小麦遗传转化体系建立和优化及抗坏血酸过氧化物酶基因(Ta-APX)转化小麦研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了建立和优化Alondra's的高效再生及遗传转化体系,为小麦遗传转化提供更多的受体基因型。本研究以Alondra's的幼胚为外植体,研究了培养基种类、不同激素等对其幼胚愈伤组织的诱导及其再生的影响。结果表明,在使用N6培养基时,添加3 mg.L-1的2,4-D并附加1000 mg.L-1的CH对其愈伤的诱导效果较好;添加4 mg.L-1的ZT、不附加IAA对其分化效果最好。通过构建植物表达载体pCAMBIA1301-220.6,利用基因枪法将Hyg基因导入到Alondra's幼胚愈伤组织,以探索Alondra's的高效遗传转化体系。最终在含100 mg.L-1潮霉素选择培养基上筛选、分化,获得了30株抗性植株,经PCR检测,其中5株为阳性转基因植株,转化率为0.5%。Alondra's遗传转化体系的建立丰富了小麦遗传转化的基因型,为小麦品种的转基因改良和在不同背景中研究基因的功能奠定了良好的基础。
     农杆菌介导遗传转化具有外源基因表达稳定、一般为单拷贝等优点,遗传转化效率低、体系不稳定限制了该转化方法在小麦中的广泛应用。为了优化农杆菌介导的小麦遗传转化条件,本研究以普通小麦品种扬麦15和Alondra's的幼胚产生的愈伤组织为受体材料,通过检测Gus基因的瞬时表达情况,比较了农杆菌介导的主要影响因子的转化效率。结果表明,在相同条件下两个品种农杆菌侵染的最佳条件不尽相同。扬麦15的最佳优化条件为:先在不添加AS的培养基中预培养,然后在菌液浓度为OD600=1.0、AS浓度为100μmol/L条件下侵染10min,最后在25℃共培养Id; Alondra's则在菌液浓度为OD600=0.5、共培养时间为2d时,表现出最佳的Gus基因瞬时表达率。
     植物在逆境胁迫及病原菌侵染下,体内活性氧会大量积累,从而破坏正常新陈代谢时清除平衡,活性氧的清除系统对于维持植物的正常生理功能及正常的新陈代谢具有重要的意义。因此,通过植物基因工程的方法,将能够清除植物体内活性氧类物质的过氧化物酶基因导入到综合性状优良的小麦品种中,对于提高小麦的抗氧化胁迫能力有着重要的意义。本实验室在扬麦5号及与其回交7代的小麦/簇毛麦6VS/6AL易位系为材料建立的白粉菌诱导的叶片SSH文库中,克隆了一个小麦抗坏血酸过氧化物酶基因(Ta-APX),并发现该基因在白粉菌侵染初期发挥一定作用。为了进一步研究该基因在抗白粉病中的功能及其作用机制,研究其抗氧化能力与白粉菌侵染应答的关系。本研究在构建植物表达载体pAHC-Ta-APX的基础上,利用基因枪法将其导入到小麦品种扬麦158的幼胚愈伤组织。在含除草剂的培养基上经过筛选和分化,最终获得38株抗性再生植株。根据bar基因、ubi启动子及目的基因序列设计引物,对38株再生植株进行PCR鉴定,最终共获得10株含目的基因的阳性植株。为了研究转基因植株的抗氧化胁迫性,分析了PEG6000诱导及白粉菌胁迫下T1代转基因植株内APX酶活性,结果表明,在两种胁迫诱导下转基因株系的APX酶活性均高于对照植株。在大田条件下对T1代转基因植株进行抗白粉病和赤霉病接种鉴定,结果表明,转基因植株的白粉病和赤霉病抗性均有不同程度的提高,推测转基因植株通过过量表达Ta-APX基因提高了其抗氧化胁迫性,进而提高了对植物病原菌侵染的抵御能力。对转基因T1代植株的主要农艺性状调查结果表明,除株高外转基因植株的其它主要农艺性状与对照相比差异不显著。
In order to establish an optimized system for callus induction, regeneration and high-efficient genetic transformation of wheat variety Alondra's, the effects of culture medium, hormones on the callus induction and plant regeneration of immature embryo were studied. It is found that when using the N6 medium, the use of 3 mg.L-12,4-D together with 1000 mg.L-1 CH got the best results for callus induction, and use of 4 mg.L-1ZT without any IAA had the highest regeneration frequency. The Vector pCAMBIA1301-220.6 was constructed and transformed into Alondra's by particle bombardment. Thirty plants with hygromycin-resistance were selected and regenerated. Among them,5 were identified to be positive by PCR, with a transformation frequency as 0.5%. The establishment of the system further enriched the wheat genotype for transformation, and this will be helpful for both the genetic improvement and gene function analysis in various background by genetic transformation.
