苹果汁中嗜酸耐热菌免疫分离及振动光谱法鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上最大的浓缩苹果汁生产国,近年来其产量急剧增长,而以嗜酸耐热菌为代表的安全性指标是其国际化发展的“绿色技术壁垒”之一。因此,解决嗜酸耐热菌污染问题是保证我国苹果及果汁产业快速、健康发展的关键,而首要的就是要建立嗜酸耐热菌的快速检测与鉴定方法。目前,嗜酸耐热菌的快速分离是对其进行快速检测与鉴定的关键技术瓶颈,并且现有的嗜酸耐热菌鉴定方法具有一定的局限性。
     为寻求高效、快速的嗜酸耐热菌分离以及鉴定方法,本论文首先通过将嗜酸耐热菌多克隆抗体偶联到磁性微球表面制备出免疫磁性微球,建立基于免疫磁性微球的苹果汁中嗜酸耐热菌快速分离方法;另外,本论文还采用振动光谱技术(近红外、红外和拉曼)结合多元统计方法建立快速,简单,方便的鉴定嗜酸耐热菌的方法,研究获得微生物细胞近红外,红外和拉曼光谱的方法以及光谱的处理技术,建立嗜酸耐热菌鉴定模型,为浓缩苹果汁生产企业提供一个切实快速有效的嗜酸耐热菌检测与鉴定方法,以保证产品的质量。
     本论文取得的主要研究结果如下:
     (1)以嗜酸耐热菌(Alicyclobacillus acidoterrestris DSM3922)灭活菌体作为抗原,采用皮下多点注射法免疫2只新西兰白兔,得到了嗜酸耐热菌多克隆抗体,并对抗体进行了纯化,最终得到抗体两份:R1抗体(27.6 mg/mL,4.6 mL,效价1:40000)及R2抗体(10.8 mg/mL,5 mL,效价1:10000);采用化学包埋法制备得到壳聚糖磁性微球,并对其进行了活化,所得到的活化后的壳聚糖磁性微球固定抗体能力为2.48 mg抗体/g微球;将嗜酸耐热菌多克隆抗体偶联到磁性微球表面得到了免疫磁性微球,该免疫磁性微球对培养液中嗜酸耐热菌吸附率为68.5±1.7%,对苹果汁中嗜酸耐热菌吸附率为70.1±4.7%。
     (2)得到了1株嗜酸耐热菌,1株酵母和5株细菌标准菌的近红外漫反射光谱,并对光谱数据进行了分析,构建了基于近红外光谱的嗜酸耐热菌鉴定方法。结果表明:光谱鉴别指数Dy1y2值范围为1.61±1.05-10.97±6.65,重现性良好;采用主成分分析法确定5400-4000cm-1范围为微生物细胞近红外光谱的信息富集区;建立的线性判别分析模型鉴定准确率为100%,人工神经网络模型预测结果平均相对误差为5.04%。
     (3)采用硝酸纤维素滤膜和单反射水平衰减全反射红外附件建立了一种简单快速的样品制备方法,获得了1株嗜酸耐热菌和7株常见细菌的红外光谱,建立了基于红外光谱的嗜酸耐热菌鉴定方法。结果表明:采用本论文建立的样品制备方法采集细菌细胞红外光谱切实可行;利用主成分分析可以将所研究的菌株成功分为不同的类别;所建立的鉴定模型都获得了较高的准确率,其中线性判别模型准确率为100%,人工神经网络模型平均相对误差为1.32%。另外对得到的8株嗜酸耐热菌菌株的红外光谱采用多元统计方法进行了分析,结果表明利用主成分分析方法可以将所研究的菌株成功分为不同的类别;所建立的线性判别模型对不同菌株的鉴别准确率达到93.75%。
     (4)得到了1株嗜酸耐热菌和5株常见细菌的拉曼光谱,对微生物细胞的拉曼谱峰进行了归属分析,并构建了基于拉曼光谱的嗜酸耐热菌鉴定方法。结果表明:微生物细胞拉曼光谱的主要谱峰来自于蛋白质和碳水化合物的分子振动信息,核酸成分的谱峰较弱,脂类成分的信息不明显;获得拉曼光谱所需细胞悬液的最小浓度为1011 CFU/mL,得到的光谱的信噪比达到250以上;重现性分析结果表明光谱鉴别指数Dy1y2值范围为20.91±16.17-39.50±59.26,重现性良好;主成分分析结果表明拉曼光谱可以识别微生物细胞的主要成分的差异,所建立的线性判别分析模型鉴定准确率达到90%以上。另外对得到的8株嗜酸耐热菌菌株的拉曼光谱采用多元统计方法进行了分析,结果表明利用主成分分析方法可以将所研究的菌株成功分为不同的类别;所建立的线性判别模型对不同菌株的鉴别准确率达到85%。
China is the largest concentrated apple juice producing country and its yield increases rapidly. The safety issues, especially Alicyclobacillus species, are“green technical barriers”of international trade. Control of Alicyclobacillus is the key to development of apple juice industry, and the most important aspect is to establish rapid methods to detect and identify Alicyclobacillus species. Currently, rapid separation and enrichment of Alicyclobacillus species is the critical technical bottleneck; furthermore, the existing methods for detection of microorganisms have tremendous limitations.
