VN/SiO_2和TiAlN/Si_3N_4纳米多层膜的微结构、超硬效应与高温稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米多层膜的高硬度和材料组合的多样性使其在刀具涂层等表面改性领域有广阔的应用前景,而这类材料通过微结构强化获得高硬度的超硬效应更具理论研究价值。
     近年来的研究表明,利用纳米多层膜晶体生长的“模板效应”可以使通常其相沉积条件下以非晶态存在的材料晶体化,并使多层膜获得超硬效应。然而,采用此方法获得具有超硬效应纳米多层膜的具体材料组合仍需进行实验探索。另一方面,由于刀具在服役中要承受很高的温升,纳米多层膜的高温稳定性是这类材料用于生产的关键性能之一。
     本文采用反应溅射方法制备了VN/SiO_2纳米多层膜,研究了气相沉积时候通常为非晶态的SiO_2和Si_3N_4在VN和TiAlN晶体层上的晶化条件以及VN/SiO_2、TiAlN/Si_3N_4纳米多层膜的生长结构,超硬效应和强化机制;考察了TiAlN/Si_3N_4多层膜的高温稳定性。研究结果表明:
     1.用V靶和SiO_2靶在Ar-N_2混合气氛中进行反应溅射可以方便地制备VN/SiO_2纳米多层膜。在由此制备的VN/SiO_2纳米多层膜中,通常以非晶态存在的SiO_2在其厚度小于约1nm时,因VN晶体层模板效应而晶化为NaCl结构的赝晶体,并与VN层形成具有明晰界面的共格外延生长结构的柱状晶,多层膜呈现强烈的(200)织构。相应地,多层膜的硬度得到显著提高,最高硬度达到34GPa。随着SiO_2层厚度的进一步增加,SiO_2层逐渐转变为非晶态,破坏了多层膜的共格外延生长,其硬度也随之降低。
     2. VN层厚度的增加对纳米多层膜的生长结构影响不明显,多层膜随着VN厚度的增加仍保持共格外延生长方式,多层膜的硬度增量逐步减小,至VN层厚达37nm时,多层膜的硬度与VN单层膜相当。由于反应溅射VN具有很高的沉积效率,利用在Ar-N_2气氛中制备高硬度氮化物/氧化物纳米多层膜方法具有广阔的工业应用前景。
     3.在TiAlN/Si_3N_4纳米多层膜中,NaCl结构的TiAlN模层可以使Si_3N_4在小于0.9nm时形成晶体态,并与晶体层形成共格外延生长结构,TiAlN/Si_3N_4多层膜产生拉压交变的应力场,其硬度相应得到提高,最高硬为39 GPa。Si_3N_4层随厚度的进一步增加又转变为非晶形式生长,多层膜的共格外延生长遭到破坏,其硬度也随之降低。
     4.高温退火后,TiAlN/Si_3N_4多层膜中调制结构与晶体结构能在800℃下保持稳定,但多层膜中因共格生长所产生的的交变应力场在600℃以上逐步消失,其超硬效应也随之消失。研究表明,纳米多层膜因共格外延生长所产生的交变应力场是其得以强化的微结构原因。
Ultra-high hardness and various material combinations ensure nano-scale multilayers extensively applied in surface modification for protective coatings on cutting tools. But compared with the good properties of such films, it is more important and valuable to investigate how superhardness effect is achieved through modifying the microstructure.
     Recent investigations indicate that amorphous material may be crystallized under the influence of“Template Effects”occurring in the nano-scale multilayers, accompanied with ultra-high hardness achievement. While, examples of specific material combinations for such superhard nano-scale multilayers are still scarce, so it is required to carry out investigations on the preparation approach and the superhardness mechanism. Because the cutting tools need to undertake very high temperature in use, the high temperature stability of nano-scale multilayers is one of the key properties of this kind of materials for production.
     VN/SiO_2 and TiAlN/Si_3N_4 nano-scale multilayered films are reactively deposited in this paper to investigate the crystallization conditions of amorphous SiO_2 and Si_3N_4 on VN and TiAlN templates under the vapor deposition status and the growth structure, superhardness effects and strengthening mechanism of VN/SiO_2 and TiAlN/Si_3N_4 films. Besides, the high temperature stability of TiAlN/Si_3N_4 multilayered films is also studied in this paper.
