Channels. J. Am. Chem. Soc.,1995,117(41):10401~14102
    [22] Li H, Eddaoudi M, Yaghi O M, et al. Design and Synthesis of an Exceptionally Stable and HighlyPorous Metal-Organic Framework. Nature,1999,402:276~279
    [23] Meek S T, Greathouse J A, Allendorf M D. Metal-Organic Frameworks: A Rapidly GrowingClass of Versatile Nanoporous Materials. Adv. Mater.,2011,23(2):249~267
    [24] Tranchemontagne D J, Mendoza-Cortes J L, O’Keeffe M, Yaghi O M. Secondary Building Units,Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chem. Soc. Rev.,2009,38(5):1257~1283
    [25] Eddaoudi M, Kim J, Rsi N, et al. Systematic design of pore size and functionality in isoreticularMOFs and their application in methane storage. Science,2002,295:469~472
    [26] Chae H K, Siberio-perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion oflarge molecules in crystals. Nature,2004,427:523~527
    [27] Park K S, Ni Z, té A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolateframeworks. PNAS,2006(27),103:10186~10191
    [28] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolateframeworks and application to CO2capture. Science,2008,319:939~943
    [29] Prior T J, Bradshaw D, Teatb S J, Rosseinsky M J. Designed layer assembly: a three-dimensionalframework with74%extra-framework volume by connection of infinite two-dimensional sheets.Chem. Commun.,2003,(4):500~501
    [30] Custelcean R, Gorbunova M G. A metal-organic framework functionalized with free carboxylicacid sites and its selective binding of a Cl(H2O)(4)(-) cluster. J. Am. Chem. Soc.,2005,127(47):16362~16363.
    [31] Kosal M E, Chou J H, Wilson S R, Suslick K S. A functional zeolite analogue assembled frommetalloporphyrins. Nat. Mater.,2002,1(2):118~121.
    [32] Halper S R, Do L, Stork J R, Cohen S M. Topological control in heterometallic metal-organicframeworks by anion templating and metalloligand design. J. Am. Chem. Soc.,2006,128(47):15255~15268.
    [33] Maspoch D, Ruiz-Molina D, Wurst K, et al. A nanoporous molecular magnet with reversiblesolvent-induced mechanical and magnetic properties. Nat. Mater.,2003,2:190~195
    [34] Cohen S M, Wang Z. Postsynthetic covalent modification of a neutral metal-organic framework.J. Am. Chem. Soc.,2007,129(41):12368~12369
    [35]陈小明,蔡继文.单晶结构分析原理与实践.北京:科学出版社,2003
    [36] Gutschke S O H, Slawin A M Z, Wood P T. Engineering coordination architecture byhydrothermal synthesis; preparation, X-ray crystal structure and magnetic behaviour of thecoordination solid [Mn3{C6H3(CO2)3-1,3,5}2]. Chem. Commun.,1996,(7):823~824
    [37] Kappe C O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed.,2004,43(46):6250~6284
    [38] Kappe C O, Dallinger D. Controlled microwave heating in modern organic synthesis: Highlightsfrom the2004–2008literature. Mol. Divers.,2009,13(2):71~193
    [39] Ni Z, Masel R. Rapid Production of Metal-Organic Frameworks via Microwave-AssistedSolvothermal Synthesis. J. Am. Chem. Soc.,2006,128(38):12394~12395
    [40] Khan A, Haque E, Jhung S H. Rapid syntheses of a metal-organic framework materialCu3(BTC)2(H2O)3under microwave: a quantitative analysis of accelerated syntheses. Phys. Chem.Chem. Phys.,2010,12(11):2625~2631
    [41] Haque E, Khan N A, Park J H, et al. Synthesis of a metal-organic framework material, ironterephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem.Eur. J.,2010,16(3):1046~1052
    [42] Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecularsieving properties by microwave assisted solvothermal synthesis. J. Am. Chem. Soc.,2009,131(44):16000~16001
    [43] Yoo Y, Jeong H K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun.,2008,(21):2441~2443
    [44] Suslick K S, Hammerton D A, Cline R E. The Sonochemical Hot Spot. J. Am. Chem. Soc.,1986,108(18):5641~5642