     In order to establish efficient and rapid methods to separate, enrich and identify Alicyclobacillus species, polyclonal antibody against Alicyclobacillus acidoterrestris (DSM3922) was connected to magnetic microspheres to prepare immune magnetic microspheres, a method for separating and enriching Alicyclobacillus species in apple juice based on immunomagnetic microspheres was established; further, vibrational spectroscopy (namely, near infrared, mid-infrared and Raman) combined with multivariate analysis was employed to identify Alicyclobacillus species and identification models based on multivariate analysis were established. A rapid, simple and convenient method to identify Alicyclobacillus species was provided for apple juice industry.
     The main results of this thesis:
     (1) Polyclonal antibody against Alicyclobacillus acidoterrestris DSM3922 was obtained by performing immune tests on two rabbits: R1, 27.6 mg/mL, 4.6 mL, titer 1:40000; R2, 10.8 mg/mL, 5 mL, titer 1:10000. Chitosan magnetic microsphere was prepared by chemical embedding and activated, which could stabilize polyclonal antibody at 2.48 mg antibody/g microsphere; Polyclonal antibody was coupled with magnetic microsphere to prepare immune magnetic microsphere. Immune magnetic microsphere was used to separate Alicyclobacillus acidoterrestris from medium and apple juice, the absorption rate was 68.5±1.7% and 70.1±4.7%, respectively.
     (2) Bacterial powders of Alicyclobacillus strain, one yeast and five bacteria strains were prepared for Fourier transform near-infrared (FT-NIR) spectral collection. FT-NIR spectral determination was done using a diffuse reflection-integrating sphere. Reduction of data was performed by principal component analysis (PCA) and two identification models based on linear discriminant analysis (LDA) and artificial neural network (ANN) were established to identify bacterial strains. The reproducibility of the method was satisfied (Dy1y2: 1.61±1.05-10.97±6.65). The wavenumber of 5400-4000cm-1 is the information-rich range for the FT-NIR spectra of microorganism and high identification accuracy was achieved in both the LDA model (accuracy rate: 100%) and the ANN model (average relative error: 5.04%).
     (3) A simple and rapid sample preparation method using nitrocellulose membrane filter (NMF) and a single reflection horizontal attenuated total reflection (HATR) accessory was developed, mid-infrared (mid-IR) spectra of Alicyclobacillus strain and seven other representative bacterial strains were collected and two identification models based on LDA and ANN respectively were established to identify and distinguish Alicyclobacillus strain from others. The sample preparation method was feasible and the microorganisms studied were successfully separated into different groups by PCA. High identification accuracy was achieved in both LDA model (accuracy rate: 100%) and ANN model (average relative error: 1.32%). In addition, Fourier transform infrared (FT-IR) spectroscopy was used and tested on eight Alicyclobacillus strains. The stains could be clearly separated into different groups by PCA. High identification accuracy (93.75%) was achieved using LDA model.