     Investigation results of this paper indicate that:
     1. VN/SiO_2 nano-scale multilayers can be conveniently prepared by reactively sputtering vanadium and silicon oxide targets in the Ar-N2 atmosphere. In the accomplished VN/SiO_2 multilayers, the SiO_2 layer, used to be amorphous under normal deposition conditions, are crystallized into a NaCl structured pseudocrystal under the template effects of VN crystal layer when the thickness of SiO_2 layer is less than 1nm. And then, it epitaxially grows with VN layer to form column crystals with strong (200) texture. The interface between SiO_2 and VN layers is sharp. Correspondingly, the film hardness is significantly enhanced to the maximum of 34GPa. Crystallized SiO_2 gradually changes back to amorphous with a further increase in SiO_2 layer thickness to more than 1nm. As a result, the epitaxial structure of multilayers is destroyed and the hardness falls.
     2. The increase in VN layer thickness does not cast a significant influence on the growth structure of such nano-scale multilayers. Epitaxial growth structure maintains during this procedure but the hardness increment gradually decreases. The hardness of VN/SiO_2 film is equivalent to that of VN film when the VN layer thickness is increased to 37nm. As the deposition rate of VN is very high during the reactive sputtering process, the approach to prepare ultrahard nitride/oxide nano-scale multilayers in Ar-N2 atmosphere will be extensively applied in various industrial prospects.
     3. In the nano-scale multilayers of TiAlN/Si_3N_4 , Si_3N_4 layers with small thickness (<~0.9nm) are crystallized under the template effect of TiAlN template and then form an epitaxial growth structure TiAlN layers. A tension-compression alternative stress field occurs in the TiAlN/Si_3N_4 multilayers and then the hardness is increased as a result. The maximum value of film hardness will arrive to 39GPa. With the increase in its layer thickness, Si_3N_4 will change into amorphous to block the epitaxial growth structure of multilayers, and then the film hardness decreases correspondingly.
     4. The modulation structure and crystal structure can keep stable up to 800℃, but when the annealing temperature is increased above 600℃, the alternative stress field generated by epitaxial growth disappears after the TiAlN/Si_3N_4 multilayers are annealed under high temperature, accompanied with the lack of superhardness effects in films. It is indicated from this investigation that the alternative stress field caused by epitaxial growth in nano-scale multilayers is the reason for film strengthening in the microstructure aspect.
引文
[1] 国际金属加工, 第六期, 2005-6-15.
    [2] T. Cselle, A. Barimani. Today’s applications and future developments of coatings for drills and rotating cutting tools, Surface and Coatings Technology, 76-77:712-718.
    [3] 吴大维, 刘传胜, 傅得君, 彭友贵, 范湘军. 刀具涂层技术的新进展, 中国机械工程, 2000, 5:574-576.
    [4] Fischmeister, H. Jehn, H., Hartstoffschichten zur Verschleissminderung, DGM Informationsgesellschaft, Stuttgart, 1987
    [5] H.Holleck, Material selection for hard coatings, J.Vac.Sci.Technol.A, 1986; 4:2661-2669
    [6] S. Veprek, P.Nesladek, A.Niederhofer et al., Search for superhard materials: nanocrystalline composites with hardness exceeding 50 GPa, Nanostructured Materails, 1998;100(5),:679-689