    [45] Son W J, Kim J, Ahn W S. Sonochemical Synthesis of MOF-5. Chem. Commun.,2008,(47):6336~6338
    [46] Pichon A, Lazuen-Garay A, James S L. Solvent-free synthesis of a microporous metal–organicframework. CrystEngComm.,2006,8(3):211~214
    [47] Ohmura T, Mori W, Hasegawa M, et al. Gas-Occlusion Properties of a Novel Compound:Mononuclear Copper(II) Terephthalate-Pyridine. Chem. Lett.,2003,32(1):34~35
    [48] Kondo M, Okubo T, Susumu Kitagawa, et al. Rational Synthesis of Stable Channel-Like Cavitieswith Methane Gas Adsorption Properties:[{Cu2(pzdc)2(L)}n](pzdc=pyrazine-2,3-dicarboxylate;L=a Pillar Ligand). Angew. Chem. Int. Ed.,1999,38(1-2):140~143
    [49] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in Microporous Metal-OrganicFrameworks. Science,2003,300:1127~1129
    [50] Ferey G, Latroche M, Millange F, et al. Hydrogen adsorption in the nanoporousmetal-benzenedicarboxylate M(OH).{O2C-C6H4-CO2}(M=Al3+, Cr3+), MIL-53. Chem.Commun.,2003,(24):2976~2677
    [51] Zheng X J, Li L C, Jin L P, et al. Hydrothermal syntheses, structures and magnetic properties oftwo transition metal coordination polymers with a square grid framework. Polyhedron,2004,23(7):1257~1262
    [52] Pan L, Sander M B, Huang X, et al. Microporous metal organic materials: Promising candidatesas sorbents for hydrogen storage. J. Am. Chem. Soc.,2004,126(5):1308~1309
    [53] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organicframeworks. Chem. Soc. Rev.,2009,38(5):1477~1504
    [54] Czaja A U, Trukhan N, Muller U. Industrial applications of metal-organic frameworks. Chem.Soc. Rev.,2009,38(5):1284~1293
    [55] Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks-prospective industrialapplications. J. Mater. Chem.,2006,16(7):626~636
    [56] Hamon L, Serre C, Devic T, et al. Comparative Study of Hydrogen Sulfide Adsorption in theMIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal-Organic Frameworks atRoom Temperature. J. Am. Chem. Soc.,2009,131(25):8775~8777
    [57] Cui X Y, Gu Z Y, Jiang D Q, Li Y, Wang H F, Yan X P. In Situ Hydrothermal Growth ofMetal-Organic Framework199Films on Stainless Steel Fibers for Solid-Phase Microextractionof Gaseous Benzene Homologues. Anal. Chem.,2009,81(23):9771~9777
    [58] Gu Z Y; Yan X P. Metal–Organic Framework MIL-101for High-ResolutionGas-Chromatographic Separation of Xylene Isomers and Ethylbenzene. Angew. Chem. Int. Ed.,2010,49(8):1477~1480
    [59] Baker R W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res.,2002,41(6):1393~1411
    [60] Zacher D, Shekhah O, Woll C, Fischer R A. Thin films of metal-organic frameworks. Chem. Soc.Rev.,2009,38(5):1418~1429
    [61] Won J G, Seo J S, Kim J H. Coordination compound molecular sieve membranes. Adv. Mater.,2005,17(1):80~84
    [62] Liu Y Y, Ng Z F, Khan E A, et al. Synthesis of continuous MOF-5membranes on porousα-alumina substrates. Microporous Mesoporous Mater.,2009,118(1-3):296~301
    [63] Yoo Y, Lai Z P, Jeong H K. Fabrication of MOF-5membranes using microwave-induced rapidseeding and solvothermal secondary growth. Microporous Mesoporous Mater.,2009,123(1-3):100~106
    [64] Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts. Chem. Soc.Rev.,2009,38(5):1450~1459
    [65] Ma L Q, Abney C, Lin W B. Enantioselective catalysis with homochiral metal-organicframeworks. Chem. Soc. Rev.,2009,38(5):1248~1256
    [66] Alkordi M H, Liu Y, Larsen R W, et al. Zeolite-like metal-organic frameworks as platforms forapplications: On metalloporphyrin-based catalysts. J. Am. Chem. Soc.,2008,130(38):12639~12641
    [67] Thirumurugan A, Natarajan S. Inorganic-Organic Hybrid Compounds: Synthesis and Structuresof New Metal Organic Polymers Synthesized in the Presence of Mixed Dicarboxylates. Eur. J.Inorg. Chem.,2004,(4):762~770