     (4) Raman spectra of Alicyclobacillus strain and five other representative bacterial strains were collected using a Raman microspectrometer. Reduction of data was performed by PCA and an identification model based on LDA was established to identify bacterial strains. Results showed that the main bands found in Raman spectra of microorganisms originated from proteins and carbohydrates, only several weak peaks were from nucleic acids and fatty acids. The minimal bacterial concentration for collecting Raman was 1011 CFU/mL and the S/N was higher than 250. The reproducibility of the method was satisfied (Dy1y2: 20.91±16.17-39.50±59.26) and high identification accuracy was achieved in LDA model (accuracy rate: 90%). Further, Raman spectroscopy was used and tested on eight Alicyclobacillus strains. The stains could be separated into different groups by PCA successfully. High identification accuracy (85%) was achieved using LDA model.
引文
蔡飞,陆峰.2002.傅里叶变换红外光谱结合化学计量学在微生物判别、分类、鉴定中的应用.药学实践杂志,20(4):238-240.
    蔡福带.2005.浓缩苹果汁生产中耐热菌的分离鉴定及控制技术.[硕士学位论文].杨凌:西北农林科技大学.
    常玉华.2003.浓缩苹果汁中耐热菌的PCR方法快速检测研究.[硕士学位论文].西安:陕西师范大学.
    陈世琼,胡小松,石维妮.2004.浓缩苹果汁生产过程中脂环酸芽孢杆菌的分离及初步鉴定.微生物学报,44(12):816-819.
    陈颖.2004.臭氧对耐酸耐热菌杀灭作用的研究.[硕士学位论文].西安:陕西师范大学.
    慈云祥,臧凯赛,高体玉.2002.几种微生物的红外光谱研究.高等学校化学学报,23(6):1047-1049.
    翟衡,赵政阳,王志强,等.2005.世界苹果产业发展趋势分析.果树学报,22(1):44-50.
    独俊红,白耀文,刘莲英,等.2008.含环氧基团的磁性高分子复合微球.北京化工大学学报,35(1):45-49.
    冯再平.2004.浓缩苹果汁中耐热菌PCR法定量检测技术研究.[硕士学位论文].西安:陕西师范大学.
    胡贻椿.2007.浓缩苹果汁生产过程中嗜酸耐热菌的分离、鉴定及超声波控制技术研究.[硕士学位论文].杨凌:西北农林科技大学.
    胡贻椿,岳田利,袁亚宏,等.2007.浓缩苹果汁生产环境中嗜酸耐热菌的分离与初步鉴定.西北农林科技大学学报(自然科学版),35(5):184-188.
    胡贻椿,岳田利,袁亚宏,等.2007.浓缩苹果汁车间空气中嗜酸耐热菌的分离鉴定研究.农产品加工学报,(94)3:11-13.
    胡贻椿,岳田利,袁亚宏,等.2008.果汁中脂环酸芽孢杆菌(Alicyclobacillus spp.)的危害及其控制.食品科学,29(1):364-368.
    李军,张振华,葛毅强,等.2004.我国苹果加工业现状分析.食品科学,25(9):26-29.
    刘琳琳.2008.免疫磁性微球快速分离检验金黄色葡萄球菌新技术的研究.山东医学高等专科学校学报,30(2):88-90.
    刘琳琳.2008.免疫微球检测金黄色葡萄球菌与链球菌研究.中国热带医学,8(2):193-195.
    刘燕德,刘涛,孙旭东,等.2010.拉曼光谱技术在食品质量安全检测中的应用.光谱学与光谱分析,30(11):3007-3012.
    陆峰,卢伟,肖振宇,等.2003.耐药型白念珠菌的红外光谱判别方法的初步研究.分析化学,31(12):1532.
    聂明,罗江兰,张伟琼,等.2007.镰刀菌的傅里叶变换红外光谱鉴别.光谱学与光谱分析,27(8):1519-1522.
    宋占军,沈世杰,赵晓光.2003.傅立叶变换红外光谱及其图像技术在生物医学中的应用.现代仪器,(5):9-12.
    孙洋.2007.肠出血性大肠杆菌O157快检方法的研究.[博士学位论文].长春:吉林大学.
