钙基废弃物循环煅烧/碳酸化捕集CO_2及颗粒磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出利用大宗钙基废弃物作为燃煤电站CO2吸收剂进行循环煅烧/碳酸化捕集C02,就有望实现钙基废弃物资源化与低成本捕集C02相结合的新型工艺路线。为了实现这一工艺路线,需要对其循环捕集C02性能和反应机理进行研究。
     在双固定床反应器系统(DFR)上研究了钙基废弃物循环捕集CO2特性,在热重分析仪(TGA)上考察了钙基废弃物碳酸化反应动力学。为了进一步提高钙基废弃物循环捕集CO2性能,采用分级水洗预处理、延长碳酸化和丙酸改性对钙基废弃物进行处理,通过SEM、氮吸附等微观分析手段揭示了改性机理。在流化床反应器系统(BFR)上研究了流态化下钙基废弃物循环反应过程中的CO2捕集性能和颗粒磨损特性。
     与赤泥等其他钙基废弃物相比,电石渣和造纸白泥具有较高的循环捕集CO2性能。煅烧电石渣比表面积以及>150nnm范围内的比孔容大于煅烧石灰石,碳酸化反应比石灰石更容易进行,其捕集CO2性能优于石灰石。白泥孔隙主要分布在1-10rim范围,在碳酸化过程中容易发生堵塞,所以初始几次循环捕集CO2能力不高,但是随循环次数增加,孔隙结构比较稳定,15次循环后碳酸化转化率高于石灰石。考察了反应温度、碳酸化气氛和颗粒粒径等反应条件对钙基废弃物循环碳酸化特性的影响规律,探讨了钙基废弃物循环碳酸化动力学特性。为避免S02存在对钙基废弃物捕集CO2造成的不利影响,提出了钙基废弃物顺序捕集SO2/CO2的方法,并研究多次循环煅烧/碳酸化捕集CO2后钙基废弃物的硫酸化特性。
     在CaCO3中掺入各种杂质,研究杂质成分对钙基废弃物循环捕集CO2性能的影响。研究发现Mn和Cl对钙基废弃物的捕集CO2性能影响较大。添加Mn后,CaCO3高温煅烧时形成更发达孔隙结构,循环捕集CO2性能更高,最佳Mn/Ca摩尔比为1:100-1.5:100。当Cl/Ca摩尔比超过0.25:100时,C1使10-100nnm内孔大幅度减少,抑制了CaCO3循环捕集CO2性能。白泥中Cl/Ca摩尔比为2.6:100,循环捕集C02性能不高主要由于其C1含量较高所致。
     鉴于钙基废弃物中Cl对捕集CO2的不利影响,提出分级水洗预处理方法降低C1在钙基废弃物中含量。水洗白泥的C1含量大幅降低,循环捕集C02能力明显提高。100次循环后,水洗白泥碳酸化转化率为0.36,是白泥的1.8倍。延长碳酸化可提高钙基废弃物循环捕集C02性能。增加碳酸化时间和提高碳酸化气氛中C02浓度可使延长碳酸化处理效果更加明显。在循环煅烧/酸化过程中对钙基废弃物进行多次延长碳酸化可使其保持较高C02捕集性能。丙酸改性提高了钙基废弃物循环碳酸化转化率以及碳酸化速率,第30次循环丙酸改性电石渣碳酸化转化率为0.47,为未处理电石渣的1.5倍。3种改性方法优化了钙基废弃物的孔隙结构,特别是煅烧钙基废弃物10-100nm范围内对碳酸化反应有利的孔大幅增加,这是钙基废弃物循环捕集C02性能提高的主要原因。
     在流态化条件下以电石渣为典型代表研究了钙基废弃物循环反应过程中的颗粒磨损特性。电石渣颗粒在循环煅烧/碳酸化过程中不断磨损,磨损速率随循环次数增加逐渐降低。煅烧温度对电石渣磨损特性影响较大,高温煅烧时颗粒磨损更加严重。电石渣磨损速率与流化数平方成正比,随流化数增加磨损速率迅速升高。大粒径电石渣颗粒磨损更加严重。电石渣磨损速率常数kImp值小于石灰石,抗磨损性能优于石灰石。
Calcium-based industrial wastes were proposed as CO2sorbents in calcium looping process for post-combustion CO2capture in coal-fired power plant in this paper. A novel process that can combine effective reuse of the calcium-based industrial wastes and low-cost CO2capture together is hoping to be achieved. It is necessary to investigate the CO2capture behavior and reaction mechanism of calcium-based industrial wastes in calcium looping process.
     A dual fixed-bed reactor (DFR) was employed to investigate the CO2capture behavior of calcium-based industrial wastes, and a thermal gravimetric analysis (TGA) was used to examine the carbonation kinetics of the calcium-based industrial wastes. Pre-wash treatment, prolonged carbonation and modification by propionic acid were proposed to improve the CO2capture capacity of the calcium-based industrial wastes in multiple calcination/carbonation cycles. SEM analysis and N2adsorption method were employed to reveal the mechanism of the enhancements. The CO2capture capacity and the particle attrition characteristics of the calcium-based industrial wastes in the cycles under fluidization condition were investigated in a bubbling fluidized reactor (BFR).
     Carbide slag and lime mud show higher CO2capture capacity than other calcium-based industrial wastes like red mud. The surface area and volume of pores>150nm of the calcined carbide slag are larger than those of calcined limestone, the carbonation reaction of CaO derived from the carbide slag is easier than that from the limestone. The cyclic CO2capture capacity of the carbide slag is better than the limestone. The pores of the calcined lime mud are mainly distributed in1-10nm, which are susceptible to pores blockage and plugging in carbonation process. Therefore, the CO2capture capacity of the lime mud is relatively low during the initial cycles. However, the microstructure of calcined lime mud is very stable during multiple calcination/carbonation cycles, and the carbonation conversion of the lime mud is higher than limestone after15cycles. The effects of reaction temperature, carbonation atmosphere and particle size were discussed. The cyclic carbonation kinetics of the calcium-based industrial waste was researched. In order to avoid the adverse effect of SO2on CO2capture of calcium-based industrial-wastes, the sequential SO2/CO2capture was proposed. The sufation characteristics of the calcium-based industrial wastes after multiple CO2capture cycles were studied.
     The impurities were added into CaCO3to check their effect on the CO2capacity of calcium-based industrial wastes. The results show that Mn and Cl have great effect on CO2capture of the calcium-based industrial wastes. Mn enhances the CO2capture capacity of CaCO3because it is helpful to keep better microstructure during multiple cycles. The optimum Mn/Ca molar ratio is1:100-1.5:100. When the Cl/Ca molar ratio is greater than0.25:100, Cl aggravates the sintering of CaCO3in the cycles, which leads to the fast decay of the carbonation conversion. Lime mud shows relatively low cyclic CO2capture capacity of the lime mud due to its high Cl content.
