低能离子注入与~(60)Coγ辐照小麦成熟胚诱发反转录转座子WIS2-1A变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:低能N~+和~(60)Coγ射线在诱变育种应用上已经取得了较好的成效,但对于诱变效应的机理研究相对滞后。本实验以小麦中反转录转座子WIS2-1A为研究对象,将用于诱变育种的物理诱变源低能N~+和~(60)Coγ射线应用到反转录转座子的研究上。从DNA及cDNA水平初步探讨了低能离子辐射及~(60)Coγ射线对WIS2-1A反转录酶的基因及表达的影响。然后以其中WIS2-1A表达大幅度提高的样本为研究对象,用基因芯片的方法研究其整个转录本的表达变化情况,并据此推断这些表达变化与反转录转座子WIS2-1A表达之间的相关关系,推测辐射引起生物学效应的可能原因及反转录转座子WIS2-1A在其中的作用,为辐射诱变生物学效应的机理研究奠定基础。
     结论:
     1.本研究以各种剂量低能N~+和~(60)Coγ射线辐照小麦种子,发现经过处理的种子培养30 h、45 h和60 h后,胚中的反转录转座子WIS2-1A反转录酶的保守序列在DNA水平没有太大变化。与Genebank中标准序列相比,低能N~+注入的小麦种胚中WIS2-1A反转录酶的保守序列变化相对较大。
     2.1.0×10~(17)N~+/cm~2注入的小麦种子培养45 h时,种胚中WIS2-1A反转录酶保守序列克隆中,发现一个克隆序列在187-195bp处缺失了9个碱基(AGTGAGTGG)。将其翻译成氨基酸序列,发现其中有6个终止子。这种缺失突变和终止密码子突变可能是造成反转录转座子异质性的主要原因。
     3.实时定量PCR结果表明,不同剂量低能N~+注入和~(60)Coγ射线处理的种胚中,都发现WIS2-1A有持续低水平的表达,且WIS2-1A表达活性随着种子培养时间延长而下降。~(60)Coγ辐照能够小幅度地刺激或抑制WIS2-IA表达,影响相对较小且没有规律性;低能N~+注入对WIS2-1A表达影响较大,且WIS2-1A表达变化与低能N~+注入剂量之间有一定规律性。种子培养30 h时,这种剂量依赖关系表现尤其明显:随着注入剂量增大,WIS2-1A表达呈现先增加后降低的趋势,在0.5×10~(17)N~+/cm~2表达达到最大值,即相对表达量是对照的138倍。
     4.从基因芯片结果看,受到0.5×10~(17)N~+/cm~2低能N~+注入刺激的小麦种子,在培养30 h时,呼吸作用增强,碳水化合物和蛋白质的水解加快而合成减慢,低温及高温应激蛋白、抗病及抗逆蛋白明显增多。据此推断,0.5×10~(17)N~+/cm~2低能N~+注入对小麦种胚细胞造成了某些伤害,经过30 h培养,细胞正处于主动的抗逆状态。
     5.小麦种子受到0.5×10~(17)N~+/cm~2低能N~+注入刺激后,与对照相比,细胞内抗逆基因和反转录转座子WIS2-1A的表达都显著提高。推断胁迫条件下,反转录转座子激活与防卫基因激活之间可能存在相似的分子机理。
Differential expression of retrotransposon WIS 2-1 A in wheatresponse to low-energy N~+ implantation and ~(60)Coγ-ray irradiation
     Purpose: This paper tried to investigate the variation of retrotransposon WIS 2-1Aactivity in wheat (Triticum aestivum L.) embryos at three different developmentalstages (30 h, 45 h and 60 h) after treating with 0.5×10~(17),1.0×10~(17),1.5×10~(17) N~+/cm~2implantation and 100Gy, 300Gy, 500Gy ~(60)Coγ-ray irradiation respectively. Wediscussed the relationship between the expression of WIS2-1A and the variable dose ofN~+ and ~(60)Coγ-ray from the level of DNA and cDNA. What's more, we tried to find theinfluence of the high expression of WIS2-1A to the whole other transcripts using thewheat genome array. This paper could promote the theory of radiant aberrance.
     Results:
     1 .The DNA composition changed a little of WIS2-1A reverse transcriptase aftersufferring N~+ implantation and ~(60)Coγ-ray irradiation.
     2. There is a vacancy of 9bp in the sequence of W1S2-1A reverse transcriptase aftersufferring 1.0×10~(17) N~+/cm~2 implantation. It's translation product has 6 terminators andthat probably result the heterogeneity.