     Agrobacterium-mediated transformation system has advantages for its singly copy insertion and stable expression of the transgene. However, in wheat, this system is low repeatable and the transformation efficiency is relatively low compared with other methods. This limits the its widely used in wheat transformation. In order to optimize the agrobacterium-mediated genetic transformation in wheat, using the callus induced from immature embryo of wheat varieties Yangmai 15 and Alondra's as materials and using the transient expression array of the Gus gene, main factors affecting the transformation efficiency was studied. The results showed that the optimized condition for the above two varieties were different under the same treatment. The best condition for Agrobacterium-mediated transformation in Yangmai 15 are:Firstly, pre-cultured without acetosyringone, then infected for 10 min with Agrobacterium tumefaciens bacterial at a concentration of OD600=0.2 and acetosyringone at a concentration of 100μmol/L, finally co-cultured for 1 day at the temperature of 25℃; Under the similar condition, the most transient expression frequency of Gus gene was obtained in Alondra's when infecting with Agrobacterim tumefaciens bacterial at a concentration of OD600=0.5 and then co-culturing for 2 days.
     Oxidative stress is one of the major factors causing injury to plants exposed to environmental stresses. Cells of plants will produce reactive oxygen species (ROS), such as hydrogen peroxide, superoxide anion radical, and hydroxyl radicals when encountering injurious environments. The sweep off ROS is an mechanism in plant for the release of hurt from injuries. Genetic transformation is an important alternative for improving ROS resistance level, and the cloning of related genes is critical for this approach. In our lab, using a isogenic line with powdery mildew resistance and its recurrent parent Yangmai 5, a SSH library induced by Erysiphe graminis DC.f.sp. tritici was constrcted. A full-length cDNA gene coding the ascorbate peroxidase was cloned and designated as Ta-APX.
     To characterize the function of this gene in ROS and powdery mildew resistance, a expression vector pAHC-Ta-APX was constructed and Ta-APX was transformed into wheat variety Yangmai 158 by microproject-bombardment. After two rounds of herbicide bialaphos selection and regeneration, we obtained 38 regenerated plants. These herbicide-resistant plants were further identified by PCR using primers of the Bar gene and the target gene, and 10 transgenic plants were identified. The To derived T1 progenies were identified by PCR using the primer of the target gene, and the result showed that all the T1 lines segregated with different segregation ratios. This indicated that the To plants were heterozygous for the Ta-APX, and the copy number were different from one line to another. The T1 progenies were evaluated for powdery mildew and scab resistance by artificial inoculation under the field condition, and all the T1 lines showed improved resistance at different level. However, the resistance level of different T1 lines showed significant difference, and there was also segregation for resistance with the same T1 lines, which is in accordance with the PCR results. The APX enzyme activity of two lines. T0-8 and T0-1, were further analyzed, the results showed that the enzyme activity was higher in the transgenic plants than that in the non-transgenic plants at all the analyzed time points in both treatments of powdery mildew and PEG6000,indicating that the transgenic plants improved their ability to regulate the enzyme activity under the environmental stresses, and this might contribute to their improved plant pathogenic resistance. The major agronomic traits of the T1 transgenic plants were also investigated. Compared with the control, the transgenic lines showed no significant difference for all the investigated traits except plant height.
引文
1.安海龙,卫志明,黄健秋.小麦幼胚培养高效成株系统的建立.植物生理学报,2000,26(6):532-538.
    2.毕瑞明,陈立国,后猛,王洪刚.小麦的遗传转化.植物生理学通讯,2006,42(3):573-579.
    3.陈利锋.宋玉立,徐雍皋.抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比较.植物病理学报,1997,27(3):209-213.
    4.陈佩度,刘大钧,翁益群,王苏玲,齐莉莉,冯祎高.利用亲缘植物创造抗赤霉病小麦新种质.中国小麦育种研究进展.北京:中国农业出版社.1996,304-310.
    5.陈雅平.簇毛麦cDNA文库构建及小麦抗病相关基因克隆与功能分析.南京农业大学博士学位论文,2005.
    6.成卓敏,何小源,陈彩层等.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株.自然科学进展-国家重点实验室通讯,1993,3(6):560-564.
    7.董云洲.段胜军,赵连元,杨秀海,贾士荣.用基因枪转化花粉获得转基因谷子和玉米.中国农业科学,1999,32(2):9-13.
    8.付永彩,吴茂森,成卓敏.小麦不同品种外植体的农杆菌转化方法的研究.农业生物技术学报,2002,10(1):25-28.