     In view of the adverse effect of Cl on CO2capture, the multiple pre-washing treatments were proposed to decrease the content of Cl in calcium-based industrial wastes. Compared with the original lime mud, the Cl content in the pre-washed lime mud is obviously lower. The CO2capture capacity of the pre-washed lime mud is higher than lime mud. The carbonation conversion of the pre-washed lime mud after100cycles is0.36, and that is1.8times higher than that of lime mud. The prolonged carbonation improves the cyclic CO2capture capacity of calcium-based industrial wastes. The Longer carbonation time and the higher CO2concentration in the prolonged carbonation process are more favorable to improve the CO2capture capacity of calcium-based industrial wastes. The repeated prolonged carbonation treatments in the calcination/carbonation cycles are helpful to keep high CO2capture capacity of the calcium-based industrial wastes. The modification by propionic acid increases the reaction rates and carbonation conversions of calcium-based industrial wastes. For example, the carbonation conversion of the modified carbide slag after30cycles is0.47, which is1.54times greater than that of the untreated carbide slag. The modified calcium-based industrial waste exhibits greater CO2capture capacity than the untreated one. The above three treatment method can improve the microstructure of calcined calcium-based industrial wastes in the cycles. Especially, the pores in the range of10-100nm are dramatically increased. That is the main reason why the modification treatments enhance the CO2capture capacity of calcium-based industrial wastes in multiple the calcination/carbonation cycles.
     Take carbide slag as one typical representative, the particle attrition characteristics of calcium-based industrial wastes under fluidization condition were investigated. The particles of the carbide slag were continuously attrited in the calcination/carbonation cycles. The attrition rate of particles of the carbide slag decreases with the number of cycles. The calcination temperature has a significant effect on the particle attrition characteristics of the carbide slag. The attrition is more serious under higher calcination temperature. The attrition rate is proportional to the square of the fluidization number. The attrition rate increases rapidly with increasing the fluidization number. Larger particles experience serious attrition. The attrition rate constant (klmp) of the carbide slag is smaller than that of the limestone. It reveals that carbide slag presents better anti attrition characteristics than limestone in the multiple calcination/carbonation cycles.
引文
[1]Liu WC, Yang JK, Xiao B. Review on treatment and utilization of bauxite residues in china [J]. International Journal of Mineral Processing,2009,93(3-4):220-231.
    [2]Olivares-Marin M, Maroto-Valer M. Development of adsorbents for CO2 capture from waste materials:a review [J]. Greenhouse Gas Science Technology,2012,2(1):20-35.
    [3]Bobicki ER, Liu QX, Xu ZH, Zeng HB. Carbon capture and storage using alkaline industrial wastes [J]. Progress in Energy and Combustion Science,2012,38(2):302-320.
    [4]Shi CJ. Steel Slag-Its production, processing, characteristics, and cementitious properties [J]. Journal of Materials in Civil Engineering,2005,16(3):230-236
    [5]Cao JX, Liu F, Lin Q, Zhang Y. Hydrothermal synthesis of xonotlite from carbide slag [J]. Process in Natural Science,2008,18(9):1147-1153.
    [6]Cheng J, Zhou JH, Liu JZ, Cao XY, Cen KF. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes [J]. Energy Fuels,2009,23(4):2506-2516.
    [7]http://www.askci.com/news/201302/25/25I7282262455.shtml
    [8]Poykio R, Nurmesniemi H, Kuokkanen T, Peramaki P. The use of a sequential leaching procedure for assessing the heavy metal leachability in lime waste from the lime kiln at a cautizicing process of a pulp mill [J]. Chemosphere,2006,65(11):2122-2129.
    [9]http://www.chinabaike.com/article/316/327/2007/2007022157384.html
    [10]赵改菊.含碱工业废弃物硫化反应特性与机理实验研究[D].博士学位论文:山东大学,2007.
    [11]Monte MC, Fuente E, Blanco A, Negro C. Waste management from pulp and paper production in the European Union [J]. Waste management,2009,29(1):293-308.
    [12]Nurmesniemi H, Poykio R, Keiski RL. A case study of waste management at the Northern Finnish pulp and paper mill complex of Stora Enso Veitsiluoto Mills [J]. Waste management, 2007,27(12):1939-1948.
    [13]El-Fadel M, Findikakis AN, Leckie JO. Environmental impacts of solid waste landfilling [J]. Journal of environmental management,1997,50(1):1-25.
    [14]聂永丰.三废处理工程技术手册固体废物卷[M].北京:化学工业出版社,2000.
    [15]刘春英.工业废弃物--电石渣的国内现状及其资源化方向[J].水泥技术,2005,6:60-62.
    [16]王昌军.电石渣综合利用制水泥[J].中国氯碱,1999,6:39-41.
    [17]傅其军,陈思益,吴守耀,陈载华,傅汶文.造纸白泥用于水泥生产的实践[J].中华纸业,2003,3:51-52.
    [18]Zhang GC, Li X, Li YJ, Wu T, Sun DJ, Lu FJ. Removal of anionic dyes from aqueous solution by leaching solutions of white mud [J]. Desalination,2011,274(1):255-261.
    [19]Bellaloui A, Chtaini A, Ballivy G, Narasiah S. Laboratory investigation of the control of acid mine drainage using alkaline paper mill waste [J]. Water Air and Soil Pollution,1999,111(1-4): 57-73.
    [20]陆文雄,徐彩宣.利用电石渣制取内墙涂料[J].上海化工,2001,26(19):18-19.
    [21]李英杰,韩奎华,路春美,赵建立,赵改菊.流化床锅炉温度条件下钙基工业废弃物的固硫反应性能[J].化工学报,2010,61(3):712-719.
    [22]Li YJ, Sun RY, Zhao JL, Han KH, Lu CM. Sulfation behavior of white mud from paper manufacture as SO2 sorbent at fluidized bed combustion temperatures [J]. Journal of Thermal Analysis and Calorimetry,2012,107(1):241-248.
    [23]韩奎华,赵建立,郑斌,路春美,赵改菊.碱性废渣用于煤燃烧固硫的性能与改性[J].煤炭学报,2009,34(12):1697-1702.
    [24]郑斌,路春美,姬丽霞,赵改菊.废弃物型固硫剂的固硫性能研究[J].中国电机工程学报,2009(11):32-38.
    [25]赵改菊,路春美,田园,田园,樊兆燕,赵建立,张宗宇.赤泥的固硫特性及其机理研究[J].燃料化学学报,2008,36(3):365-370.
    [26]张兴桥,杨欢,方茹.盐泥作固硫添加剂在固硫反应中的机理[J].煤炭技术,2007,26(8):135-136.