    [68] Sudik A C, C té A P, Yaghi O M. Metal-Organic Frameworks Based on Trigonal PrismaticBuilding Blocks and the New “acs” Topology. Inorg. Chem.,2005,44(9):8209~8211
    [69] Gandara F, de Andres A, Gomez-Lor B, et al. A rare-earth MOF series: Fascinating structure,efficient light emitters, and promising catalysts. Cryst. Growth. Des.,2008,8(2):378~380
    [70] Sadakiyo M, Yamada T, Kitagawa H. Rational Designs for Highly Proton-ConductiveMetal-Organic Frameworks. J. Am. Chem. Soc.,2009,131(29):9906~9907
    [71] Kou H Z, Jiang Y B, Cui A L. Two-Dimensional Coordination Polymers ExhibitingAntiferromagnetic Gd(III)-Cu(II)Coupling. Cryst. Growth. Des.,2005,5(1):77~79
    [72] Zhang X, Huang D, Chen C, et al. Synthesis, structural characterization and magnetic property ofmetal2,5-pyridine dicarboxylate complex. Inorg. Chem. Commun.,2005,(8):22~26
    [73] Harbuzaru B V, Corma A, Rey F, et al. Metal-Organic Nanoporous Structures with SimultaneousAnisotropic Photoluminescence and Magnetic Properties, and their use as Sensors. Angew. Chem.Int. Ed.,2008,47(6):1080~1083
    [74] Xie Z G, Ma L Q, deKrafft K E, et al. Porous Phosphorescent Coordination Polymers for OxygenSensing. J. Am. Chem. Soc.,2010,132(3):922~923
    [75] Liu Y Y, Zhang J, Xu F, et al. Lithium-based3D coordination polymer with hydrophilic structurefor sensing of solvent molecules. Cryst. Growth. Des.,2008,8(9):3127~3129
    [76] Doménech A, García H, Doménech-Carbó M T, et al. Electrochemistry of Metal OrganicFrameworks: A Description from the Voltammetry of Microparticles Approach. J. Phys. Chem.C,2007,111(37):13701~13711
    [77] Díaz R, Orcajo M G, Botas J A, et al. Co8-MOF-5as electrode for supercapacitors. Mater. Lett.,2012,68:126~128
    [78] Zheng X Z, Li Y F, Xu Y X, el al. Metal–organic frameworks: Promising materials for enhancingelectrochemical properties of nanostructured Zn2SnO4anode in Li-ion batteries. CrystEngComm,2012,14(6):2112~2116
    [79] Wen L L, Wang F, Leng X K, et al. Efficient Detection of Organophosphate Pesticide Based on aMetal-Organic Framework Derived from Biphenyltetracarboxylic Acid. Cryst. Growth Des.,2010,10(7):2835~2838
    [80] Babu K F, Kulandainathan M A, Katsounaros I, et al. Electrocatalytic activity of BasoliteTMF300metal-organic-framework structures. Electrochem. Commun.,2010,12(5):632~635
    [81] Halls J E, Hernán-Gómez A, Burrows A D, et al. Metal–organic frameworks post-syntheticallymodified with ferrocenyl groups: framework effects on redox processes and surface conduction.Dalton Trans.,2012,41(5):1475~1480
    [82]王磊.固体电极表面修饰与电化学传感器的研制:[硕士学位论文].天津:南开大学,2005
    [83] Wulff G, Sarhan A, The use of polymers with enzyme-analogous structures for the resolution ofracemates. Angew. Chem. Int. Ed.,1972,11(4):341~344
    [84] Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecularimprinting. Nature,1993,361:645~647
    [85]龚继来.基于电合成分子印迹膜的传感器和新城疫抗体免疫传感器的研制:[硕士学位论文],湖南:湖南大学,2003
    [86]赖家平,分子印迹聚合物在色谱分离和固相萃取药物中的应用研究,[博士学位论文],天津:南开大学,2002
    [87] Haupt K, Mosbach K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors.Chem. Rev.,100(7):2495~2504
    [88]周勤,袁笑一.分子印迹技术及其在环境领域的应用.科技通报,2005,21(1):110~114
    [89]雷建都,贺湘凌,谭天伟.分子印迹技术及应用.现代化工,2001,21(4):17~20
    [90]邓桂茹,龚海英,郭洪声等.分子印迹聚合物作为电传感电极涂层对气味物质的选择性识别.武警医学院学报,2002,11(3):149~152
    [91]罗晖,孙瑞丰,沈忠耀.分子印迹技术用于生物大分子的识别.生物工程进展,2001,(5),63~67
    [92]郭洪声,何锡文,邓昌辉等.药物扑热息痛分子模板聚合物的选择性富集与识别特性研究.高等学校化学学报,2000,21(3):363~367
    [93] Matsui J, Nicholls I A, Takeuchi T. Molecular recognition in cinchona alkaloid molecularimprinted polymer rods. Anal. Chim. Acta,1998,365(1),89~93
    [94] Martin P, Wilson I D, Morgan D E, et al. Evaluation of a Molecular-imprinted Polymer for use inthe Solid Phase Extraction of Propranolol From Biological Fluids. Anal. Commun.,34(2):45~47