    9.傅荣昭,曹光诚,马江生等.用基因枪法将人工雄性不育基因导入小麦的研究初报.遗传学报.1997,24(4):358-361.
    10.关西贞,张卫东,田纪春.小麦近等基因系与白粉病菌互作的生理指标研究.华北农学报,2010,25(1):217-221.
    11.郭北海,张艳敏,李洪杰等.甜菜碱醛脱氢酶(BADH)基因转化小麦及表达.植物学报,2000,42(3):279-283.
    12.郭亮,文玉香,梁玉梅.周文娟,胡含,苏红,魏荣瑄.苏云金芽孢杆菌毒蛋白基因在小麦基因组中的甲基化修饰.遗传学报,1997,24(3):255-262.
    13.韩瑞丽,陆海.转APX基因烟草抗旱能力研究.成都大学学报(自然科学版),2007,26(2):49-69.
    14.何道一,李中存,王洪刚.农杆菌介导的小麦活体转化.中国农业科学,2003,36:1437-1441.
    15.何勇刚,林刚.刘曼西等.小麦不同生理状态的幼穗幼胚盾片与诱导分化能力关系的研究.武汉植物学研究,2001.19(5):363-368.
    16.侯文胜.郭三堆.路明.基因枪法获得转基因小麦植株.中国农业科学,2003,36(5):469-472.
    17.黄骏麒,钱思颖,刘桂铨,薛达元.应苗成.洪爱华,周光宇,翁坚,曾以中,龚蓁蓁,王白芳,杨晓霞.外源抗枯萎病棉DNA导入感病棉的抗性转移.中国农业科学、1986,3:32-36.
    18.蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用.植物生理学报,1997,23(4):347-352.
    19.蒋明义.水分胁迫下植物体内·OH的产生与细胞的氧化损伤.植物学报.1999,41(3):229-234.
    20.蒋正宁,邢莉萍,王华忠,于玲,倪金龙.陈佩度.用基因枪法将小麦病程相关蛋白基因TaPR-1导入小麦的研究.麦类作物学报,2006,26(3):51-57.
    21.李艳红,肖兴国,赵广荣等.将新的人工不育基因导入小麦的研究.农业生物技术学报.1999,7(3):255-258.
    22.李永春,王潇,陈焕丽,孟凡荣,陈雷,尹钧.转TPSP融合基因小麦植株的获得及抗旱性初步鉴定.麦类作物学报,2009,29(2):195-198.
    23.李忠光,龚明.水解酪蛋白对烟草愈伤组织和悬浮培养细胞生长的促进作用.云南师范大学学报,2006,4:60-61.
    24.梁辉,吴方盛,王道文等.环形电极介导的小麦基因转化.遗传学报,2005,32(1):66-71.
    25.梁欣欣,刘录祥,赵林妹等.农杆菌介导法向小麦茎尖导入DREB1A基因的研究初报.麦类作物学报,2007,27(1):16-19.
    26.廖祥儒,杜建芳,王俊霞等.预处理对小麦成熟胚愈伤组织形成的影响.河北大学学报(自然科学版),1999,19:41-44.
    27.林鸿生,华志华,张祥喜,黄大年.植物遗传转化技术与品种改良研究进展.上海农业科技,2000,4:7-9.
    28.林毅,高俊山,李艳.不同培养基对小麦幼胚再生能力的影响.安徽农业大学学报,2003,30(1):6-9.
    29.刘金元,时香玉,陈晓,曾昭海,周柱华,陈建爱.利用基因枪技术转化小麦、玉米的研究.山东农业科学,1999,2:5-8.
    30.刘鹏,李勃,刘庆忠,赵红军,孟庆伟.冷锻炼诱导甜辣椒抗冷力的生化机理研究.山东农业科学.2003,3:11-14.
    31.刘巧泉,张景六,王宗阳等.根癌农杆菌介导的水稻高效转化系统的建立,植物生理学报,1998.24(3):259-271.
    32.刘伟华,李文雄,刘锦红等.菜豆几丁质酶基因转化小麦研究.东北农业大学学报,2001,32(2):111-116.
    33.卢少云,郭振飞,彭新湘,黎用朝,李宝盛.李明启.水稻幼苗叶绿体保护系统对干早的反应.1999.7(1):47-52.
    34.吕素莲,尹小燕.张可炜,张举仁.农杆菌介导的棉花茎尖遗传转化及转betA植株的产生.高技术通讯,2004,11:20-25.
    35.梅慧生,宋纯鹏.蔡兴元.超氧物白由基介导ACC转化成乙烯.植物生理学会编辑.上海:中国植物生理学会第五次会议论文摘要汇编,1990,37.
    36.祁永斌,李和平,高春生等.不同小麦品种愈伤组织诱导和再生体系建立.武汉植物学研究,2005.23(3):227-232.