    [7] S.Veprek, The search for novel, superhard materials, J.Vac.Sci.Technol. A 1999;17(5):2401-2420
    [8] W.Schedler, Hartmetall fur den Praktiker (VDI.Dusseldorf,1998
    [9] Metals Handbook, 10th ed, edited by J.R.Davis. P.Allen, S.R.Lampman et al.(ASM International, Metals Park, OH,1990).Vol.2.pp.950
    [10] Y.Zhang, Z.Zhou, H.Li, Crystalline carbon nitride films formation by chemical vapor deposition, Appl. Phys. Lett. 1996;68:634-636
    [11] Y.Chen, L. P.Guo, F.Chen, E.G.Wang, Synthesis and characterization of C3N4 crystalline films on silicon, J.Phys.:Condens. Mater, 1996; 8,685-690
    [12] D.J.Johnson, Y.Chen, Y.He et al, Deposition of carbon nitride via hot filament assisted CVD and pulsed laser deposition, Diamond Relat. Matter.,1997; 6:1799-1805
    [13] Y. Chen, L. Guo, E.G.Wang, alpha beta Experimental evidence for alpha - and beta -phases of pure crystalline C3N4 in films deposited on nickel substrates, Philos.Mag. Lett. 1997;75: 155-162
    [14] Barnett S A and Meenam Shinn, Plastic and Elastic Properties of Compositionally Modulated Thin Films. Annu. Rev. Mater. Sci., 1994, 24:481~511
    [15] U.Helmersson,S.Todorova, S.A.Barnett et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J.Appl. Phys., 1987;62(2):481-484
    [16] P.B.Mirkarimi, L.Hultman, S.A.Barnett, Enhanced hardness in lattice-matched Sigle-Crystal TiN/V0.6Nb0.4N superlattices, Appl. Phys Lett., 1990,57(25):2654~2656
    [17] J.O.Kim, J.D.Achenbach, M.Shinn, S.A. Barnett, Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices, J. Mater. Res., 1992;7(3):2248~2256
    [18] K.M.Hubbard, T.R.Jervis, P.B. Mirkarimi, S.A.Barnett, Mechanical properties of epitaxial TiN/(V0.6Nb0.4)N superlattices measured by nanoindentation, J. Appl. Phys., 1992; 72:4466~4468
    [19] M. Shinn, L.Hultman, S.A.Barnett, Growth, structure and microhardness of epitaxial TiN/NbN superlattices, .J Mater. Res., 1992;7(4):901-911
    [20] P.B.Mirkarimi, S.A.Barnett, K.M.Hubbard, T.R.Jervis, L.Hultman, Structure and mechanical properties of Epitaxial TiN/V0.3Nb0.7N (100) superlattice, J. Mater. Res., 1994;9(6):1456-1467
    [21] M.Shinn, S.A. Barnett, Effect of superlattice layer elastic moduli on hardness, Appl. Phys. Lett., 1994 ;64(1) :61-63
    [22] X. Chu, M.S.Wong, W.D. Sproul, S.L.Rohde, S.A. Barnett, Deposition and properties of polycrystalline TiN/NbN superlattice coatings, J. Vac. Sci. Technol. A, 1992;10(4):1604~1609
    [23] J. Musil, Hard and superhard nanocomposite coatings, Surf . coat . Technol., 2000, 125:322~330.
    [24] M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, et al., Deposition and microstructure of PVD TiN-NbN reactive electron beam evaporation and DC sputtering, Surf. Coat. Technol., 1996;86-87:351-356
    [25] H. Ljungcrantz, C. Engstrom, L.Hultman, et al., Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering, J. Vac.Sci. Tehnol. A, 1998;16(5):3104~3113
    [26] P.Yashar, S.A. Barnett, J.Rechner, W.D. Sproul, Structure and mechanical properties of polycrystalline CrN/TiN superlattices, J. Vac.Sci. Tehnol. A, 1998;16(5):2913-2918
    [27] U. Heister, J.Krempel-Hesse, J. Szczyrbowski, et al., TwinMagTMII: attempts to improve an excellent sputter tool, Thin Solid Films, 1999; 351 :27~31.