    [27]翁卫国,周俊虎,程军,曹欣玉,岑可法.工业废渣在煤燃烧中固硫的影响因素分析[J].煤炭学报,2005,30(4):480-483.
    [28]刘建忠,吴晓蓉,程军,周俊虎,曹欣玉,岑可法.工业废弃物在煤燃烧过程中脱硫行为的研究[J].环境科学学报,2000,20(6):790-793.
    [29]刘盛余,邱伟,陆成伟,曲兵,徐园园,刘建英,赵俊辉,胡芸铭.喷淋塔中添加柠檬酸促进电石渣烟气脱硫及其机理[J].煤炭学报,2011,36(9):1549-1553.
    [30]刘盛余,能子礼超,邱伟,曲兵,陆成伟,徐园园,俊辉,胡芸铭.电石渣-柠檬酸复合浆液吸收去除烟气SO2动力学[J].中国电机工程学报,2011,31(32):62-68.
    [31]童艳,周屈兰,惠世恩,徐通模,电石渣在湿法脱硫中的消溶特性[J].动力工程,2006,26(6):884-887.
    [32]刘盛余,能子礼超,邱伟,陆成伟,徐园园,刘建英.电石渣喷淋吸收烟气二氧化硫工艺及动力学[J].化工学报,2012,63(5):1543-1550.
    [33]http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
    [34]International Energy Agency. CO2 emissions from fuel combustion highlights [R].2011.
    [35]Sayari A, Belmabkhout Y, Serna-Guerrero R. Flue gas treatment via CO2 adsorption [J]. Chemical Engineering Journal,2011,171(3):760-774.
    [36]Wu YH, Wang CB, Tan YW, Jia LF, Anthony EJ. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion [J]. Applied Energy,2011,88(9): 2940-2948.
    [37]段伦博,赵长遂,卢骏营,周鹜,李英杰,陈晓平.O2/CO2气氛下煤燃烧SO2/NO析出特性[J].化工学报,2009,60(5):1268-1274.
    [38]Perez-Lopez R, Montes-Hernandez G, Nieto JM, Renard F, Charlet L. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere [J]. Applied Geochemistry,2008,23(8):2292-2300.
    [39]Bonenfant D, Kharoune L, Sauve S, Hausler R, Niqutte P, Mimeault M, Kharoune M. CO2 sequestration potential of steel slags at ambient pressure and temperature [J]. Industrial & Engineering Chemistry Research,2008,47(20):7610-7616.
    [40]Eloneva S, Teir S, Salminen J, Fogelholm C, Zevenhoven R. Steel converter slag as a raw material for precipitation of pure calcium carbonate [J]. Industrial & Engineering Chemistry Research,2008,47(18):7104-7111.
    [41]Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD. Kinetics of aqueous leaching and carbonization of steelmaking slag [J]. Metallurgical and Materials Transactions B, 2008,39(1):125-134.
    [42]Huijgen WJJ, Witkamp GJ, Comans RNJ. Mineral CO2 sequestration by steel slag carbonation [J]. Environmental Science & Technology,2005,39(24):9676-9682.
    [43]Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution [J]. Energy,2008,33(5): 776-784.
    [44]Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles [J]. Journal of Hazardous Materials,2009, 168(1):31-37.
    [45]Gunning PJ, Hills CD, Carey PJ. Accelerated carbonation treatment of industrial wastes [J]. Waste management,2010,30(6):1081-1090.
    [46]Sahu RC, Patel RK, Ray BC. Neutralization of red mud using CO2 sequestration cycle [J]. Journal of hazardous materials,2010,179(1):28-34.
    [47]Yadav VS, Prasad M, Khan J, Amritphale SS, Singh M, Raju CB. Sequestration of carbon dioxide (CO2) using red mud [J]. Journal of hazardous materials,2010,176(1):1044-1050.
    [48]Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M. CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature [J]. Industrial & Engineering Chemistry Research,2008,47(20):7617-7622.
    [49]Johnston M, Clark MW, McMahon P, Ward N. Alkalinity conversion of bauxite refinery residues by neutralization [J]. Journal of Hazardous Materials,2010,182(1):710-715.
    [50]Uibu M, Velts O, Kuusik R. Developments in CO2 mineral carbonation of oil shale ash [J]. Journal of Hazardous Materials,2010,174(1):209-214.
    [51]Perez-Lopez R, Castillo J, Quispe D, Nieto JM. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste [J]. Journal of Hazardous Materials,2010,177(1):762-772.
    [52]Doucet FJ. Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behavior in view of industrial mineral carbonation [J]. Minerals Engineering,2010, 23(3):262-269.
    [53]Bao W, Li H, Zhang Y. Selective leaching of steelmaking slag for indirect CO2 mineral sequestration [J]. Industrial & Engineering Chemistry Research,2010,49(5):2055-2063.
    [54]Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M. CO2 sequestration potential of steel slags at ambient pressure and temperature [J]. Industrial & Engineering Chemistry Research,2008,47(20):7610-7616.
    [55]Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes [J]. Chemical Engineering Research & Design 1999,77(1):62-68.
    [56]Rodriguez N, Alonso M, Abanades JC. Average activity of CaO particles in a calcium looping system [J]. Chemical Engineering Journal,2010,156(2):388-394.
    [57]Manovic V, Anthony EJ. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles [J]. Environmental Science & Technology,2008,42(11): 4170-4174.
    [58]Iyer MV, Gupta H, Sakadjian BB, Fan L-S. Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO [J]. Industrial & Engineering Chemistry Research,2004, 43(14):3939-3947.
    [59]Blarney J, Anthony EJ, Wang J, Fennell PS. The calcium looping cycle for large-scale CO2 capture [J]. Progress in Energy and Combustion Science,2010,36(2):260-279.
    [60]Dean CC, Blarney J, Florin NH, Fennell PS. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production [J]. Chemical Engineering Research & Design,2011,89(6):836-855.
    [61]Anthony EJ. Ca looping technology:current status, developments and future directions [J]. Greenhouse Gases:Science and Technology,2011,1(1):36-47.
    [62]MacKenzie A, Granatstein DL, Anthony EJ, Abanades JC. Economics of CO2 capture using the calcium cycle with a pressurized fluidized bed combustor [J]. Energy & fuels,2007,21(2): 920-926.
    [63]Zhao M, Minett AI, Harris AT. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2 [J]. Energy & Environmental Science,2013,6(1):25-40.
    [64]Strohle J, Galloy A, Epple B. Feasibility study on the carbonate looping process for post-combustion CO2 capture from coal-fired power plants [J]. Energy Procedia,2009,1: 1313-1320.
    [65]Bhatia SK, Perlmutter, DD. Effect of product layer on the kinetics of the CO2-lime reaction [J]. AIChE Journal,1983,29 (1):79-86.