    37.乔亚科,李桂兰,高书国,毕艳娟,仝凤娟,田振雨.小麦幼胚愈伤组织诱导及植株再生.河北职业技术师范学院学报,2002,16(2):1-5.
    38.沈文飚,黄丽琴,徐朗莱.植物抗坏血酸过氧化物酶.生命的化学,1997,17(5):24-26.
    39.宋纯鹏,梅慧生,储钟稀,程艳丽.Ca2+对叶绿体中超氧化物白由基产生以及由ACC形成乙烯的影响.植物生理学报,1992,18(1):55-62.
    40.宋国琦,王成社,何培茹.小麦幼胚培养技术及其应用的研究进展.西安联合大学学报.2003,6(2):22-26.
    41.孙传波,曲文利,姜志磊,韦正乙.麻鹏达.李晓辉,张举仁,刘德璞,郝东云,袁英.农杆菌介导向玉米茎尖导入HAL1基因的初步研究.玉米科学,2009,17(6):32-34.
    42.孙毅,王景雪,刘少翔.王卉.李毅.农杆菌介导植物萌发种子基因转化方法.发明专利公报,国家专利局.2001,Vol.17,No.28,公开号:CN1302900A.
    43.覃建兵,汪越胜,何光源.激素对小麦幼穗组织培养效果的影响研究.华中师范大学学报(自然科学版),2005,39:380-382.
    44.覃建兵,何光源.不同小麦基因型及其不同外植体离体培养研究初探.华中农业大学学报,2001,20(6):522-527.
    45.唐宗祥,任正隆,张怀琼.小麦新品种R59成熟胚的组织培养初报.四川农业大学学报.2001,19(4):398-400.
    46.田秀英.活性氧与植物的衰老.重庆师专学报.1999,18(3):52-53.
    47.王广金,李忠杰,张晓东,唐凤兰,张宏纪,孙岩.利用花粉管通道法将编码优质HMW-GS基因导入小麦进行品质改良的研究.黑龙江农业科学,2002,6:1-3.
    48.王华忠.牛吉山.陈佩度.利用瞬间表达技术分析小麦抗病相关基因的功能.遗传学报,2005,32(9):930-936.
    49.王华忠.邢莉萍,陈佩度.小麦抗白粉病相关基因的转化.遗传,2007,29(2):243-249
    50.王庆斌,王方正,薛庆中等.APX基因转化水稻及其功能的研究.中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编,杭州,2003,318.
    51.王小军.刘玉乐,Huang Y等.可育的抗除草剂溴苯腈转基因小麦.植物学报,1996,38(12):942-948.
    52.王永芳,张军.崔润丽,李伟,智慧,李海权,刁现民.利用花粉管通道转化谷子DNAj基因获得转基因小麦.华北农学报.2009,24(2):17-21.
    53.王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究.遗传学报,2002,29:260-265.
    54.王泽槐.梁立峰.香蕉冷害过程叶片抗坏血酸含量及过氧化氢酶活性的变化.华南农业大学学报,1994,15(3):71-76.
    55.吴楚,王政权.外源水杨酸对水曲柳幼苗遭受冷害后抗光氧化能力的影响.湖北农学院学报,2003.23(1):8-13.
    56.吴丽芳.李红,宋道军等.低能氩离子束介导将绿色荧光蛋白基因导入小麦的研究.南京农业大学学报.2000,23(3):17-19.
    57.吴丽芳,李红.宋道君,冯慧云,余增亮.建立低能离子束介导小麦转基因方法并获得Gus基因植株.遗传学报,2000,27:982-991.
    58.伍碧华,郑有良,刘登才,周永红.四川小麦幼胚离体培养变异性及其性状的相关研究.西南农业学报,2001,14(4):20-24.
    59.夏光敏,李忠谊,贺晨霞等Transgenic根癌农杆菌介导的小麦转基因植株再生.植物生理学报,1999,25(1):22-28.
    60.肖兴国,张爱明,聂秀玲.转基因小麦的研究进展与展望.农业生物技术学报,2000,8(2):111-116.
    61.邢莉萍,王华忠,蒋正宁,倪金龙.曹爱中,于玲,陈佩度.小麦类甜蛋白基因的转化及转基因植株的抗病性分析.作物学报.2008,34(3):349-354.
    62.许新萍,胡明,卫剑文,陈金婷.李宝健.用高效的基因枪转化系统将抗虫抗病基因导入水稻.遗传,1998,20:12-14.
    63.许耀,王艇,李宝健.根癌农杆菌介导的外源基因转化植物萌动种胚的研究.实验生物学报,1991,109-114.