    [95]苏立强,刘学良,王俊德.分子烙印聚合物固定相分离咖啡因和茶碱的研究.高等学校化学学报,2001,22(7):1122~1124
    [96] Schweitz L, Andersson L I, Nilsson S. Capillary Electrochromatography with PredeterminedSelectivity Obtained through Molecular Imprinting. Anal. Chem.,1997,69(6):1179~1183
    [97]孟子晖,王进防,周良模等.球形分子烙印聚合物分离立体异构体.色谱,1999,17(4):323~325
    [98]雷建都,谭天伟.利用分子印迹聚合物对外消旋药物萘普生的手性拆分.现代化工,2001,21(8):29~31
    [99]郭洪声,何锡文.药物头孢氨苄分子模板聚合物水中结合性质的研究.分析化学,2000,28(10):1214~1219
    [100] Crescenzi C, Bayoudh S, Cormack P A G, et al. Determination of Clenbuterol in BovineLiver by Combining Matrix Solid-Phase Dispersion and Molecularly Imprinted Solid-PhaseExtraction Followed by Liquid Chromatography/Electrospray Ion Trap Multiple-Stage MassSpectrometry. Anal. Chem.,2001,73(10):2171~2177
    [101] Sellergen B. Direct Drug Determination by Selective Sample Enrichment on an ImprintedPolymer. Anal. Chem.,1994,66(9):1578~1582
    [102] Pretotius V, Hopkins B J, Schieke J D. Electro-osmosis: A new concept for high-speedliquid chromatography. J. Chromatogr. A,1974,99:23~30
    [103] Nilsson K, Linden J, Sellergren B. Imprinted polymers as antibody mimetics and newaffinity gels for selective separations in capillary electrophoresis. J. Chromatogr. A,1994,680(1):57~61
    [104] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with molecularimprint-based selectivity for enantiomer separation of local anaesthetics. J. Chromatogr. A,1997,792(1):401~409
    [105] Dickert F L, Lieberzeit P, Tortschanoff M. Molecular imprints as artificial antibodies—anew generation of chemical sensors. Sensor. Actuat. B,2000,65(1):186~189
    [106] Dickert F L, Ortschanoff M. Molecularly Imprinted Sensor Layers for the Detection ofPolycyclic Aromatic Hydrocarbons in Water. Anal. Chem.,1999,71(20):4559~4563
    [107] Surugiu I, Svitel J, Ye L, et al. Development of a Flow Injection CapillaryChemiluminescent ELISA Using an Imprinted Polymer Instead of the Antibody. Anal.Chem.,2001,73(17):4388~4392
    [108] Surugiu I, Danielsson B, Ye L, et al. Chemiluminescence Imaging ELISA Using anImprinted Polymer as the Recognition Element Instead of an Antibody. Anal. Chem.,2001,73(3):487~491
    [109] Panasyuk T L, Mirsky V M, Piletsky S A, et al. Electropolymerized Molecularly ImprintedPolymers as Receptor Layers in Capacitive Chemical Sensors. Anal. Chem.,1999,71(20),4609~4613
    [110] Sergeyeva A, Piletsky S A, Brovko A A. Conductimetric sensor for atrazine detection basedon molecularly imprinted polymer membranes. Analyst,1999,124(3):331~334
    [111] Kriz K, Mosbach K, Competitive amperometric morphine sensor based on an agaroseimmobilised molecularly imprinted polymer. Anal. Chim. Acta,1995,300(1):71~75
    [112] Dickert F L, Tortschanoff. M. Molecularly Imprinted Sensor Layers for the Detection ofPolycyclic Aromatic Hydrocarbons in Water. Anal. Chem.,1999,71(20):4559~4563
    [113] Perchyonok V P, Schiesser C H. On the use of9-borabicyclo[3.3.1]nonane as an initiator forlow-temperature free-radical reductions. Tetrahedron Lett.,1998,39(30):5437~5438
    [114] Jakusch M, Janotta M, Mizaikoff B, et al. Molecularly Imprinted Polymers and InfraredEvanescent Wave Spectroscopy. A Chemical Sensors Approach. Anal. Chem.,1999,71(20):4786~4791
    [115] Malitesta C, Losito I, Zambonin P G. Molecularly Imprinted Electrosynthesized Polymers:New Materials for Biomimetic Sensors. Anal. Chem.,1999,71(7):1366~1370
    [116] Peng H, Liang C D, He D L, et al. Non-Aqueous Assay System for Phenobarbital UsingBiomimetic Bulk Acoustic Wave Sensor Based on a Molecularly Imprinted Polymer. Anal.Lett.,2000,33(5):793~808
    [117] Liang C D, Peng H, Zhou A H. Molecular imprinting polymer coated BAW bio-mimicsensor for direct determination of epinephrine. Anal. Chim. Acta,2000,415(1):135~141