    [66]Barker R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage [J]. Journal of Applied Chemistry and Biotechnology,1974,24(4-5):221-227.
    [67]Wang BW, Zheng Y, Yan R, Zheng CG, Shao JG, Qiu JR. A new indicator for determining the fast chemical reaction stage of CaO carbonation with CO2 [J]. Asia-Pacific Journal of Chemical Engineering,2007,2(3):197-202.
    [68]Sun P, Grace JR, Lim CJ, Athony EJ. Determination of intrinsic rate constants of the CaO-CO2 reaction [J]. Chemical Engineering Science,2008,63(1):47-56.
    [69]Alvarez D, Abanades JC. Determination of the critical product layer thickness in the reaction of CaO with CO2 [J]. Industrial & Engineering Chemistry Research,2005,44(15):5608-5615.
    [70]Abanades JC, Anthony E J, Lu DY, Salvador C, Alvarez D. Capture of CO2 from combustion gases in a fluidized bed of CaO [J]. AIChE Journal,2004,50(7):1614-1622.
    [71]Duelli G, Bernard L, Bidwe AR, Stack-Lara V, Hawthorne C, Zieba M, Scheffknecht G. Calcium Looping Process:Experimental investigation of limestone performance regenerated under high CO2 partial pressure and validation of a carbonator model [J]. Energy Procedia, 2013,37:190-198
    [72]Charitos A, Hawthorne C, Bidwe AR, Divalingam S, Schuster A, Spliethoff H, Scheffkencht G. Parametric investigation of the calcium looping process for CO2 capture in a lOkWth dual fluidized bed [J]. International Journal of Greenhouse Gas Control,2010,4(5):776-784.
    [73]Alonso M, Rodriguez N, Gonzalez B, Grasa G, Murillo R, Abanades JC. Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development [J]. International Journal of Greenhouse Gas Control,2010,4(2): 167-173.
    [74]Lu DY, Hughes RW, Anthony EJ. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds [J]. Fuel Processing Technology,2008,89(12):1386-1395.
    [75]Rodriguez N, Alonso M, Abanades JC, Charitos A, Hawthorne C, Scheffknecht G, Lu DY, Ahthony EJ. Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO [J]. Energy Procedia,2011,4:393-401.
    [76]Hawthorne C, Dieter H, Bidwe A, Schuster A, Scheffknecht G, Unterberger S, Kaβ M. CO2 capture with CaO in a 200 kWth dual fluidized bed pilot plant [J]. Energy Procedia,2011,4: 441-448.
    [77]Dieter H, Hawthorne C, Zieba M, Scheffknecht G. Progress in Calcium Looping Post Combustion CO2 Capture:Successful Pilot Scale Demonstration [J]. Energy Procedia,2013,37: 48-56.
    [78]Hawthorne C, Poboss N, Dieter H, Gredinger A, Zieba M, Scheffknecht G Operation and results of a 200-kWth dual fluidized bed pilot plant gasifier with adsorption-enhanced reforming [J]. Biomass Conversion and Biorefinery,2012,2(3):217-227.
    [79]Kremer J, Galloy A, Strohle J, Epple B. Continuous CO2 Capture in a 1-MWth Carbonate Looping Pilot Plant [J]. Chemical Engineering & Technology,2013,36(9):1518-1524.
    [80]Sanchez-Biezma A, Ballesteros J C, Diaz L, Zarraga E, Alvarez FJ, Lopez J, Arias B, Grasa G, Abanades JC. Postcombustion CO2 capture with CaO. Status of the technology and next steps towards large scale demonstration [J]. Energy Procedia,2011,4:852-859.
    [81]Arias B, Diego ME, Abanades JC, Lorenzo M, Diaz L, Martinez D, Alvarez J, Sanchez-Biezma A. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot [J]. International Journal of Greenhouse Gas Control,2013,18:237-245.
    [82]Sanchez-Biezma A, Paniagua J, Diaz L, Lorenzo M, Alvarez J, Martinez, Arias B, Diego ME, Abanades JC. Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility [J]. Energy Procedia,2013,37:1-8.
    [83]Ylatalo J, Ritvanen J, Tynjala T, Hyppanen T. Model based scale-up study of the calcium looping process [J]. Fuel,2014,115:329-337.
    [84]Huang CM, Hsu HW, Liu WH, Cheng JY, Chen WC, Wen TW, Chen W. Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant[J]. Energy Procedia,2011,4:1268-1275.
    [85]Wang J, Manovic V, Wu Y, Athony EJ. A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes [J]. Applied Energy,2010,87(4):1453-1458.
    [86]Lysikov A I, Salanov A N, Okunev A G. Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles [J]. Industrial & engineering chemistry research,2007, 46(13):4633-4638.
    [87]Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles [J]. Industrial & Engineering Chemistry Research,2006,45(26):8846-8851.
    [88]Abanades JC, Alvarez D. Conversion limits in the reaction of CO2 with lime [J]. Energy & Fuels,2003,17(2):308-315.
    [89]Wang J, Anthony EJ. On the decay behavior of the CO2 absorption capacity of CaO-based sorbents [J]. Industrial & Engineering Chemistry Research,2005,44(3):627-629.
    [90]Chrissafis K, Paraskevopoulos KM. The effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks [J]. Journal of Thermal Analysis and Calorimetry,2005,81(2):463-468.
    [91]Sun P, Grace JR, Lim CJ, Anthony EJ. The effect of CaO sintering on cyclic CO2 capture in energy systems [J]. AlChE Journal,2007,53(9):2432-2442.
    [92]Sun P. CO2 removal in power systems using calcium-based sorbents [D]. Ph.D, The University of British Columbia,2007.
    [93]Grasa GS, Abanades JC, Alonso M, Gonzalez B. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop [J]. Chemical Engineering Journal,2008,137(3):561-567.
    [94]Wu SF, Beum TH, Yang JI, Kim JN. Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor [J]. Industrial & Engineering Chemistry Research,2007,46(24):7896-7899.
    [95]Li YJ, Zhao CS, Chen HC, Duan LB, Chen XP. CO2 capture behavior of shell during calcination/carbonation cycles [J]. Chemical Engineering & Technology,2009,32(8): 1176-1182.
    [96]Mess D, Sarofim AF, Longwell JP. Product layer diffusion during the reaction of calcium oxide with carbon dioxide [J]. Energy & Fuels,1999,13(5):999-1005.
    [97]Arias B, Abanades JC, Grasa GS. An analysis of the effect of carbonation conditions on CaO deactivation curves [J]. Chemical Engineering Journal,2011,167(1):255-261.
    [98]Alvarez D, Abanades JC. Pore-size and shape effects on the recarbonation performance of calcium oxide submitted to repeated calcination/recarbonation cycles [J]. Energy & Fuels,2005, 19(1):270-278.