    田世英.2004.我国苹果产业概况和发展思路.山西农业,(9):6-7.
    万佳蓉,马美湖,周传云,等.2007.蜡样芽孢杆菌的二阶导数红外光谱研究.光谱学与光谱分析,27(5):904-906.
    王小兵,李莉.2003.我国苹果产业发展与展望.中国果树,(2):1-3.
    徐宝成,刘建学,易军鹏,等.2007.红外光谱技术在微生物研究中的应用进展.中国酿造,(3):8-10.
    徐辉,张国亮,张凤宝.2003.免疫磁性微球的研究进展.化学工业与工程,20(1):27-32.
    徐雅雯,徐宏,丁玮洁,等.2010.高Fe3O4含量微米尺寸磁性复合微球的合成及其在化学发光免疫检测中应用初探.高分子学报,11:1340-1346.
    杨万,何苗.2008.免疫磁珠分离技术在环境病原微生物检测中的应用.安全与环境学报,8(6):18-22.
    杨康.2007.源于苹果汁的嗜酸耐热菌生长代谢动力学及红外光谱快速检测技术研究.[硕士学位论文].杨凌:西北农林科技大学.
    岳田利,杨康,袁亚宏,等.2008.1株源于苹果汁的嗜酸耐热菌的生长代谢动力学研究.西北农林科技大学学报(自然科学版),36(1):194-200.
    张彤,方汉平.2003.微生物分子生态技术:16S rRNA/DNA方法.微生物学通报,30(2):97-81.
    张小强,赵晓蕾,周鑫,等.2009.免疫磁性微球的制备及其应用于食品微生物检测的研究进展.化工进展,28(8):1427-1430.
    张振华,胡小松,葛毅强.2004.我国苹果加工业的发展思路.中国果树,(2):50-53.
    Alejandra B, Marina A G, Analía G A, et al. 2006. Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy. International Journal of Food Microbiology, 111:280-287.
    Al-Haddad L, Morris C W, Boddy L. 2000. Training radial basis function neural networks: effects of training set size and imbalanced training sets. Journal of Microbiological Methods, 43:33-44.
    Al-Qadiri H M, Lin M, Cavinato A G, et al. 2006. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157:H7 and Alicyclobacillus strains in apple juice. International Journal of Food Microbiology, 111:73-80.
    Amiel C, Mariey L, Curk-Daubie M C, et al. 2000. Potentiality of Fourier transform infrared spectroscopy (FTIR) for discrimination and identification of dairy Lactic acid bacteria. Lait, 80:445-459.
    Angen ?ystein, Heegaarda P M H, Lavritsenb D T, Sùrensena V. 2001. Isolation of Actinobacillus pleuropneumoniae serotype 2 by immunomagnetic separation. Veterinary Microbiology, 79:19-29
    Archibald D D, Kays S E, Himmelsbach D S, et al. 1998. Raman and NIR spectroscopic methods for determination of total dietary fiber in cereal foods: A comparative study. Applied Spectroscopy, 52:22-31.
    Asher S A. 1993. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry.Part 1. Analytical Chemistry, 65:59-66.
    Asher S A. 1993. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry.Part 2. Analytical Chemistry, 65:201-210.
    Basheer I A, Hajmeer M. 2000. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43:3-31.
    Beekes M, Lasch P, Naumann D. 2007. Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Veterinary Microbiology, 123:305-319.
    Buijtels P C A M, Willemse-Erix H F M, Petit P L C, et al. 2008. Rapid identification of Mycobacteria by Raman spectroscopy. Journal of Clinical Microbiology, 46:961-965.
    Celine R, Christelle O, Caroline A, et al. 2006. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: A new approach to biocorrosion control. Journal of Microbiological Methods, 64:287-296.
    Chang R K, Furtak T E. 1982. Surface Enhanced Raman Scattering. Plenum Press: New York. Choo-Smith L P, Maquelin K, van Vreeswijk T, et al. 2001. Investigating microbial (micro) colony heterogeneity by vibrational spectroscopy. Applied and Environmental Microbiology, 67:1461-1469.