    64.薛大煜,马艳青,黄炎武.低温胁迫对辣椒幼苗抗坏血酸含量的影响.湖南农业大学学报,1996,22(2):143-146.
    65.杨剑波,许智宏,卫志明,白永延.影响根癌农杆菌附着禾谷类作物培养细胞的因素.实验生物学报,1993,1-6.
    66.叶陈亮,柯玉琴,陈伟.大白菜耐热性的生理研究Ⅲ酶性和非酶性活性氧清除能力与耐热性.福建农业大学学报,1997,26(4):498-501.
    67.叶兴国.Shirley Sato,徐惠君,杜丽璞,Tom Clemente小麦农杆菌介导转基因植株的稳定获得和检测.中国农业科学.2001,34(5):469-474.
    68.于洪欣,柳建军,冯兆礼等.通过花粉管途径将抗虫基因(CpT1)导入小麦的研究.山东农业科 学,1999,1:5-8.
    69.于晓红,朱祯,付志明等.提高小麦愈伤组织分化频率的因素.植物生理学报,1999,25(4):388-394.
    70.余桂荣,尹钧,郭天财等.小麦幼胚培养基因型的筛选.麦类作物学报,2003,23(2):14-18.
    71.曾君祉,王东江,吴有强,张健,周文娟,朱小平,徐乃正.用花粉管途径获得小麦转基因植株.中国科学(B辑),1993,23(3):256-262.
    72.张福锁(主编).《环境胁迫与植物营养》.北京农业大学出版社,1993,71-100.
    73.张晓东,林廷安.苜蓿细胞悬浮培养与耐高浓度PEG变异体的筛选.核农学报,1994,8(1):7-13.
    74.张晓东,李冬梅,徐文英,蒋有绎,胡道芬,韩立新.利用基因枪将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株.遗传,1998,20:3-8.
    75.张宗申,利容千,王建波.Ca2+预处理对热胁迫下辣椒叶肉细胞中Ca2+-ATP酶活性的影响.植物生理学报,2001,27(6):451-454.
    76.赵慧茹,谷运红,焦浈,秦广雍.农杆菌介导小麦遗传转化的影响因素.安徽农业科学,2008,36(23):9885-9887.
    77.赵宇玮,王英娟,步怀宇,郝建国,贾敬芬.AtNHX1基因对菊苣的转化和耐盐性研究.草叶学报,2009,18(3):103-109.
    78.周淼平,黄益洪,朱作为等.低浓度2,4-D及外源激素诱导小麦体细胞快速成苗.江苏农业学报,2000,16(3):139-141.
    79. Alison H, Kingston S C, Foyer H. Over-expression of Mn-SOD in Maize Leaves Leads to Increased Monodehydroascorbate Reductase, Dehydroascorbate Reductase and Glutathione Reductase Activities. JExp Bot.,2000,51:1867-1877.
    80. Altpeter F, Vasil V, Srivastava V, et al. Integration and expression of the high molecular-weight glutenin subunit gene in transgenic wheat. Nature Biotech.,1996,14:1155-1159.
    81. Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K. Paraquat Tolerance of Transgenic Nicotiana Tobacum with Enhanced Activites of Glutathione Reductase and Superoxide Dismutase. Plant Cell Physiol., 1995.36(8):1687-1691.
    82. Arlson P S. Methionine-resistant mutants of tobacco. Science.1973,180:1366-1368.
    83. Arrigoni D. et al. Relationship Between Ascorbic Acid and Resistance in Tomato Plants to Meloidogyne incognita. Phytopathology,1979,69:579-581.
    84. Asada K. et al. Ascorxide peroxide dismurasea hydrogen peroxide scavenging enzyme in plants. Plant Phvsiol.,1992.85:235-241.
    85. Barro F, Rooke L, Bekes F. et al. Transformation of wheat with high molecular weight subunit genes results an improved functional properties. Nature Biotech.,1997,15:1295-1299.
    86. Becker D, Brettschneider R, Lorz H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J.,1994,5:299-307.
    87. Ben I M, Amer, Borner A. The relationship between green spot initiation and plantlet regeneration of wheat callus grown under short-term conditions. Plant Cell, Tissue and Organ Culture,1997,50: 67-69.
    88. Bieri S, Potrykus L, Futterer J. Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet.,2000,100:755-763.
    89. Birch R G. Plant transformation:problem and strategies for practical application. Ann. Rev. Plant Physiol. Plant Mol. Biol.,1997,48:297-326.
    90. Bommineni V R, Jauhar P P. Wide hybridization and genome relationships in cereals:all assessment of molecular of approaches. Maydica,1997,42:81-105.
    91. Bonnet M, Camares O. Effects of Zinic and Influences of Acremoniumllii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass. J Exp Bot.,2000,51(346): 945-953.