    [99]Borgwardt RH. Calcium oxide sintering in atmospheres containing water and carbon dioxide [J]. Industrial & Engineering Chemistry Research,1989,28(4):493-500.
    [100]Li YJ, Zhao CS, Chen HC, Liu YK. Enhancement of Ca-Based Sorbent Multicyclic Behavior in Ca Looping Process for CO2 Separation [J]. Chemical Engineering & Technology,2009, 32(4):548-555.
    [101]李英杰,赵长遂.基于钙基吸收剂的循环煅烧/碳酸化反应吸收CO2的试验研究[J].动力工程,2008,28(1):117-121.
    [102]李英杰,赵长遂.钙基吸收剂循环锻烧/碳酸化反应过程特性研究[J].中国电机工程学报,2008,28(2):55-60.
    [103]Sun P, Grace JR, Lim CJ, Anthony EJ. Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions [J]. Environmental Science & Technology,2007,41(8): 2943-2949.
    [104]Ryu HJ, Grace JR, Lim CJ. Simultaneous CO2/SO2 capture characteristics of three limestones in a fluidized-bed reactor [J]. Energy & Fuels,2006,20(4):1621-1628.
    [105]Li ZS, Liu Y, Cai NS. Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2 [J]. Fuel,2013, DOI:org/10.1016/j.fuel.2013.06.040.
    [106]Donat F, Florin NH, Anthony EJ, Fennell PS. Influence of high-temperature steam on the reactivity of CaO sorbent for CO2 capture [J]. Environmental Science & Technology,2012, 46(2):1262-1269.
    [107]Champagne S, Lu DY, Macchi A, Symonds RT, Anthony EJ. Influence of Steam Injection during Calcination on the Reactivity of CaO-Based Sorbent for Carbon Capture [J]. Industrial & Engineering Chemistry Research,2013,52(6):2241-2246.
    [108]Arias B, Grasa G, Abanades JC, Anthony EJ. The effect of steam on the fast carbonation reaction rates of CaO [J]. Industrial & Engineering Chemistry Research,2012,51(5): 2478-2482.
    [109]Li CC, Cheng JY, Liu WS, Huang CM, Hsu HW, Lin HP. Enhancement in cyclic stability of the CO2 adsorption capacity of CaO-based sorbents by hydration for the calcium looping cycle [J]. Journal of the Taiwan Institute of Chemical Engineers,2013, DOI: org/10.1016/j.jtice.2013.06.019.
    [110]Wang K, Guo X, Zhao P, Zhang L, Zheng CG. CO2 capture of limestone modified by hydration-dehydration technology for carbonation/calcinations looping [J]. Chemical Engineering Journal,2011,173(1):158-163.
    [111]Manovic V, Wu Y, He I, Anthony EJ. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles [J]. Environmental Science & Technology,2012,46(22): 12720-12725.
    [112]Han L, Wang Q, Ma Q, Guan J, Luo Z, Cen K, Yue G, Zhang H, Zhao C. Hydration reactivation of CaO-based sorbent for cyclic calcination-carbonation reactions [C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Springer Berlin Heidelberg, 2010:726-731.
    [113]Blarney J, Paterson NPM, Dugwell DR, Stevenson P, Fennell PS. Reactivation of a CaO-based sorbent for CO2 capture from stationary sources[J]. Proceedings of the Combustion Institute, 2011,33(2):2673-2681.
    [114]Wang A, Wang D, Deshpande N, Phalak N, Wang W, Fan L-S. Design and opertation of a fluidized bed hydrator for steam reactivation of calcium sorbent [J]. Industrial & Engineering Chemistry Research,2013,52 (8):2793-2802.
    [115]Rong N, Wang QH, Fang MX, Cheng LM, Luo ZY, Cen KF. Steam hydration reactivation of CaO-based sorbent in cyclic carbonation/calcination for CO2 capture [J]. Energy & Fuels,2013, 27(9):5332-5340.
    [116]Zeman F. Effect of steam hydration on performance of lime sorbent for CO2 capture [J]. International Journal of Greenhouse Gas Control,2008,2(2):203-209.
    [117]Li YJ, Zhao CS, Qu CR, Duan LB Li QZ, Liang C. CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation [J]. Chemical Engineering & Technology,2008,31(2):237-244.
    [118]李英杰,赵长遂,段伦博,李庆钊.EtOH-H2O对钙基吸收剂分离cO2的影响[J].化工学报,2008,59(2):381-386.
    [119]Wang SP, Shen H, Fan SS, Zhao YJ, Ma XB, Gong JL. Enhanced CO2 adsorption capacity and stability using CaO-based adsorbents treated by hydration [J]. AIChE Journal,2013,59(10): 3586-3593.
    [120]Coppola A, Salatino P, Montagnaro F, Scala F. Reactivation by water hydration of the CO2 capture capacity of a calcium looping sorbent. Fuel,2013, DOI:org/10.1016/j.fuel.2013.09.059
    [121]Kuramoto K, Fujimoto S, Morita A, Shibano S, Suzuki Y, Hatano H, Lin S, Harada M, Takarada T. Repetitive carbonation-calcination reactions of Ca-based sorbents for efficient CO2 sorption at elevated temperatures and pressures [J]. Industrial & Engineering Chemistry Research,2003,42(5):975-981..
    [122]Manovic V, Anthony EJ. Reactivation and remaking of calcium aluminate pellets for CO2 capture [J]. Fuel,2011,90(1):233-239.
    [123]Phalak N, Deshpande N, Fan LS. Investigation of high-temperature steam hydration of naturally derived calcium oxide for improved carbon dioxide capture capacity over multiple cycles [J]. Energy & Fuels,2012,26(6):3903-3909.
    [124]Phalak N, Wang W, Fan LS. Ca(OH)2-Based Calcium Looping Process Development at The Ohio State University [J]. Chemical Engineering & Technology,2013,36(9):1451-1459.
    [125]Lu H, Reddy EP, Smirniotis PG. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures [J]. Industrial & Engineering Chemistry Research,2006,45(11):3944-3949.
    [126]Lu H, Smirniotis PG, Ernst FO, Pratsinis SE. Nanostructured Ca-based sorbents with high CO2 uptake efficiency [J]. Chemical Engineering Science,2009,64(9):1936-1943.
    [127]Lu H, Khan A, Smirniotis PG. Relationship between Structural Properties and CO2 Capture Performance of CaO-Based Sorbents Obtained from Different Organometallic Precursors [J]. Industrial & Engineering Chemistry Research,2008,47(16):6216-6220.
    [128]Liu WQ, Low NWL, Feng B, Wang GX, Costa JCDD. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture [J]. Environmental Science & Technology,2009, 44(2):841-847.
    [129]Liu WQ, Yin JJ, Qin CL, Feng B, Xu MH. Synthesis of CaO-Based Sorbents for CO2 Capture by a Spray-Drying Technique [J]. Environmental Science & Technology,2012,46(20): 11267-11272.