    Clarke R H, Londhe S, Womble M E. 1998. Low-resolution Raman spectroscopy as an analytical tool for organic liquids. Spectroscopy, 13:28-36.
    Consuelo Lopez-Diez E, Goodacre R. 2004. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Analytical Chemistry, 76:585-591.
    Cottler-Fox M, Bazar L S, Deeg H J, et al. 1990. Isolation of hemapoietic precursor cells from human marrow by negative selection using monoclonal antibodies and immunomagnetic beads. Prog Clin Biol Res, 333:277-284.
    Curk M C, Peladan F, Hubert J C. 1994. Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species. FEMS Microbiology Letters, 123:241-248.
    Dalterio R A, Nelson W H, Britt D, et al. 1986. A resonance Raman microprobe study of chromobacteria in water. Applied Spectroscopy, 40:271-272.
    Dalterio R A, Nelson W H, Britt D, et al. 1987. An ultraviolet (242 nm excitation) resonance Raman study of live bacteria and bacterial components. Applied Spectroscopy, 41:417-422.
    Darland G, Brock T D. 1971. Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. Journal of General Microbiology, 67:9-15.
    Deinhard G, Blanz P, Poralla K, et al. 1987. Bacillus acidoterrestris sp. nov., an new thermotolerant acidophile isolated from different soil. Systematic and Applied Microbiology, 10:47-53.
    Deinhard G, Saar J, Krischke W, et al. 1987. Bacillus cycloheptanicus sp. nov., an new thermoacidophile containingω-cycloheptane fatty acids. Systematic and Applied Microbiology, 10:68-73.
    Dutta R K, Sharma P K, Pandey A C. 2009. Surface enhanced Raman spectra of Escherichia Coli cells using ZnO nanoparticles. Digest Journal of Nanomaterials and Biostructures, 4:83-87.
    Edwards H G M, Russell N C, Weinstein R, et al. 1995. Fourier transform Raman spectroscopic study of fungi. Journal of Raman Spectroscopy, 26:911-916.
    Essendoubi M, Toubas D, Bouzaggou M, et al. 2005. Rapid identification of Candida species by FT-IR microspectroscopy. Biochimistry Biophysics Acta, 1724:239-247.
    Faulds K, Smith W E, Graham D, et al. 2002. Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst, 127:282-286.
    Fleischmann M, Hendra P J, McQuillan A J. 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letter, 26:163-166.
    Ghiamati E, Manoharan R, Nelson W H, et al. 1992. UV resonance Raman spectra of bacillus spores. Applied Spectroscopy, 46:357-364.
    Goodacre R, Timmins E M, Burton R, et al. 1998. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology, 144:1157-1170.
    Goto K, Omura T, Hara Y, et al. 2000. Application of the partical 16S rDNA sequences as an index for rapid identification of species in the genus Bacillus. Journal of General and Applied Microbiology, 46:1-8.
    Grasso E M, Yousef A E, Castellvi S D L., et al. 2009. Rapid detection and differentiation ofAlicyclobacillus species in fruit juice using hydrophobic grid membranes and attenuated total reflectance infrared microspectroscopy. Journal of Agriculture and Food Chemistry, 57:10670-10674. Hagren V, von Lode P, Syrj?l? A, et al. 2008. An 8-hour system for Salmonella detection with immunomagnetic separation and homogeneous time-resolved fluorescence PCR. International Journal of Food Microbiology, 125:158-161.
    Hamzah M A, Lin M, Anna G C, et al. 2006. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157:H7 and Alicyclobacillus strains in apple juice. International Journal of Food Microbiology, 111:73-80.
    Harz M, Neugebauer U, Rosch R, et al. 2006. Raman spectroscopy identification of bacterial cells. Spectroscopy, 3:26-28.
    Helm D, Labischinski H, Naumann D. 1991. Elaboration of a procedure for identification of bacteria using Fourier-Transform IR spectral libraries: a stepwise correlation approach. Journal of Microbiological Methods, 14:127-142.
    Huang Y, Cavinato A G, Mayes D M, et al. 2002. Non-destructive prediction of moisture and sodium chloride in cold smoked Atlantic salmon(Salmo salar). Journal of Food Science, 67:2543-2547.