    [28] Koehler J S. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2:547~551
    [29] 吴义政, 丁海峰, 敬超, 吴镝, 刘国磊, 董国胜, 金晓峰, Co 在 GaAs(001)表面的分子束外延及其结构研究, 物理学报, 1998; 47: 461~466
    [30] 何贤昶, 沈荷生, 张志明, 万永中, 沈挺, 在硅(001)上预沉积 β-SiC 定向层后金刚石薄膜的定向生长,物理学报, 2000 ; 49: 532~537
    [31] G.Y.Li, J.H. Xu, L.Q. Zhang, L. Wu, M.Y. Gu, Growth, microstructure, and microhardness of W/Mo nanostructured multilayers, J. Vac. Sci. Technol. B ,2001; 19(1) 94~97
    [32] M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, et al., Deposition and microstructure of PVD TiN-NbN reactive electron beam evaporation and DC sputtering, Surf. Coat. Technol., 1996;86-87:351-356
    [33] J.H.Xu, G. Y.Li, M.Kamiko, M.Y. Gu, Y.M. Zhou, R.Yamamoto, Superhardness effects of heterostructure NbN/TaN nanostructured multilayers, J. Appl. Phys., 2001; 89(7) 3674~3678
    [34] J.H.Xu, M. Kamiko, Y.M. Zhou, G.H. Lu, R.Yamamoto. Structure transformations and superhardness effects in V/Ti nanostructured multilayers, Appl. Phys. Lett., 2002;81(7) 1189~1191
    [35] M.Setoyama, A.Nakayama, M.Tanaka, N. Kitagawa, T. Nomura, Formation of cubic-AlN in TiN/AlN superlattices, Surf. Coat. Technol., 1996;86-87:225
    [36] A.Madan, I.W. Kim, S.C.Cheng, P. Yashar, et al.. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices, Phys. Rev. Lett., 1997;78(9):1743~1746
    [37] M.Nordin, M.Larsson, S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide, Surf. Coat. Technol., 1998;106(2-3):234-241
    [38] X. Chu, S.A.Barnett, M.S.Wong, W.D.Sproul, Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice, Surf. Coat. Technol., 1993;57:13-18
    [39] P.Yashar, X. Chu, S.A.Barnett, J. Rechner, Y.Y. Wang, et al., Stabilizatoin of cubic CrN0.6 in CrN0.6/TiN superlattice, Appl. Phys. Lett., 1998 ;72(8) :987~989
    [40] A.Madan, I.W. Kim, S.C.Cheng, P. Yashar, et al.. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices, Phys. Rev. Lett., 1997;78(9):1743~1746
    [41] M.S.Wong, G.Y. Hsiao, S.Y. Yang, Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings. Surf. Coat. Technol., 2000; 133-134:160-165
    [42] M.Setoyama, A.Nakayama, M.Tanaka, N. Kitagawa, T. Nomura, Formation of cubic-AlN in TiN/AlN superlattices, Surf. Coat. Technol., 1996;86-87:225
    [43] D. Li, X. Chu, S.C.Cheng, X.W. Lin, V.P. Dravid, Y.W. Chung, et al., Synthesis of superhard carbon nitride composite coatings, Appl. Phys. Lett., 1995 ;67(2) :203~205
    [44] D.Li, X.W.Lin, S.C.Cheng, V.P. Dravid, et al., Structure and hardness studies of CNx/TiN nanocomposite coatings, Appl. Phys. Lett., 1996 ;68(9) :1211~1213
    [45] M.L.Wu, X.W.Lin, V.P. Dravid, Y.W. Chung, et al., Preparation and characterization of superhard CNx/ZrN multilayers, J. Vac. Sci. Technol. A, 1997 ;15(3) :946~950
    [46] M.L.Wu, W.D.Qian, Y.W.Chung, M.S.Wong, et al., Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering, Thin Solid Films, 1997;308-309:113
    [47] 劳技军, 孔明, 张慧娟, 李戈扬. TiN/SiC 纳米多层膜的生长结构与力学性能, 物理学报, 2004; 53(6) :1961~1996
    [48] S.A.Barnett, A. Madan, I. Kim, K.Martin. Stability of nanometer-thick layers in hard coatings, MRS Bulletin, 2003, 28(3):169~172.