    [130]Li YJ, Zhao CS, Chen HC, Liang C, Duan LB, Zhou W. Modified CaO-based sorbent looping cycle for CO2 mitigation [J]. Fuel,2009,88(4):697-704.
    [131]Li YJ, Zhao CS, Duan LB, Liang C, Li QZ, Zhouo W, Chen HC. Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture [J]. Fuel Processing Technology,2008,89(12):1461-1469.
    [132]Radfarnia HR, Iliuta MC. Limestone Acidification Using Citric Acid coupled with Two-Step Calcination for Improving CO2 Absorbent Activity [J]. Industrial & Engineering Chemistry Research,2013,52(21):7002-7013.
    [133]Chen HC, Zhao CS, Chen ML, Li YJ, Chen XP. CO2 uptake of modified calcium-based sorbents in a pressurized carbonation-calcination looping [J]. Fuel Processing Technology, 2011,92(5):1144-1151.
    [134]Yang L, Yu HB, Wang SQ, Wang HW, Zhou QB. Carbon dioxide captured from flue gas by modified Ca-based sorbents in fixed-bed reactor at high temperature [J]. Chinese Journal of Chemical Engineering,2013,21(2):199-204.
    [135]Ridha FN, Manovic V, Wu Y, Macchi A, Anthony EJ. Post-combustion CO2 capture by formic acid-modified CaO-based sorbents[J]. International Journal of Greenhouse Gas Control,2013, 16:21-28.
    [136]Ridha FN, Manovic V, Wu Y, Macchi A, Anthony EJ. Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles [J]. International Journal of Greenhouse Gas Control,2013,17:357-365.
    [137]Li YJ, Sun RY, Liu HL, Lu CM. Cyclic CO2 Capture Behavior of limestone modified with pyroligneous acid (PA) during calcium looping cycles [J]. Industrial & Engineering Chemistry Research,2011,50(17):10222-10228.
    [138]Wang RC, Chuang WC. Experimental studies of modified limestone for CO2 capture in multiple carbonation/calcination cycles [J]. Journal of the Taiwan Institute of Chemical Engineers,2013, DOI:org/10.1016/j.jtice.2013.06.029
    [139]Roesch A, Reddy EP, Smirniotis PG. Parametric study of Cs/CaO sorbents with respect to simulated flue gas at high temperatures [J]. Industrial & Engineering Chemistry Research,2005, 44(16):6485-6490
    [140]Salvador C, Lu D, Anthony EJ, Abanades JC. Enhancement of CaO for CO2 capture in an FBC environment [J]. Chemical Engineering Journal,2003,96(1):187-195.
    [141]李英杰,赵长遂,段伦博,李庆钊,梁财.钾钠盐类对钙基C02吸附剂循环碳酸化的影响[J].中国电机工程学报,2009(2):52-57.
    [142]Gonzalez B, Blarney J, McBride-Wright M, Carter N, Dugwell D, Fennell P, Abanades JC. Calcium looping for CO2 capture:sorbent enhancement through doping [J]. Energy Procedia, 2011,4:402-409.
    [143]Manovic V, Anthony EJ, Grasa G, Abanades JC. CO2 looping cycle performance of a high-purity limestone after thermal activation/doping [J]. Energy & Fuels,2008,22(5): 3258-3264.
    [144]Li YJ, Zhao CS, Chen HC, Duan LB, Chen XP. Cyclic CO2 capture behavior of KMn04-doped CaO-based sorbent [J]. Fuel,2010,89(3):642-649.
    [145]Al-Jeboori MJ, Nguyen M, Dean C, Fennell PS. Improvement of Limestone-Based CO2 Sorbents for Ca Looping by HBr and Other Mineral Acids [J]. Industrial & Engineering Chemistry Research,2013,52(4):1426-1433.
    [146]Manovic V, Fennell P, Al-Jeboori MJ, Anthony EJ. Steam Enhanced Calcium Looping Cycles with Calcium Aluminate Pellets Doped by Bromides [J]. Industrial & Engineering Chemistry Research,2013,52(23):7677-7683.
    [147]Chen HC, Zhao CS, Duan LB, Liang C, Liu DJ, Chen XP. Enhancement of reactivity in surfactant-modified sorbent for CO2 capture in pressurized carbonation [J]. Fuel Processing Technology,2011,92(3):493-499.
    [148]乔春珍,肖云汉.添加剂改善钙c02吸收剂的循环特性[J].燃烧科学与技术,2011,17(4):308-312.
    [149]Johnsen K, Ryu HJ, Grace JR, Lim CJ, Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor [J]. Chemical Engineering Science,2006, 61(4):1195-1202.
    [150]Aihara M, Nagai T, Matsushita J, Negishi Y, Ohya H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction [J]. Applied Energy,2001,69(3):225-238.
    [151]Wu SF, Zhu YQ. Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent [J]. Industrial & Engineering Chemistry Research,2010,49(6):2701-2706.
    [152]Li ZS, Cai NS, Huang YY. Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent [J]. Industrial & Engineering Chemistry Research,2006,45(6):1911-1917.
    [153]Li ZS, Cai NS, Huang YY, Han HJ. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent [J]. Energy & Fuels,2005,19(4):1447-1452.
    [154]Pacciani R, Muller CR, Davidson JF, Dennis JS, Hayhurst AN. Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed [J]. The Canadian Journal of Chemical Engineering,2008,86(3):356-366.
    [155]Martavaltzi CS, Lemonidou AA. Development of new CaO based sorbent materials for CO2 removal at high temperature [J]. Microporous and Mesoporous Materials,2008,110(1): 119-127.
    [156]Luo C, Zheng Y, Ding N, Zheng CG Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives [J]. Korean Journal of Chemical Engineering,2011,28(4):1042-1046.
    [157]Manovic V, Anthony EJ. Long-term behavior of CaO-based pellets supported by calcium aluminate cements in a long series of CO2 capture cycles [J]. Industrial & Engineering Chemistry Research,2009,48(19):8906-8912.
    [158]Wu SF, Jiang MZ. Formation of a Ca12Al14O33 nanolayer and its effect on the attrition behavior of CO2-adsorbent microspheres composed of CaO nanoparticles [J]. Industrial & Engineering Chemistry Research,2010,49(23):12269-12275.
    [159]房凡,李振山,蔡宁生.钙基CO2吸收剂循环反应特性的试验与模拟[J].中国电机工程学报,2009(14):30-35.
    [160]Liu W, An H, Qin C,Yin J, Wang G, Feng B, Xu M. Performance Enhancement of Calcium Oxide Sorbents for Cyclic CO2 Capture-A Review [J]. Energy & Fuels,2012,26(5): 2751-2767.