     3. WIS 2-1A always had the transcription activity in the first 60 h of incubation and areverse relationship between the time of embryo development and the sensitivity ofretrotransposon WIS 2-1A. For N~+ the expression showed a regular fluctuation withthe gradual doses. The most positive stimulation occurred at the dose of 1.5×10~(17)N~+/cm~2 at 30 h. For ~(60)Coγ-ray the expression showed a irregular fluctuation and theexpression changed a little.
     4. The membrane permeability, respiration, synthesis of carbohydrates and proteinincreased, but the hydrolysis of carbohydrates and protein slowed down. The proteinof resisting low-temperature, high temperature and stress increased after 1.5×10~(17)N~+/cm~2 implantation at 30 h. Low-energy N~+ implantation caused some injury towheat embryo cells, after 30h culture, the cells are in the active state of stress adaptation.
     5.comparing the control,the expression of WIS2-1A and some resistance geneincreased greatly. It seems like that they have the same mechanism to regard the cells.
引文
[1] Kumar A, Bennetzen J L. Plant retrotransposons. Annu Rev Genet 1999,33:479-532
    [2] McCarthy EM, Liu J, Gao L, et al. Long terminal repeat retrotransposons of Oryza sativa Genome Biol, 2002, 3: 1- 11.
    [3] Bennetzen J L. Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology 2000,42:251 -269.
    [4] Singer M F. SINEs and LINEs : highly repeated short and long interspersed sequences in mammalian genomes. Cell, 1982,28 (3): 433-434.
    [5] Hirochika H, Fukuchi A, Kikuchi F. 1992. Retrotransposon families in rice. Mol.Gen.Genet. 233:209-216.
    [6] Smyth D R, Kalitsis R, Joseph J L, et al. Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophik. Proc Natl Acad Sci USA. 1989,6: 5015-5019.
    [7] SanMiguel P, Tikhonov A, Jin YK, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996,274:765-768.
    [8] Vicient C M, Kalendar R, Anamthawat-Jonsson K, et al. Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells. Plant, 1999, 20: 413-422.
    [9] Meyers B C, Tingey S V, Morgante M. Abundance,distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res, 2001,11: 1660- 1676.
    [10] Nishimura M, Hayashi N, Jwa N S, et al. Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2000,13 (8): 892-894
    [11] Imsande J, Pittig J, Palmer R G, et al. Independent Spontaneous Mitochondrial Malate Dehydrogenase Null Mutants in Soybean are the Result of Deletions. The Journal of Heredity 2001,92(4):333-338.
    [12] Unseld M, Marienfeld J R, Brandt P, et al. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet, 1997,15:57-61.
    [13] Knoop V, Unseld M, Marienfeld J, et al. copia-, gypsy- and LINE-Like Retrotransposon Fragments in the Mitochondrial Genome of Arabidopsis thaliana. Genetics, 1996,142(2): 579-585.
    [14] Tikhonov AP, San Miguel PJ, Nakajima Y, et al. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Natl Acad Sci USA, 1999,96:7409-7414.
    [15] Eickbush T H, Jamburuthugoda V K. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res, 2008,134(1-2):221 -234.
    [16] SanMiguel P, Gaut B S, Tikhoniv A, et al. The paleontology of intergene retrotransposons in maize. Nat Genet,1996,20:43-45.
    [17] Vicient C M, Suoniemi A, Schulman A. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell,1999,11: 1769- 1784.
    [18] Fedoroff N, Furtek D, Nelson O. Cloning of the Bronze locus in maize by a simple and generalizable procedure using the transposable controlling element. Ac Proc Natl Acad Sci USA, 1984,81:3825-3829.
    [19] Hirochika H. Activation of tobacco retrotransposons during tissueculture. EMBO J,1993,12 (6):2521-2528.
    [20] Harberd N, Flavell R, Thompson RIdentification of a transposon- like insertion in a Glu-1 allele of wheat. Mol Genet Genomics. 1987,209:326-332.
    [21] Murphy G J, Lucas H, Moore G, et al. Sequence analysis of WIS-2-1 A, a retrotransposon like element from wheat. Plant Mol Biol.1992,20(5):991-995.
    [22] Lucus H, moore G, murphy G. et al. inverted repeats in the long-terminal Tepeats of the wheat retrotransposon Wis2-1A. Mol Biol Evol,1992,9(4):716-728.