    [118] Liang C D, Peng H, Sao X Y, et al. Study of a molecular imprinting polymer coated BAWbio-mimic sensor and its application to the determination of caffeine in human serum andurine. Analyst,1999,124(12):1781~1785
    [119] Lahav M, Kharitonov A B, Katz O, et al. Tailored Chemosensors for Chloroaromatic AcidsUsing Molecular Imprinted TiO2Thin Films on Ion-Sensitive Field-Effect Transistors. Anal.Chem.,2001,73(3):720~723
    [120] Benes F M. Arvid Carlsson and the discovery of dopamine. Trends Pharmacol. Sci.,2001,22(1):46~47
    [121] Phillips P E M, Stuber G D, Heien M, et al. Subsecond dopamine release promotes cocaineseeking. Nature,2003,422:614~618
    [122] Wilson G S, Johnson M A. In-vivo electrochemistry: What can we learn about livingsystems? Chem. Rev.,2008,108(7):2462~2481
    [123] Chen Y, Guo L, Chen W, et al.3-mercaptopropylphosphonic acid modified gold electrodefor electrochemical detection of dopamine. Bioelectrochem.,2009,75(1):26~31
    [124] Moccelini S K, Fernandes S C, Vieira I C. Bean sprout peroxidase biosensor based onl-cysteine self-assembled monolayer for the determination of dopamine. Sens. Actuators B.2008,133(2):364~369
    [125] Chandrashekar B N, Kumara Swamy B E, Pandurangachar M, et al. Electropolymerisationof l-arginine at carbon paste electrode and its application to the detection of dopamine,ascorbic and uric acid. Colloids Surf., B,2011,88(1):413~418
    [126] Zare H R, Nasirizadeh N. Application of Hematoxylin Multi-wall Carbon NanotubeModified Carbon Paste Electrode as a Chemical Sensor for Simultaneous Determination ofDopamine and Acetaminophen. Int. J. Electrochem. Sci.,2009.4(12):1691~1705
    [127] Quan D P, Tuyen D P, Lam T D, et al. Electrochemically selective determination ofdopamine in the presence of ascorbic and uric acids on the surface of the modifiedNafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes.Colloids Surf., B,2011,88(2):764~770
    [128] Raoof J B, Kiani A, Ojani R, et al. Simultaneous voltammetric determination of ascorbicacid and dopamine at the surface of electrodes modified with self-assembled goldnanoparticle films. J. Solid State Electrochem.,2010,14(7):1171~1176
    [129] Gu Z Y, Wang G, Yan X P. MOF-5Metal-Organic Framework as Sorbent for In-FieldSampling and Preconcentration in Combination with Thermal Desorption GC/MS forDetermination of Atmospheric Formaldehyde. Anal. Chem.,2010,82(4):1365~1370
    [130] Ameloot R, Liekens A, Alaerts L, et al. Silica-MOF Composites as a Stationary Phase inLiquid Chromatography. Eur. J. Inorg. Chem.,2010,(24):3735~3738
    [131] Cui X Y, Gu Z Y, Jiang D Q, Li Y, Wang H F, Yan X P. In Situ Hydrothermal Growth ofMetal-Organic Framework199Films on Stainless Steel Fibers for Solid-PhaseMicroextraction of Gaseous Benzene Homologues. Anal. Chem.,2009,81(23):9771~9777
    [132] Wen L L, Wang F, Leng X K, et al. Efficient Detection of Organophosphate Pesticide Basedon a Metal-Organic Framework Derived from Biphenyltetracarboxylic Acid. Cryst. GrowthDes.,2010,10(7):2835~2838
    [133] Halls J E, Hernán-Gómez A, Burrows A D, et al. Metal–organic frameworkspost-synthetically modified with ferrocenyl groups: framework effects on redox processesand surface conduction. Dalton Trans.,2012,41(5):1475~1480
    [134] Gao C Y, Liu S X, Xie L H, et al. Design and construction of a microporous metal-organicframework based on the pillared-layer motif. Cryst. Eng. Comm.,2007,9(7):545~547
    [135] Doménech A, García H, Doménech-Carbó M T, Llabrés-i-Xamena F X. Electrochemistry ofMetal-Organic Frameworks: A description from the voltammetry of microparticles approach.J. Phys. Chem. C,2007,111(35):13701~13711
    [136] Nikles C J, Yelland M, Marc C D, Wilkinson D. The role of paracetamol in chronic pain: anevidence-based approach. Am. J. Ther.,2005,12(1):80~91.