    [161]Luo C, Zheng Y, Ding N, Wu QL, Zheng CG. SGCS-made ultrafine CaO/Al2O3 sorbent for cyclic CO2 capture [J]. Chinese Chemical Letters,2011,22(5):615-618.
    [162]Radfarnia HR, Iliuta MC. Metal Oxide-Stabilized Calcium Oxide CO2 Sorbent for multicycle Operation [J]. Chemical Engineering Journal,2013,232:280-289.
    [164]Zhang MM, Peng YX, Sun YZ, Li P, Yu JG. Preparation of CaO-Al2O3 sorbent and CO2 capture performance at high temperature [J]. Fuel,2013,111:636-642.
    [165]Xie MM, Zhou ZM, Qi Y, Cheng ZM, Yuan WK. Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO-Ca9Al6O18 sorbent [J]. Chemical Engineering Journal,2012, 207:142-150.
    [166]Broda M, Kierzkowska AM, Muller CR. Influence of the calcination and carbonation conditions on the CO2 uptake of Synthetic Ca-Based CO2 Sorbents [J]. Environmental Science & Technology,2012,46(19):10849-10856.
    [167]Zhou ZM, Xu P, Xie MM, Cheng ZM, Yuan WK. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent [J]. Chemical Engineering Science,2013,95:283-290.
    [168]Luo C, Zheng Y, Yin JJ, Qin CL, Ding N, Zheng CG, Feng B. Effect of Support Material on Carbonation and Sulfation of Synthetic CaO-Based Sorbents in Calcium Looping Cycle [J]. Energy & Fuels,2013,27(8):4824-4831.
    [169]Zhou ZM, Qi Y, Xie MM, Cheng ZM, Yuan WK. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance [J]. Chemical Engineering Science,2012,74:172-180.
    [170]Guo MN, Zhang L, Yang ZQ, Tang Q. Removal of CO2 by CaO/MgO and CaO/CagA16O18 in the Presence of SO2 [J]. Energy & Fuels,2011,25(11):5514-5520.
    [171]Koirala R, Gunugunuri KR, Pratsinis SE, Smirniotis PG. Effect of Zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles [J]. The Journal of Physical Chemistry C,2011,115(50):24804-24812.
    [172]Radfarnia HR, Iliuta M C. Development of Zirconium-Stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture [J]. Industrial & Engineering Chemistry Research,2012, 51(31):10390-10398.
    [173]Koirala R, Reddy GK, Lee JY, Smirniotis PG Influence of foreign metal dopants on the durability and performance of Zr/Ca sorbents during high temperature,CO2 capture [J]. Separation Science and Technology, DOI:10.1080/01496395.2013.836672.
    [174]Broda M, Muller CR. Sol-gel-derived, CaO-based, ZiO2-stabilized CO2 sorbents [J]. Fuel, 2013, DOI:org/10.1016/j.fuel.2013.08.004.
    [175]Quintanilla MAS, Valverde JM. Use of silica nanopowder to accelerate CO2 sorption by Ca(OH)2 [J]. Particuology,2013,11:448-453.
    [176]Valverde J M, Duran F J, Pontiga F, et al. CO2 capture enhancement in a fluidized bed of a modified Geldart C powder[J]. Powder Technology,2012,224:247-252.
    [177]罗聪,郑瑛,丁宁,吴琪珑,边关,郑楚光.掺杂镧铝盐对钙基循环捕捉C02能力的影响[J].中国电机工程学报,2010(29):49-54.
    [178]Broda M, Kierzkowska AM, Muller CR. Application of the Sol-Gel technique to develop synthetic Calcium-Based sorbents with excellent carbon dioxide capture characteristics[J]. ChemSusChem,2012,5(2):411-418.
    [179]Santos ET, Alfonsin C, Chambel AJS, Fernandes A, Dias APS, Pinheiro CIC, Riebiro MF. Investigation of a stable synthetic sol-gel CaO sorbent for CO2 capture [J]. Fuel,2012,94: 624-628.
    [180]Luo C, Zheng Y, Zheng CG, Yin JJ, Qin CL, Feng B. Manufacture of calcium-based sorbents for high temperature cyclic CO2 capture via a sol-gel process [J]. International Journal of Greenhouse Gas Control,2013,12:193-199.
    [181]Valverde JM, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA. Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions [J]. Applied Energy,2013,108:108-120.
    [182]Chen Z, Song HS, Portillo M, Lim JC Grace JR., Anthony EJ. Long-term calcination/carbonation cycling and thermal pretreatment for CO2 capture by limestone and dolomite [J]. Energy & Fuels,2009,23(3):1437-1444.
    [183]Arias B, Abanades JC, Anthony EJ. Model for self-reactivation of highly sintered CaO particles during CO2 capture looping cycles [J]. Energy & Fuels,2011,25(4):1926-1930.
    [184]Alonso M, Lorenzo M, Gonzalez B, Abanades JC. Precalcination of CaCO3 as a Method to Stabilize CaO Performance for CO2 Capture from Combustion Gases[J]. Energy & Fuels,2011, 25(11):5521-5527.
    [185]Florin NH, Harris AT. Preparation and characterization of a tailored carbon dioxide sorbent for enhanced hydrogen synthesis in biomass gasifiers [J]. Industrial & Engineering Chemistry Research,2008,47(7):2191-2202.
    [186]Gupta H, Fan LS. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas [J]. Industrial & Engineering Chemistry Research, 2002,41(16):4035-4042.
    [189]Lopez-Periago AM, Fraile J, Lopez-Aranguren P, Vega LF, Domingo C. CO2 capture efficiency and carbonation/calcination kinetics of micro and nanosized particles of supercritically precipitated calcium carbonate [J]. Chemical Engineering Journal,2013,226: 357-366.
    [190]Nieto-Sanchez AJ, Olivares-Marin M, Garcia S, Pevida C, Cuerda-Correa EM. Influence of the operation conditions on CO2 capture by CaO-derived sorbents prepared from synthetic CaCO3 [J]. Chemosphere,2013, DOI:org/10.1016/j.chemosphere.2013.07.069
    [191]Karami D, Mahinpey N. Highly active CaO-based sorbents for CO2 capture using the precipitation method:preparation and characterization of the sorbent powder [J]. Industrial& Engineering Chemistry Research,2012,51(12):4567-4572.
    [192]Sun P, Lim J, Grace JR. Cyclic CO2 capture by limestone-derived sorbent during prolonged calcination/carbonation cycling [J]. AIChE Journal,2008,54(6):1668-1677.
    [193]Arias B, Grasa GS, Alonso M, Abanades JC. Post-combustion calcium looping process with a highly stable sorbent activity by recarbonation [J]. Energy & Environmental Science,2012, 5(6):7353-7359.