    Hubert H, Hans-Ulrich G, Reinhard B, et al. 1996. Characterization and identification of actinomycetes by FT-IR spectroscopy. Journal of Microbiological Methods, 27:157-163.
    Ibelings M S, Maquelin K, Endtz H P, et al. 2005. Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy. Clinical Microbiology Infection, 11(5):353-358.
    Jarvis R M, Brooker A, Goodacre R. 2004. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Analytical Chemistry, 76:5198-5202.
    Jarvis R M, Goodacre R. 2004. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Analytical Chemistry, 76:40-47.
    Kalasinsky V F, Johnson F B, Ferwerda R. 1998. Fourier transform infrared and Raman microspectroscopy of materials in tissue. Cell Molecular Biology, 44:141-144.
    Kansiz M, Heraud P, Wood B, et al. 1999. Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry, 52:407-417.
    Kirschner C, Maquelin K, Pina P, et al. 2001. Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. Journal of Clinical Microbiology, 39:1763-1770.
    Kneipp K, Haka A S, Kneipp H, et al. 2002. Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles. Applied Spectroscopy, 56:150-154.
    Kneipp K, Kneipp H, Itzkan I, et al. 1999. Surface-enhanced Raman scattering: A new tool for biochemistry spectroscopy. Current Science, 77:915-924.
    Krause M, Radt B, Rosch P, et al. 2007. The investigation of single bacteria by means of fluorescence staining and Raman spectroscopy. Journal of Raman Spectroscopy, 38:369-372.
    Lee S Y, Gray P M, Dougherty R H, et al. 2004. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples. International Journal of Food Microbiology, 92: 121-127.
    Lin M, Murad A, Su-Sen C, et al. 2005. Rapid discrimination of Alicyclobacillus strains in apple juice byFourier transform infrared spectroscopy. International Journal of Food Microbiology, 105:369-376.
    Lopez-Diez E C, Goodacre R. 2004. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Analytical Chemistry, 76:585-591.
    Luo H, Yousef A E, Wang H H. 2004. A real-time polymerase chain reaction-based method for rapid and specific detection of spoilage Alicyclobacillus spp. in apple juice. Letters in Applied Microbiology, 39:376-382.
    Manoharan R, Ghiamati E, Dalterio R A, et al. 1990. UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate. Journal of Microbiological Methods, 11:1-15.
    Mansfield L P, Forsythe S J. 2001. The detection of Salmonella serovars from animal feed and raw chicken using a combined immunomagnetic separation and ELISA method. Food Microbiology, 18:361-366.
    Maquelin K, Choo-Smith L P, Endtz H P, et al. 2002. Rapid identification of Candida species by confocal Raman microspectroscopy. Journal of Clinical Microbiology, 40:594-600.
    Maquelin K, Choo-Smith L P, van Vreeswijk T, et al. 2000. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Analytical Chemistry, 72:12-19.
    Maquelin K, Dijkshoorn L, van der Reijden T J K, et al. 2006. Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. Journal of Microbiological Methods, 64:126-131.
    Maquelin K, Kirschner C, Choo-Smith L P, et al. 2002. Identification of medically relevant microorganisms by vibrational spectroscopy. Journal of Microbiological Methods, 51(3):255-271.
    Maquelin K, Kirschner C, Choo-Smith L P, et al. 2003. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. Journal of Clinical Microbiology, 41:324-329.
    Mariey L, Signolle J P, Amiel C, et al. 2001. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vibrational Spectroscopy, 26:151-159.
    Matsubara H, Goto K, Matsumura T, et al. 2002. Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic,ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages. International Journal of Systematic and Evolutionary Microbiology, 52:1681-1685.
    McCaffery T R, Durant Y G. 2002. Application of low-resolution Raman spectroscopy to online monitoring of miniemulsion polymerization. Journal of Applied Polymer Science, 86:1507-1515.
    Melanie F, Emmanuelle G. 2003. An immunomagnetic separation–real-time PCR method for quantification of Cryptosporidium parvum in water samples. Journal of Microbiological Methods, 54:29-36.