    [137] Clayton B D, Stock Y N. Basic Pharmacology for Nurses, Mosby Inc., Harcourt HealthSciences Company, St. Louis (2001).
    [138] Kumar K G, Latha R. Determination of paracetamol in pure form and in dosage forms usingN,N-dibromo dimethylhydantoin. J. Pharm. Biomed. Anal.,1997,15(11):1725~1728.
    [139] Belal T, Awad T, Clark C R. Determination of Paracetamol and Tramadol Hydrochloride inPharmaceutical Mixture Using HPLC and GC-MS. J. Chromatogr. Sci.,2009,47(10):849~854.
    [140] Fujino H, Yoshida H, Nohta H, Yamaguchi M. HPLC determination of acetaminophen insaliva based on precolumn fluorescence derivatization with12-(3,5-dichloro-2,4,6-triazinyl)benzo[d]benzo[1',2'-6,5]isoindolo[1,2-b][1,3]thiazolidine.Anal. Sci.,2005,21(9):1121~1124.
    [141] Toral M I, Rivas J, Saldías M, et al. Simultaneous determination of acetaminophen andtramadol by second derivative spectrophotometry. J. Chil. Chem. Soc.,2008,53(2):1543~1547.
    [142] Boopathi M, Won M S, Shim Y B. A sensor for acetaminophen in a blood medium using aCu(II)-conducting polymer complex modified electrode. Anal. Chim. Acta,2004,512(2):191~196.
    [143] Manjunatha R, Nagaraju D H, Suresh G S, et al. Electrochemical detection ofacetaminophen on the functionalized MWCNTs modified electrode using layer-by-layertechnique. Electrochim. Acta,2011,56(19):6619~6627.
    [144] Sanghavi B J, Srivastava A K. Simultaneous voltammetric determination of acetaminophenand tramadol using Dowex50wx2and gold nanoparticles modified glassy carbon pasteelectrode. Anal. Chim. Acta,2011,706(2):246~254.
    [145] Song J C, Yang J, Zeng J F, et al. Graphite oxide film-modified electrode as anelectrochemical sensor for acetaminophen. Sensor Actuat. B-Chem.,2011,155(1):220~225.
    [146] Habibi B, Jahanbakhshi M, Pournaghi-Azar M H. Simultaneous determination ofacetaminophen and dopamine using SWCNT modified carbon-ceramic electrode bydifferential pulse voltammetry. Electrochim. Acta,2011,56(7):2888~2894.
    [147] Frew J E, Hill H A. Electrochemical biosensors. Anal. Chem.,1987,59(15):933A~944A
    [148] Hill H A. Bio-electrochemistry. Pure Appl. Chem.,1987,59(6):743~748.
    [149] Galal A. Electrocatalytic oxidation of some biologically important compounds at conductingpolymer electrodes modified by metal complexes. J. Solid State Electrochem.,1998,2(1):7~15.