    92. Chen D F. Dale P J. A comparison of methods for delivering DNA to wheat:the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgenic Res.,1992,1:93-100.
    93. Chen W P, Chen P D, Liu D J, Kynast R, Friebe B. Velazhahan V, Muthukrishnan S, Gill B S. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like proteinn gene. Theor Appl Genet.,1999,99:755-760.
    94. Cheng M., Fry J E. Pang S Z, Zhou H, Hironaka C M, Duncan D R, Conner T W, and Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol.,1997.115: 971-980.
    95. Clausen M. Krauter R, Schachermayer G, et al. Antifungal activity of avirally encoded gene in transgenic wheat. Nature Biotech.,2000,18:446-449.
    96. Dale P J, Marks M S, Brown M. et al. Agroinfection of wheat:Inoculation of in vitro grown seedlings and embryos. Plant Sci.,1989,63:237-245.
    97. Dietz K J, Jacob S, Oelze M L, Laxa M, Tognetti V, Miranda S M N. Baier M and Finkemeier I. The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot.,2006,57(8): 1697-1709.
    98. Du X M, Yin W X, Zhao Y X, Zhang H. The Production and Scavenging of Reactive Oxygen Species in Plants. Chin J Biotech.,2001.17(2):121-125.
    99. Farkas G L, et al. Role of Oxidative Metabolism in the Iocalozation of plant viruses Virology. J Exp Bot.,1960.12:408-421.
    100. Fath A, Bethke P, Beligni V, Jones R. In Situ and In Vitro Senescence Induced by KCl stress: Nutritional Imbalance, Lipid Peroxidation and Antioxidant Metabolism. J Exp Bot.,2002,53: 1273-1282.
    101. Fennel S, Bohorova N, Van Ginkel M, et al. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theor, Appl. Genet.,1996,92:163-169.
    102. Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: Proposed role in ascorbic acid metabolism. Planta.,1976,133:21-25.
    103. Gupta A S, Webb R P, Holaday A S, Allen R D. Overexpression of superoxide dismutase protectsplants from oxidative stress (Induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physioi,1993,103:1067-1073.
    104. Gupta R. Huang Y, Kieber J, Luan S. Identification of a Dual Specificity Protein Phosphatase that Inactivatea a MAP Kinase from Arabidopsis. Plant J.,1998,16:581-589.
    105. Haliloglu K, Stephen Baenziger P, Mitra A. Genetic transformation of wheat(Triticum aestivum L.) anther culture-derived embryos by electroporation. Biotech and Biotech Equipment,2004,19: 62-69.
    106. Hansen G, Shillito R D, Chilton M D. "Agrolistic" transformation of plant cells integration of T-strands generated in plant. Proc. Natl. Acad. Sci.,1996,93:14978-14983.
    107. He D G, Mouradev A, Yang Y M, Mouradeva E, Scott K J. Transformation of wheat(Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep.,1994,14:192-196.
    108. Hernandez J A, Corpas F J, Gomez M, Delrio L A, Sevill F. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant,1993,89:103-110.
    109. Hess D, Dressier K, Nimmrichter R, et al. Transformation experiments by pipetting agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci.,1990,72:233-244.
    110. Hiei Y. Ohta S. Komari T. et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of T-DNA. Plant J..1994,6(2):271-282.
    111. Ingham E T, et al. Somaclonal variation in alfalfa. Plant Breeding Rev.,1986.4:123-152.
    112. Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotech.,1996,14:745-750.
    113. Ishikawa T, Takeda K, Shigeoka S. Purification and Characterization of Cytosolic Ascorbate Peroxidase from Komatsuna (Brassica). Plant Sci.,1996,120:11-18.
    114. Jespersen H M. et al. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochemistry,1997,326:305-310.
    115. Khanna H K, Daggard G E. Agrobacterium tumefaciens-mediated transformation of wheat using a super binary vector and a polyamine supplemented regeneration medium. Plant Cell Rep.,2003,21: 429-436.
    116. Kornyeyev D, Dmytro K, Barry A, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem Ⅱ in cotton overexpression genes encoding chloroplast-targeted antioxidant enzymes. Plant Physiol.,2001.133:323-331.
    117. Lisa Giacomelli. Antonio Masi, Daniel R R, Mi Ja Lee. Klaas J W. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases accelerated light-induced necrosis when levels of celluar ascorbate are low. Plant Molecular Biology,2007,65(5):627-644.
    118. Lorz H, Becker D, and Lutticke S. Molecular wheat breeding by direct gene transfer. Euphytica, 1998,100:219-222.
    119. Luit S, Katelijne C, Wim V C, et al. Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing maaganese superoxide in the chloroplasts. Plant Physiol. 1995,107:737-750.