    [23] Monte J V, Flavell R B, Gustafson J P. WIS2-IA:an ancient retrotransposon in the Triticeue tribe. Theor Appl Genet,1995, 91:367-373.
    [24] Yoshihiro M, Koichiro T. Wheat retrotransposon families identified by reverse transcriptase domain analysis. Mol Biol Evol, 1996,13(10):1384-1392.
    [25] 唐益苗,马有志,李连成,等.小麦反转录转座子家族鉴定及其转录活性分析.科学通报,2005,6(50):546-551.
    [26] Moore G, Lucas H, Batty N, et al. A family of retrotransposons and associated genomic variation in wheat. Genomics,1991,10:461-468.
    [27] Kashkush K, Feldman M, Levy A A, et al. Gene Loss, Silencing and Activation in a Newly Synthesized Wheat Allotetraploid. Genetics, 2002,160:1651 - 1659.
    [1] 刘录祥,程俊源.植物诱变育种新技术研究进展.核农学通报,1997,(4):38-41.
    [2] 官梅,李枸.~(12)C重离子束辐照对油菜的影响.作物学报,2006,2(6):878-884.
    [3] 程备久,李展,王公明,等.氮离子注入棉花种子的诱变效应.核农学报,1993,7(2):73-80.
    [4] 赵连芝,王浩瀚,王勇,等.重离子辐照选育春小麦新品种初探,西北农业学报,2006,3:17-19.
    [5] 卫增泉,颉红梅,梁剑平,等.重离子束在诱变育种和分子改造中的应用.原子核物理评论,2003,20(1):38-41.
    [6] 罗茂春,沈明山,徐金森,等.低能碳离子对甜菊生长和叶绿体发育的影响厦门大学学报(自然科学版),2000,39(1):96-101.
    [7] Ren H Y, Chen Z L. Effects of nitrogen ion implantation on lily pollen germination and the distribution of the actin cytoskeleton during pollen germination (科学通报英文版)2000, 45: 1677-1680.
    [8] Huang Z L, Zhu G L, Zhu G L. Effects of nitrogen on Ca~(2+) concentration and membrane potential pollen cell (科学通报英文版),2001,46: 1691-1693.
    [9] Gu Y H, Cheng Y H. Tang S, et al. Study of effects of microtubule skeleton in cell mitosis by ion beam implantation. Acta Laser Biol Sin, 1997, 6: 1110-1113.
    [10] 慎玫,王彩莲,陈秋芳.离子注入水稻种子的细胞生物学效应.安徽农业大学学报,1994,21(3):265-268.
    [11] 程备久,李展,周立人,等.三种离子注入棉花种子的细胞学效应.安徽农业大学学报,1995,22(3):189-195.
    [12] 杨赞林,甘斌杰,金陵,等.离子注入小麦诱变育种及生物效应的研究I对出苗及苗期性状的影响.安徽农业科学,1990,45(3):212-217.
    [13] 顾月华,王圣兵,罗建平,等.低能重离子注入对小麦种子诱导根尖细胞有丝分裂崎变 的研究.核技术,2000,23(8):587-592.
    [14]辛庆国,刘录祥,于元杰,等.离子注入技术及其在小麦育种中的应用.麦类作物学报,2007,27(2):354-357.
    [15]丘冠英.低能重离子的生物学作用机理研究及应用.武汉大学学报,21(自然科学版),生物物理专刊,1993:9-12.
    [16]宋云,张怀渝,畅志坚.离子束用于诱变育种的研究进展.分子植物育种,2004,2(2):301-305.
    [17]虞龙,余增亮.离子束生物工程及其应用研究.中国兽药杂志,2001,35(1):55-60.
    [18]左方梅,瞿衡.低能离子束在生物学领域的应用.山东农业大学学报:自然科学版,2003,34(3):451-454.
    [19]杨贵兰,牛全忠.~(60)Co γ处理小麦远缘杂交材料获得优异突变系试验现代化农业,2000,(10):16-17.
    [20]翟世洪,宣朴,余泽良,等.~(60)Co γ射线诱变育种穗重型小麦新品种川辐4号.西南农业学报,1994,(4):32-36.
    [21]翁秀英,王彬如,吴承礼,等.大豆辐射育种的研究.遗传学报,1974,1(2):157-169.
    [22]王连铮,裴颜龙,赵荣娟,等.大豆辐射育种的某些研究.中国油料作物学报,2001,23(2):1-6.
    [23]王连铮,王岚,赵荣娟,等.辐射和生物技术相结合进行大豆育种.核农学报,2001,15(5):274-281.