    Mello C, Ciuffi K J, Nassar E, et al. 2006. Two-dimensional low resolution Raman spectroscopy applied to fast discrimination of clinically relevant microorganisms: a whole-organism fingerprinting approach. Journal of Brazil Chemistry Society, 17:73-78.
    Mello C, Severi E, Coelho L, et al. 2008. Two-dimensional low resolution Raman spectroscopy applied to fast discrimination of microorganisms that cause pharyngitis: A whole-organism fingerprinting approach. Journal of Molecular Structure, 883-884:61-65.
    Mohammed E, Dominique T, Mohamed B, et al. 2005. Rapid identification of Candida species by FT-IR microspectroscopy. Biochimica et Biophysica Acta, 1724:239-247.
    Moreira L M, Silveira L, Santos F V, et al. 2008. Raman spectroscopy: a powerful technique for biochemical analysis and diagnosis. Spectroscopy, 22(1):1-19.
    Moskovits M. 1985. Surface-enhanced spectroscopy. Review of Modern Physics, 57:783-826.
    Mouwen D J M, Capita R, Alonso-Calleja C, et al. 2006. Artificial neural network based identification of Campylobacter species by Fourier transform infrared spectroscopy. Journal of Microbiological Methods, 67:131-140.
    Murad A A, Lin M, Anna G C, et al. 2006. The use of Fourier transform infrared spectroscopy to differentiate Escherichia coli O157:H7 from other bacteria inoculated into apple juice. Food Microbiology, 23:162-168.
    Naumann D. 2000. Infrared spectroscopy in microbiology, in: R. A. Meyers (Eds.), Encyclopedia of Analytical Chemistry, John Wiley and Sons Ltd., Chichester, pp.102-131.
    Naumann D. 1998. Infrared and NIR Raman spectroscopy in medical microbiology. In: Mantsch, H. H., Jackson, M.(Eds.), Infrared Spectroscopy: New Tool in Medicine. SPIE, Washington, USA, pp. 245-257.
    Naumann D. 2000. FT-infrared and FT-Raman spectroscopy in biomedical research. In: Gremlich H. U.,Yan B. (Eds.), Infrared and Raman Spectroscopy of Biological Materials. Practical Spectroscopy Series. Marcel Dekker, New York, USA, pp. 323-377.
    Naumann D, Helm D, Labischinski H. 1991. Microbiological characterizations by FT-IR spectroscopy. Nature, 351:81-85.
    Naumann D, Keller S, Helm D, et al. 1995. FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. Journal of Molecular Structure, 347:399-406.
    Nelson W H, Manoharan R, Sperry J F. 1992. UV resonance Raman studies of bacteria. Applied Spectroscopy Review, 27:67-124.
    Ngo-Thi N A, Kirschner C, Naumann D. 2003. Characterization and identification of microorganisms by FT-IR microspectrometry. Journal of Molecular Structure, 661-662:371-380.
    Nie S M, Emery S R. 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275:1102-1106.
    Ornella P, Joao A L, Raquel G, et al. 2007. Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination. Analytical and Bioanalytical Chemistry, 387:1739-1748.
    Oust A, Moretro T, Kirschener K, et al. 2004. FT-IR spectroscopy for identification of closely related lactobacilli. Journal of Microbiological Methods, 59:149-162.
    Oust A, Moretro T, Kirschner C, et al. 2004. Evaluation of the robustness of FT-IR spectra of lactobacilli towards changes in the bacterial growth conditions. FEMS Microbiology Letters, 239:111-116.
    Oust A, M?retr? T, Naterstad K, et al. 2006. Fourier transform infrared and Raman spectroscopy for characterization of Listeria monocytogenes strains. Applied and Environmental Microbiology, 72:228-232.
    Pappas D, Smith B W, Winefordner J D. 2000. Raman spectroscopy in bio-analysis. Talanta, 51(1):131-144.
    Premasiri W R, Moir D T, Klempner M S, et al. 2005. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. Journal of Physical Chemistry B, 109:12-320.
    Puppels G J, de Mul F F M, Otto C, et al. 1990. Studying single living cells and chromosomes by confocalRaman microscopy. Nature, 347:301-303.