    120. Machii H, Mizuno H. Hirabayashi T. et al. Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell, Tissue and Organ Culture,1998.53:67-74.
    121.Mano S, Yamaguchi K, Hayashi M, Nishimura M. Stromal and Thylakoid-bound Ascorbate Peroxidase are Produced by Alternative Splicing in Pumpkin. FEBS Lett.,1997,413:21-26.
    122. Mathews M C, et al. Ascorbate peroxidase:a novel antioxidant enzyme in insects. Archive of Insect Biochemistry and Physiology,1997.34:57-68.
    123. Mathias R T. Factors affecting the establishment of callus culture in wheat. In:Bajaj YPS (ed.). Biotechnology,1990,24-45.
    124. McKersie B D, Bowley S R, Jones K S. Winter Survival of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiol.,1999,119:839-848.
    125. McKersie B D, Murnaghan J, Jones K S. Bowley S R. Iron-Superoxide Dismutase Expression in Transgenic Alfalfa increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance. Plant Physiol.,2000,122:1427-1438.
    126. Mihaly R, Kotai E, Kiss O, Pauk J. In vitro selection of transformed foreign gene (bar) in wheat anther culture. Acta Biologica Szegediensis,2002,46:9-10.
    127. Mittler R. Feng X. Cohen M, Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell,1998.10: 461-474.
    128. Mittler R, Herr E H, Orvar B L, Camp W V, Willekens H, Inze D, Ellis B E. Transgenic Tobacco Plants with Reduced Capacity to Detoxify Reactive Oxygen Intermediates are Hyper-responsive to Pathogen Infection. Proc Natl Acad Sci., USA,1999,96(24):14165-14170.
    129. Mittler R. Zilinskas B A. Molecular Cloning and Characterization of a Gene Encoding pea Cytosolic Ascorbate Peroxidase. JBiol Chem.,1992,267:21802-21807
    130. Miyake K, Asada K. Thylakoidbound ascorbate peroxidase in spinach chlorplants and photorduction of its primary oxidation produel mono-dehydroascorbate radical in spinach thylakoids. Plant Cell Physiol.,1994,33:541-553.
    131. Mooney P A, Good P B, Dennis E S, et al. Agrobacterium tumefaciens gene transfer into wheat tissues. Plant Cell, Tissue and Organ Culture,1991,25:209-218.
    132. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinachloroplasts. Plant Cell Physiol.,1981.22:867-880.
    133. Ndn A K, et al. Characteristics of cultured tomato cells after prolonged exposure to medium containing PEG. Plant Physioi.,1982.69:514-521.
    134. Nehra N S, Chibbar R N, Leung N, Caswell K, Mallard C, Steinhauser L. Baga M, Kartha K K. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J.,1994.5:285-297.
    135. Opabode J T. Agrobacterium-mediated transformation of plants:emerging factors that influence efficiency. Biot Mol Bio Review,2006,1:12-20.
    136. Orvar B L, Ellis B E. Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. The Plant J.,1997,11(6):1297-1305.
    137. Oughan T P, et al. Selection of a NaCl-tolerant line of cultivated alfalfa cells. Crop Sci.,1978,18: 959-963.
    138. Ozias Akins P, Vasil I K. Plant regeneration from cultured immature embryos and inflorescences of wheat (Triticum aestivum L.) evidence for somatic embryogenesis. Protoplasma,1982.110: 95-105.
    139. Patnaik D. Khurana P. Wheat biotechnology:A minireview. Plant Biotech.,2001.
    140. Payton P, Webb R, Kornyeyev D, Allen R, Holaday A S. Protecting Cotton photosynthesis during Moderate Chilling at High Light Intensity by Increasing Chloroplastic Antioxidant Enzyme Activity. J Exp Bot.,2001,52:2345-2354.
    141. Polidoros A N, Mylona P V, Scandalios J G. Transgenic Tobacco Plants Expressing the Maize Cat2 Gene have Altered Catalase Levels that Affect Plant-pathogen Interactions and Resistance to Oxidative Stress. Transgenic Res.,2001,10(6):555-569.
    142. Potrykus I. Micro-targeting of microprojectiles to target areas in the micrometer range. Nature, 1992.355(2):568-569.
    143. R Mittler. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci.,2002.7:405-410.
    144. Rasco-Gaunt S, Riley A, Barcelo P, et al. Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues. Plant Cell Rep.,1999,118-127.
    145. Ressan R A,et al. Resiston of cultured higher plant cells to PEG-induced water stress. Plant Sci Letters,1981.21:23-30.