    [24]邹莹.“百脉根辐射育种与种子生产研究”通过鉴定.畜牧兽医科技信息,1997,14:9-10.
    [25]陈秀兰,包建忠,刘春贵,等.观赏荷花辐射诱变育种初报.核农学报,2004,18(3):201-203.
    [26]郭爱桂,刘建秀,郭海林,等.辐射技术在国产狗牙根育种中的初步应用.草业科学,2000,17(1):45-47,49.
    [27]陈远贻,杨荣仲.~(60)Co γ射线不同剂量辐射甘蔗种芽试验初报.甘蔗,1996,3(04):18-21.
    [28]杨贵兰,牛全忠,等.~(60)Co γ射线处理小麦远缘杂交材料获得优异突变系试验.现代化农业,2000,10:16-17.
    [29]范国强,杨志清,曹艳春.毛泡桐同源四倍体的诱导.植物生理学通讯,2007,43(1): 109-111.
    [30] 郭桂云,王艳英,刘振东.~(60)Co γ射线辐照番茄种子对根尖细胞遗传学效应的影响.植物研究,1996,16(1):108-113.
    [31] 王彩莲,陈秋方,金卫.同步辐照(软x射线)对水稻的细胞学效应研究.核农学报,2000,14(3):141-14.
    [32] 杨茹冰,张月学,徐香玲,等.~(60)Co γ射线辐照紫花苜蓿种子的细胞生物学效应.核报,2007,21(2):136-140.
    [33] 张文艺,焦玲,星正治.0.2 MeV中子照射洋葱萌发种子后根尖细胞微核诱发率的研究.中国辐照卫生,2005,14(2):91-92.
    [34] 张克中,赵祥云,陆长旬,等.辐射百合雄性不育突变体的RAPD分析.林业科学研究,2003,3:372-375.
    [35] Hillick J B, Dorweler J E, Chandler V L, et al. Paramutation and related allelic interaction Trends Gent. 1997,13 (10): 302-308.
    [36] Yao J L , Dong Y H , Morris B A. Parthenocarpic apple fruit production conferred by transposon insertin mutations in a MADS-box transcription factor . Proc. Nati. Acad. Sci. USA , 2001 ,98(3): 1306-1311.
    [37] Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics, 2003,33(1): 102-106.
    [1] Voytas D F, Cummings M P, Konieczny A, et al. Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA,1992,89:7124-7128.
    [2] Monte J V, Flavell R B, Gustafson J P. WIS 2-1 A:an ancient retrotransposon in the Triticeae tribe Theor Appl Genet, 1995,91:367-373.
    [3] Lucas H, Moore G, Murphy G . et al. Inverted repeats in the long-terminal repeats of the wheat retrotransposon Wis 2-1A. Mol Biol Evol,1992, 9(4):716-728.
    [4] Monte JV, Flavell RB, Gustafson JP, et al. WIS 2-1A: An ancient retrotransposon in the Triticeae tribe. Theoretical and Applied Genetics ,1995,91:367-73.
    [5] Murphy GJP, Lucas H, Moore G, et al. Sequence analysis of WIS-2-1 A, a retrotransposon-like element from wheat: Plant Mol Biol,1992,20:991 -995.
    [6] 孙俊,房经贵,高兵,等.苹果中Tyl-copia型逆转座子逆转录酶序列的克隆及分析.果树学报,2005,22(3):193-197.
    [1] Boeke J D, Garfinkel D J, Styles C A, et al. Cell, 1985,40:491-500.
    [2] Steinhauer D A, Holland G G. J Virol, 1986,57:219-228.
    [3] 陈志伟,吴为人.遗传,2004,26(1):122-126.
    [4] Moore G, Lucas H, Batty N, et al. 1991,10:461 -468.
    [5] Kashkush K, Feldman M, Levy A A. Nat Genet, 2003,33: 102-106.
    [6] 姜扬,祖元刚,刘英.干旱和光联合胁迫对长春花CesA基因和Pme基因表达的影响.东北林业大学学报,2008,36(7):20-22.
    [7] 张巧丽,刘宛,李培军,等.镉胁迫对拟南芥幼苗错配修复基因表达的影响.2008,27(7):1173-1180.
    [8] 潘晓雪,姜华武,闫洪波,等.水稻ADP-葡萄糖焦磷酸化酶小亚基Ⅰ基因的启动子分析.热带亚热带植物学报,2008,16(03):189-194.