    Rodriguez-Saona L E, Khambaty F M, Fry F S, et al. 2001. Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy. Journal of Agriculture and Food Chemistry, 49:574-579.
    Rodriguez-Saona L E, Khambaty F M, Fry F S, et al. 2001. A novel approach for the rapid discrimination of bacterial strains by Fourier transform near-infrared spectroscopy. Proceedings of Society of Photo-optical Instrumentation Engineers, 4206:22-31.
    Rodriguez-Saona L E, Khambaty F M, Fry F S, et al. 2002. Discrimination of bacterial strains by Fourier-transform near-infrared spectroscopy using an aluminum oxide membrane. Proceedings of Society of Photo-optical Instrumentation Engineers, 4574:108-118.
    Rodriguez-Saona L E, Khambaty F M, Fry F S, et al. 2004. Detection and identification of bacteria in juice matrix with Fourier transform near infrared spectroscopy and multivariate analysis. Journal of Food Protection, 67:2555-2559.
    Rosch P, Harz M, Peschke K D, et al. 2006. Identification of single eukaryotic cells with micro-Raman spectroscopy. Biopolymers, 82:312-316.
    Rosch P, Harz M, Schmitt M, et al. 2005. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Applied and Environmental Microbiology, 71:1626-1637.
    Rosch P, Schmitt M, Kiefer W, et al. 2003. The identification of microorganisms by micro-Raman spectroscopy. Journal of Molecular Structure, 661-662:363-369.
    Schmitt J, Flemming H C. 1998. FTIR-spectroscopy in microbial and material analysis. Int Biodeterio Biodegra, 41:1-11.
    Schrader B, Dippel B, Erb I, et al. 1999. NIR Raman spectroscopy in medicine and biology: results and aspects. Journal of Molecular Structure, 480-481:21-32.
    Schrader B, Dippel B, Fendel S, et al. 1997. NIR FT Raman spectroscopy-a new tool in medical diagnosis. Journal of Molecular Structure, 408-409:23-31.
    Schuster K C, Reese I, Urlaub E, et al. 2000. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Analytical Chemistry, 72:5529-5534.
    Sengupta A, Laucks M L, Dildine N, et al. 2005. Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS). Aerosol Science, 36:651-664.
    Silva F M, Gibbs P, Vieira M C, et al. 1999. Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit process. International Journal of Food Microbiology, 51:95-103.
    Sinigaglia M, Corbo M R, Altieri C, et al. 2003. Combined effects of temperature, water activity, and pH on Alicyclobacillus acidoterrestris spores. Journal of Food Protection, 66:2216-2221.
    Van Der Mei H C, Naumann D, Busscher H J. 1996. Grouping of Streptococcus mitis strains grown on different growth media by FT-IR. Infrared Physics and Technology, 37:561-564.
    Varshney M, Li Y. 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosensors and Bioelectronics, 22:2408-2414.
    VoDinh T, Stokes D L, Griffin G D, et al. 1999. Surface-enhanced Raman scattering (SERS) method andinstrumentation for genomics and biomedical analysis. Journal of Raman Spectroscopy, 30:785-793.
    Wetzel D L. 1983. Near-infrared reflectance analysis. Analytical Chemistry, 55:1165.
    Willian P, Norris K. 1990. Near-infrared Technology in Agricultural and Foods Industries, American Association of Cereal Chemistry: St. Paul, USA.
    Winder C L, Carr E, Goodacre R, et al. 2004. The rapid identification of Acinetobacter species using Fourier transform infrared spectroscopy. Journal of Applied Microbiology, 96:328-339.
    Wisotzkey J D, Jurtshuk P, Fox G E, et al. 1992. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. International Journal of Systematic Bacteriology, 42:263-269.
    Yamazaki K, Okubo T, Inoue N, et al. 1997. Randomly amplified polymorphic DNA (RAPD) for rapid identification of the spoilage bacterium Alicyclobacillus acidoterrestris. Bioscience, Biotechnology, and Biochemistry, 61:1016-1018.
    Zdenek F, Susanne H, Jaromir K. 2004. FT-IR spectroscopic characteristics of differently cultivated Bacillus subtilis. Microbiological Research, 159:257-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700