    146. Roxas V P, Smith R K J, Allen E R, Allen R D. Over-expression of Glutathione S-Transferase/Glutathione Peroxidase Enhances the Growth of Transgenic Tobacco Seedings during Stress. Nat Biotechnol.,1997,15(10):988-991.
    147. Sanford J C. Biolistic plant transformation. Physiologia plantarum,1990,79:206-209.
    148. Scott K J, He D G. Yang Y M. Somatic embryo genesis in wheat. In:Bajaj YPS(ed). Biotechnology in Agriculture and Forestry. Berlin:Springer- Verlag Press,1990,46-67.
    149. Shen B, Richardetal. Increase dresistance to oxidative stress in transgenic plant by targeting mannitol biovnthesis to chloroplasts. Plant Physiol.,1997,113:1177-1183.
    150. Sherbeny E L. Sato S, Al-Otayk S M, et al. Effect of genotype and 2,4-D concentration on callus induction from immature embryos of morden Egyption wheat cultivars. Cereal Research Communications,2001,29(34):305-311.
    151. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and Function of Ascorbate Peroxidase Isozymes. J Exp Bot.,2002,53:1305-1319.
    152. Shigeoka S, Nakano Y. Kitaoka S. Metabolism of Hydrogen Peroxide in Euglena gracilis Z by L-ascorbic Acid. Peroxidase Biochem J.,1980a,186:377-380.
    153. Shinozaki K, Yamaguchi K. Gene networks involved in drought stress response and tolerance. J Exp Bot.,2007,58(2):221-227.
    154. Smirnoff N, Colombe S V. Drought influences theactivity of enzymes of the chloroplasthy drogenper oxodes cavenging system. J Exp Bot.,1988,39:1097-1108.
    155. Smith R. Hood E E. Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci., 1995,35:301-309.
    156. Sorokin A P, Ke X Y, Chen D F,et al. Production of fertile transgenic wheat plants via tissue electroporation. Plant Sci.,2000,156:227-233.
    157. Takumi S, Murai K, Mori N, Nakamura C. Variations in the maize Ac trsnsposase transcript level and the Ds excision frequency in transgenic wheat callus lines. Genome,1999,42(6):1234-1242.
    158. Tanaka K, Masuda R, Sugimoto T. et al. Water deficiency induced changes in the contents of defensive substances against active oxygen in spinach leaves. Agric Biol chem.,1990,54:26-29.
    159.Tong-Jin Zhao, Shuang-Yi Zhao, Hui-Min Chen, et al. Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep.,2006,25:1199-1204.
    160. Vasil L K, Bean S, Zhao J, et al. Evaluation of baking and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax. J Plant Physiol., 2001,158:521-528.
    161. Vasil V, Catill O A, Fromm M. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology,1992,10: 667-674.
    162. Vasil V, Brown S M, Re D, Fromm M E, and Vasil I K. Stably transformed callus lines from microprojeetile bombardment of cell suspension culture of wheat. Nature Biotech.,1991,9: 743-747.
    163. Vasil V, Srivastava V, Castillo A M, Fromm M E. and Vasil I K. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Nature Biotech..1993,11: 1553-1558.
    164. Vidhyasekaran P, et al. Physiology of Disease Resistance in plants. CRC Press.1988,1133-37.
    165. W. M. Shi, Y. Muramoto, A. Ueda and T. Takabe. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene., 2001,273:23-27.
    166. Weeks J T, Anderson O D, Blechl A E. Rapid production of multiple independent lines of fertile transgenic wheat(Triticum aestivum L.). Plant Physiol.,1993,102:1077-1084.
    167. Weir B, Gu X, Wang M B, Upadhyaya N, Elliott A R, and Brettell R. Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. J Plant Physiol.,2001,28:807-818.
    168. Winicov I. New Molecular Approaches to Improving Salt Tolerance in Crop Plants. Anna Bot., 1998,82:703-710.
    169. Xia G M. Li Z Y. He C X. Chen H M, Brettell R. Transgenic Plant Regeneration from Wheat (Triticum aestivum L.) Mediated by Agrobacterium Tumefaciens. Acta Phytophysiologica Sinica. 1999.25(1):22-28.
    170. Yan J. Wang J. Tissue D. Holaday A S. Photosynthesis and seed production under water-deficit conditions in transgenic Tobacco Plant that Over-expression an Arabidopsis APX gene. Crop Sci., 2003.43:1477-1483.
    171. Zaka R, Vandecasteele C M, Misset M T. Effects of Low Chronic Doses of Ionizing Radiation on Antioxidant Enzymes and G6pPDH Activities in Stipa capillata(Poaceae). J Exp Bot.,2002.53: 1376-1382.
    172. Zhou H, Arrowsmith J W, Fromm M E, et al. Glyphosate tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep.,1995,15:159-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700