    [9] 郭予琦,田曾元,闫道良.盐生植物海滨锦葵幼苗盐胁迫下基因差异表达分析.遗传,2008,30(7):941--950.
    [10] 祝敏,虞红珍,周平坤.肿瘤谱阵列芯片技术分析人体不同癌组织hHBrk1基因的差异表达.安徽医科大学学报,2008,43(03):256-259.
    [11] 黄留玉,史兆兴,袁静,等.痢疾杆菌侵袭HeLa细胞基因表达谱的研究.微生物学报,2007,47(05):810-816.
    [12] 杨柳松,胡锦,周良辅,等.运用低密度表达谱芯片检测原发胶质母细胞瘤中相关基因表达.中华实验外科杂志,2006,23(11):1414-1414.
    [13] 申斯乐,王振伟,单晓辉,等.高压导致水稻变种品系发生DNA甲基化模式及基因组结构的改变,中国科学C辑,2005,35(6):490-496.
    [14] Kumar A, Bennetzen J L. Plant retrotransposons. Annu Rev Genet, 1999,33:479-532.
    [15] Feschotte C, Jiang N, Wessler R S. Plant retrotransposable elements: Where genetics meets genomics. Nat Rev Genet, 2002, 3: 329-341.
    [16] 押辉远,谷运红,焦浈,等.低能离子束促进小麦copia-反转录转座子的转录与转座.植物生理与分子生物学学报,2007,33(6):507-516.
    [17] 唐益苗,马有志,李连城,等.小麦反转录转座子家族鉴定及其转录活性分析.科学通报,2005,50(6):546-551.
    [1] Graves D J. Powerful tools for genetic analysis Collie of age. TrendsBiotechnol, 1999,17(3): 127. Joseph W. From DNA hiosensors to gene chip. Ntlcl Acid Res, 2000,28: 3001
    [2] Raghuraman M K, Winzeler EA, Collingwood D, et al. Science, 2001,294(5540): 115-121.
    [3] Marshalla. Hodg-on J. DNA chip: fin arrayof possibilities. Nat Biotechnol, 1998, 16(1): 2731.
    [4] Hacia J G. Resequencing and mutational analysis using oliGOnucleotide microarray.Nat Genet 1999,(Z1):42-27.
    [5] Fodor S P, Read J L, Pirrung M C, et al. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991,251(4995):767-773.
    [6] Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays. Science, 1996,274(5287): 610-614.
    [7] 黄猛.后基因组时代药物研究的新领域-蛋白质组学.中国生化药物杂志,2004,5(2):109-111.
    [8] 陈忠斌.生物芯片技术[M]化学工业出版社.
    [9] 王维,蔡一霞,张建华,等.适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节.作物学报,2005,31(3):289-296.
    [10] Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 Plays a Crucial Role in Benzothiadiazole-lnducible Blast Resistance. Plant Cell, 2007, 19(6): 2064-2076.
    [11] 邢莉萍,王华忠,蒋正宁,等.小麦类甜蛋白基因的转化及转基因植株的抗病性分析.作物学报,2008,34(3):349-354.
    [12] 金红,岳东段,周良炎,等.利用类甜蛋白基因诱导表达提高马铃薯对晚疫病抗性研究.2001,16(1):67-72.
    [13] 牛洪斌,陈小霞,白润娥,等.小麦16.9 kD热激蛋白cDNA克隆及其表达分析.麦类作物学报,2008,25(5):719-723.
    [14] Grandbastien M A, Audeon C, Casacuberta J M, et al. Activation of plant retrotransposons under stress conditions. Trends in Plant Sci, 1998,3: 181-187.
    [15] Grandbastien M A, Lucas H, Morel J B. The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense responses. Genetica,1997, 100:241 -252.
    [1] 杜严华,丘冠英,李国红,等。低能离子束及γ辐照对小菜蛾颗粒体病毒的影响及剂量效应关系的拟合分析.生物物理学报,1997,13(2):267-272.
    [2] 杜严华,黄晟海,谭铮,等.低能重离子对DNA单链断裂的定量测定及注量效应曲线的分析.科学通报,1999,44(1):56-61.
    [3] Grandbastien M A, Audeon C, Casacuberta J M, et al. Activation of plant retrotransposons under stress conditions. Trends in Plant Sci, 1998,3: 181-187.
    [4] Grandbastien M A, Lucas H, Morel J B. The expression of the tobacco Tntl retrotransposon is linked to the plant defense responses. Genetica,1997,100:241 -252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700