    [194]Manovic V, Anthony EJ. CO2 carrying behavior of calcium aluminate pellets under high-temperature/high-CO2 concentration calcination conditions [J]. Industrial & Engineering Chemistry Research,2010,49(15):6916-6922.
    [195]Dennis JS, Pacciani R. The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent [J]. Chemical Engineering Science,2009,64(9):2147-2157.
    [196]Hughes RW, Lu D, Anthony EJ, Wu Y. Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor [J]. Industrial & Engineering Chemistry Research,2004,43(18):5529-5539.
    [197]Vandewalle C, Degreve J, Baeyens J. Attrition and erosion in powder circulation loops [J]. Powder Handling & Processing,2001,13 (1):77-81.
    [198]Boerefijn R, Gudde NJ, Ghadiri M. A review of attrition of fluid cracking catalyst particles [J]. Advanced Powder Technology,2000,11(2):145-174.
    [199]Bemrose CR, Bridgwater J. A review of attrition and attrition test methods [J]. Powder Technology,1987,49(2):97-126.
    [200]Lee SK, Jiang X, Keener TC, Khang SJ. Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber [J]. Industrial & Engineering Chemistry Research,1993, 32(11):2758-2766.
    [201]Scala F, Cammarota A, Chirone R, Salatino P. Comminution of limestone during batch fluidized-bed calcination and sulfation [J]. AIChE Journal,1997,43(2):363-373.
    [202]Scala F, Montagnaro F, Salatino P. Attrition of limestone by impact loading in fluidized beds [J]. Energy & Fuels,2007,21(5):2566-2572.
    [203]Gonzalez B, Alonso M, Abanades JC. Sorbent attrition in a carbonation/calcination pilot plant for capturing CO2 from flue gases[J]. Fuel,2010,89(10):2918-2924.
    [204]何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001.
    [205]Chen HC, Zhao CS, Yang YM, Zhang PP. CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation [J]. Applied Energy,2012,91(1): 334-340.
    [206]Chen HC, Zhao CS, Yang YM. Enhancement of attrition resistance and cyclic CO2 capture of calcium-based sorbent pellets [J]. Fuel Processing Technology,2013,116:116-112.
    [207]岑可法,倪明江,池涌.循环流化床锅炉原理设计及运行[M].北京:中国电力出版社,1998.
    [208]巴苏只弗雷泽SA著.岑可法等译.循环流化床锅炉的设计与运行[M].北京:科学出版社,1994.
    [209]金涌.流态化工程原理[M].北京:清华大学出版社,2001.
    [210]Yaws CL著,陶鹏万等译.Matheson气体数据手册[M].北京:化学工业出版社,2003.
    [211]Li YR, Qi HY, You CF, Xu XC. Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures [J]. Fuel,2007,86(5):785-792.
    [212]Stanmore B R, Gilot P. Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration [J]. Fuel Processing Technology,2005,86(16):1707-1743.
    [213]Anthony EJ, Granatstein DL. Sulfation phenomena in fluidized bed combustion systems [J]. Progress in Energy and Combustion Science,2001,27(2):215-236.
    [214]Mohamed AR. Kinetic model for the reaction between SO2 and coal fly ash/CaO/CaSO4 sorbent [J]. Journal of Thermal Analysis and Calorimetry,2005,79(3):691-695.
    [215]Wieczorek-Ciurowa K. Peculiarities of Interactions in the CaCO3/CaO-SO2/SO3-Air System A review[J]. Journal of Thermal Analysis and Calorimetry,1998,53(2):649-658.
    [216]Wu ZH, Kou P, Yu ZW. The modulation of desulphurization properties of calcium oxide by alkali carbonates[J]. Journal of Thermal Analysis and Calorimetry,2002,67(3):745-750.
    [217]Dedman AJ, Owen AJ. Calcium cyanide synthesis, part 4-the reaction CaO+CO2=CaCO3 [J]. Transactions of the Faraday Society,1962,58:2027-2035.
    [218]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(4)[J].电池,2006,36(2): 195-198.
    [219]李振山,蔡宁生,赵旭东,黄煜煜.CaO与CO2循环反应动力学特性[J].燃烧科学与技术,2006,12(6):481-485.
    [220]陈小华,郑瑛,郑楚光,赵海波.CaO再碳酸化的研究[J].华中科技大学学报(自然科学版),2003,31(4):54-55,65.
    [221]Chen HC, Zhao CS, Ren QQ. Feasibility of CO2/SO2 uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation [J]. Journal of Environmental Management,2012,93(1):235-244.
    [222]Manovic V, Anthony EJ. Competition of Sulphation and Carbonation Reactions during Looping Cycles for CO2 Capture by CaO-Based Sorbents [J]. The Journal of Physical Chemistry A,2010,114(11):3997-4002.
    [223]Sun P, Grace J R, Lim C J, Anthony EJ. Removal of CO2 by calcium-based sorbents in the presence of SO2 [J]. Energy & Fuels,2007,21(1):163-170.
    [224]Arias B, Cordero J M, Alonso M, Abanades JC. Sulfation rates of cycled CaO particles in the carbonator of a Ca-looping cycle for postcombustion CO2 capture [J]. AIChE Journal,2012, 58(7):2262-2269.
    [225]Manovic V, Anthony EJ, Loncarevic D. SO2 retention by CaO-based sorbent spent in CO2 looping cycles [J]. Industrial & Engineering Chemistry Research,2009,48(14):6627-6632.
    [226]Grasa GS, Alonso M, Abanades JC. Sulfation of CaO particles in a carbonation/calcination loop to capture CO2 [J]. Industrial & Engineering Chemistry Research,2008,47(5):1630-1635.
    [227]Nimmo W, Patsias AA, Hall WJ, Williams PT. Characterization of a Process for the In-Furnace Reduction of NOx, SO2, and HC1 by Carboxylic Salts of Calcium [J]. Industrial & Engineering Chemistry Research,2005,44(12):4484-4494.
    [228]Niu SL, Han KH, Zhou F, Lu CM. Thermogravimetric analysis of the decomposition characteristics of two kinds of calcium based organic compounds [J]. Powder Technology,2011, 209(1):46-52.
    [229]Grasa G, Murillo R, Alonso M, Abanades JC. Application of the random pore model to the carbonation cyclic reaction[J]. AIChE Journal,2009,55(5):1246-1255.
    [230]Chen Z, Grace JR., Lim CJ. Development of particle size distribution during limestone impact attrition [J]. Powder Technology,2011,207(1):55-64.
    [231]Chen Z, Lim CJ, Grace JR. Study of limestone particle impact attrition [J]. Chemical Engineering Science,2007,62(3):867-877.
    [232]Chen Z, Grace JR, Lim CJ. Limestone particle attrition and size distribution in a small circulating fluidized bed [J]. Fuel,2008,87(7):1360-1371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700