    [150]吕宪禹主编.蛋白质工程分离纯化.北京:化学工业出版社.2010
    [151]李平,孙凤琴,赵惠敏等.香草醛的应用及制备.河北师范大学学报,1999,23(2):250~254
    [152]黄希顺,黄丽娟,魏建科.香草醛治疗癫痫的疗效观察实用.实用神经疾病杂志,2005,8(4):78
    [153] GB2760-2007.食品添加剂使用卫生标准
    [154]王铁杰,曹阳,王玉等. HPLC法测定川芎中阿魏酸和香草醛的含量.中草药,2004,35(8):944~945
    [155]周庆礼,黄艳凤,韩英素等.高效液相色谱法测定发酵液中的香兰素.色谱,2004,22(3):295
    [156]单秀梅,卢忠魁,黄越.反相高效液相色谱法测定啤酒中香兰素.中国卫生工程学,2003,2(2): l09~110
    [157]李永红,郑志强,孙志浩.反相高效液相色谱法同时测定发酵液中的阿魏酸、香草酸和香草醛.分析化学,2004,32(3):409
    [158]李永红,郑志强,孙志浩. TLC方法同时监测生物转化过程中的阿魏酸、香草酸和香草醛.郑州工程学院学报,24(1):35~37
    [159] Bettazzi F, Palchetti I, Sisalli S, et al. A disposable electrochemical sensor for vanillindetection. Anal. Chim. Acta,2006,555(1):134~138
    [160] Peng J Y, Hou C T, Hu X Y. Improvement of Corrosion Resistance of Carbon Steel inHydrochloric Acid Medium by3,6-bis(3-Pyridyl)Pyridazine. Int. J. Electrochem. Sci.,2012,7(2):1699~1723
    [161] Wulff G. Molecular Imprinting in Cross-Linked Materials with the Aid of MolecularTemplates-A Way towards Artificial Antibodies. Angew. Chem. Int. Ed.,1995,34(17):1812~1832
    [162] Ramstrom O, Mosbach K. Synthesis and catalysis by molecularly imprinted materials. Curr.Opin. Chem. Biol.,1999,3:759~764
    [163] Kazuyoshi Y, Isao K. Molecularly imprinted polymers for biosensor applications. TrendsAnal. Chem.,1999,18(3):199~204
    [164] Haupt K, Mosbach K. Molecularly Imprinted Polymers and Their Use in BiomimeticSensors. Chem. Rev.,2000,100(7):2495~2504
    [165] Piletsky S A, Alcock S, Turner A P F. Molecular imprinting: at the edge of the thirdmillennium. Trends Biotechnol.,2001,19(1),9~12
    [166] Sellergren B. Imprinted chiral stationary phases in high-performance liquid chromatography.J. Chromatogr. A.,2001,906(1-2):227~252
    [167] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal. Chim. Acta,2007,591(1):29~39
    [168] Liu Z H, Yi Y, Gauczinski J, et al. Surface Molecular Imprinted Layer-by-Layer FilmAttached to a Porous Membrane for Selective Filtration. Langmuir,2011,27(19):11806~11812
    [169] Zeng H, Wang Y Z, Liu X J, et al. Preparation of molecular imprinted polymers usingbi-functional monomer and bi-crosslinker for solid-phase extraction of rutin. Talanta,2012,93:172~181
    [170]胡秋娈,赵凤林,李克安.铍试剂Ⅱ分光光度法测定蛋白质的研究.分析科学学报,1999,15(6):446~449
    [171]李卓,曹健明.磺胺偶氮氯膦与牛血清白蛋白作用的光谱研究及应用.光谱实验室,2009,26(1):14~18
    [172] Fan J Z, Zhou J A, Sun T W, et al. Multi-spectroscopic Study on the Interaction betweenCdTe Quantum Dots and Bovine Serum Albumin. Chin. J. Chem.,2010,28(12):2353~2358
    [173]张正奇,吕喜凤.蛋白质的电化学特性研究.湖南大学学报(自然科学版),2002,29(2):36~39
    [174] Qin L, He X W, Jia M, et al. A Thermosensitive Monolithic Column as an ArtificialAntibody for the On-line Selective Separation of the Protein. Chem. Eur. J.,2011,17(5):1696~1704
    [175] Collins C J, Lyons C, Strutwolf J, et al. Serum-protein effects on the detection of theβ-blocker propranolol by ion-transfer voltammetry at a micro-ITIES array. Talanta,2010,80(5):1993~1998
    [176] Bucking W, Mmassadeh S, Merkulov A, et al. Electrophoretic properties of BSA-coatedquantum dots. Anal. Bioanal. Chem.,2010,396(3):1087~1094

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700