    [49] W.D. Sproul. New routes in the preparation of mechanically hard films. Science,1996, 273(5277):889-892
    [50] W.D. Sproul. Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings. Sur. Coat. Technol., 1996, 86(1-3):170-176
    [51] 魏仑, 梅芳华, 邵楠, 李戈扬, 李建国. TiN/SiO2 纳米多层膜德晶体生长与超硬效应. 物理学报, 2005, 54(4):1742-1747
    [52] Lun Wei, Ming Kong, Yunshan Dong, Geyang Li. Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultilayers, Journal of Applied Physics, 2005, 55(2):770-775
    [53] 赵文济,孔明,黄碧龙,李戈扬. SiO2 的赝晶化及 AlN/SiO2 纳米多层膜的超硬效应. 物理学报, 2007,56(3):1574-1580
    [1] 韩增虎, 张俊秋, 劳技军等. 材料力学性能的微压入测试方法. 理化检验(物理分册), 2001, 37(8): 3338~3341
    [2] J.W. Tian, Z.H. Han, Q.X. Lai, et al. Two-step penetration: a reliable method of the measurement of mechanical properties of hard coatings. Surface and Coatings Technology, 2004, 176(3): 267~271
    [3] W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. Journal of Materials Research, 1992, 7(6): 1564~1583
    [1]. S. PalDey and S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering A, 2003, 342: 58~79
    [2]. A.A. Layyous, D.M. Freinkel, R. Israel. Al2O3 coated cemented carbides- optimization of structure, number of layers and type of interlayer. Surf. Coat. Technol., 1992, 56(1):89-95
    [3]. U.Helmersson,S.Todorova, S.A.Barnett et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J.Appl. Phys., 1987;62(2):481-484
    [4]. W.D. Sproul. New routes in the preparation of mechanically hard films. Science, 1996, 273(5277):889-892
    [5]. W.D. Sproul. Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings. Sur. Coat. Technol., 1996, 86(1-3):170-176
    [6]. 吴大维, 付德君, 毛先唯, 叶明生, 彭友贵, 范湘军. C3N4/TiN 交替复合膜的微结构研究,物理学报, 1999, 48:904~912
    [7]. 劳技军, 孔明, 张惠娟, 李戈扬. TiN/SiC 纳米多层膜德生长结构与力学性能. 物理学报, 2004, 53(6):1961-1966
    [8]. 魏仑, 梅芳华, 邵楠, 李戈扬, 李建国. TiN/SiO2 纳米多层膜德晶体生长与超硬效应. 物理学报, 2005, 54(4):1742-1747
    [9]. Lun Wei, Ming Kong, Yunshan Dong, Geyang Li. Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultilayers, Journal of Applied Physics, 2005, 55(2):770-775
    [10]. C.Kim, S.B.Qadri, M.R.Scanlon, R.C.Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994; 240:52~55
    [11]. J.W. Tian, Z.H. Han, Q.X. Lai, et al. Two-step penetration: a reliable method of the measurement of mechanical properties of hard coatings. Surface and Coatings Technology, 2004, 176(3): 267~271
    [12]. Germany Normal. DIN 50359-1: 1997-10. Universal h?rteprüfung [S]
    [13]. W.C. Oliver, G.M. Pharr. An improved technique for determining hardness andelastic modulus using load and displacement sensing indentation experiment. J. Mater. Res., 1992, 7(6): 1564-1583
    [14]. Z.Y. Zhang, M.G. Lagally, Atomistic processes in the early stages of thin-film growth, Science, 1997; 276(18): 377-383
    [15]. J S Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2:547~551
    [16]. M. Kato, T. Mori, L.H. Schwartz. Hardening by spinodal modulated structure. Acta Metall., 1980,28(3):285-290
    [17]. P.M. Anderson, C. Li. Hall-Petch relations for multilayered materials. Nanostructure Mater., 1995, 5(3):349-362
    [1]. K.H. Kim, S.H. Lee. Comparative studies of TiN and Ti1?xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/H2/Ar gas mixture. Thin solid films, 283(1-2) (1996) :165-170
    [2]. P.W. Shum, Z.F. Zhou, K.Y. Li, Y. G. Shen. XPS, AFM and nanoindentation studies of Ti1?xAlxN films synthesized by reactive unbalanced magnetron sputtering. Materials Science and Engineering: B, 100(2) (2003): 204-213
    [3]. S. Paldey, S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A, 342(1-2) (2003): 58-79
    [4]. S. Inoue, H. Uchida, K. Koterazawa, Y. Yoshinaga. Oxidation behavior of (Ti1-xAlx)N films prepared by r.f. reactive sputtering. Thin Solid Films, 300(1-2) (1997): 171-176
    [5]. T. Ikeda, H. Satoh. Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method. Thin Solid Films, 195 (1-2) (1991): 99-110
    [6]. P. In-Work, H.K. Kwang. Coating materials of TiN, Ti–Al–N, and Ti–Si–N by plasma-enhanced chemical vapor deposition for mechanical applications. Journal of Materials Processing Technology, 130–131 (2002): 254–259
    [7]. R. Beyers, R. Sinclair, M.E. Thomas, J. Vac. Sci. Technol. B, 2 (1984) 781.
    [8]. C.Kim, S.B.Qadri, M.R.Scanlon, R.C.Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Alfilms, Thin Solid Films, 1994; 240:52~55.
    [9]. S.Koehler. Attempt to design a strong solid, Phys. Rev. B 1970; 2(2):547-551

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700