用户名: 密码: 验证码:
鄂尔多斯盆地一些能源矿产伴生沥青的地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青是原油经热变化、气体脱沥青化、水洗和生物降解等作用形成,其本身就是一种重要的矿产。近年来对其成因、性质及化学结构做了大量研究,但对其地质应用的研究不够。沥青作为煤、石油、天然气、铀等能源矿产的伴生产物,本身就蕴藏着丰富的地质信息。本文研究了鄂尔多斯盆地一些能源矿产伴生沥青的地球化学性质和行为,以此来揭示鄂尔多斯盆地能源矿产的一些地球化学特征。通过对能源矿产伴生沥青的地球化学性质和行为研究获得以下新的认识:
     1.与盆地内原油相比,沥青的稀土元素特征与原油既有某些相似性,又存在较大的区别。表现出两者在来源上具有某种程度上的同源性,但沥青的稀土分馏程度较石油大的多,由此表明沥青的演化过程较石油更复杂。物质来源也具有多样性,一些样品中可能还存在来源深度比较大的深部流体组分。沥青在形成与运移过程中与深部流体的作用程度可能较石油更高,与浅源流体的交换程度相对较小。
     2.微量元素、稀土元素富集特征表明,含油砂岩沥青与石油和石油沥青具有一些相似的地球化学特征,所不同的是稀土元素较石油和石油沥青的优势富集程度高的多,表明含油砂岩沥青中深源物质较少。
     3.盆地东南缘煤矿的煤沥青具有混源特征。煤沥青与煤中优势富集的元素相近,二者可能是同源的;盆地东南缘煤矿的煤层夹矸沥青成分可能主要以其成岩过程中的初始有机流体组分为主,即属于壳源有机质流体。
     4.通过对陈家山煤层气组成及其He同位素的分析,发现煤层气的形成过程中可能有一定量的幔源物质的加入。
     5.根据沥青的拉曼探针分析结果及其样品所在的构造位置来看,基底断裂对沥青组成可能有一定的影响。另外,沥青中广泛存在还原性气体CH_4,C_2H_2,C_2H_4和C_2H_6等,部分样品中同时含有氧化性气体CO_2,氧化性气体与还原性气体具有此消彼长的反相关关系,显示沥青的后期改造和氧化—还原条件的变化特征。
The formation of the asphalt depends on some functions that they include heat-changing of crude oil, taking off asphaltization , water washing, and biodegradation of the living etc. Meanwhile, the asphalt is an important energy resource also. In recent years, the main research of the asphalt is its origin, character, and chemical structure. But the study of geological application is not enough. The asphalt is an associated product of energy resource, such as coal, petroleum, gas and uranium, and so on. So it has an abundant of geological information. This paper discusses some geochemical characters and behaviors of associated bitumen of some energy resources. And then discloses some geochemical features of the energy resources in Ordos Basin. The geochemical characters of associated bitumen have been analyzed. It is said:1. Compared with crude oil in Ordos Basin, the lanthanon characters of the asphalt have some similarity, at the same time, they have some difference. The source of the asphalt and the crude oil are homogeneity in some way, but lanthanon fractionation of the asphalt is relatively high. So it can show that the asphalt is higher than the evolution degree of crude oil. Origin has also variety, some samples maybe exert deep fluid.( Hence, these indicate that the asphalt has high interaction with deep fluid when the asphalt is transporting, and it is inversely with surface fluid.2. According to the characters of trace elements and the lanthanon of associated bitumen of oil-bearing sandstone, their geochemical characters are similar with crude oil and associated bitumen of crude oil. The difference is that preponderant enrichmental lanthanons of associated bitumen of oil-bearing sandstone are higher than those of crude oil and the asphalt. The associated bitumen of oil-bearing sandstone has less deep source.3. In the coal mines of the southeast Ordos Basin, associated bitumen of coal have some characters that they are mixed sources. Preponderant enrichment elements of the asphalt are similar with coal. So sources of the asphalt and coal are
    homogeneity in some way. The components of associated bitumen with the coal-bed gangue are mainly original organic fluids in the process of the diagenesis. They belong to the crust-derived organic fluids.4. The components of coal-bed gas in Chenjiashan coal mines and He isotope have been analyzed. It shows that mantle sources have been joined possibly in formation process of coal-bed gas.5. According to results of laser Raman spectroscopy and the structural location of the samples, the basement faults in the basin have some influences for component of the asphalt. The reducibility gas such as CH4, C2H2, CaHjand C2H6 can be found in chloroform asphalt extensively, whose content is growth and decline with the oxygenization gas CO2, and all of these show the features about later reformation and redox condition for the chloroform asphalt.
引文
[1] 曹寅.核磁共振氢波谱法研究石油沥青结果[J].地质实验室,2002,29(2):33-38.
    [2] 陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版杜.1990.
    [3] 陈建平,黄第藩.鄂尔多斯盆地东南缘煤矿侏罗系原油油源.沉积学报,1997,15(2):100-104.
    [4] 狄勇强.试探鄂尔多斯北部中新生代盆地砂岩型铀矿找矿前景[J].铀矿地质,2002,18(6):340-347.
    [5] 杜佰伟,谭富文,刘剑.羌塘盆地大规模沥青脉的发现及其意义[J].沉积与特提斯地质,2003,4(1):69-74.
    [6] 傅家谟,贾荣芬,刘德汉等.碳酸盐有机地球化学-在石油、天然气、煤和层控矿床成因及评价中的应用[M].北京:科学出版社.1989.
    [7] 高峰,王岳军,刘顺生.利用磷灰岩裂变径迹研究鄂尔多斯盆地西缘热历史[J].大地构造与成矿学,2000,24(1):87-91.
    [8] 高志农,陈远荫.碳酸盐岩中天然沥青演化特征的再认识[J].石油实验地质,1998,20(4):405-410.
    [9] 郝芳,陈建渝,孙永传等.有机相的研究及其在盆地分析中的应用[J].沉积学报,1994,2(4):77-86.
    [10] 何登发.中国克拉通盆地中央古隆起与油气勘探[J].勘探地质,1997,2(2):11-19.
    [11] 何谋春,吕新彪,王群英.有机包裹体的拉曼光谱测定[J].石油实验地质,2002,24(2):6-12.
    [12] 赫英.比较矿床学导论[M].西北工业大学出版社.1996.
    [13] 赫英,王定一,朱兴国.慢源二氢化碳和甲烷成藏的现实性与可能性[J].西北大学学报(自然科学版),1997,27(5):422-426.
    [14] 胡凯,刘英俊,Ronald W T W等.激光拉曼光谱碳质地温计及其地质应用[J].地质科学,1993,28(3):235-244.
    [15] 江娃利,肖振敏,谢新生.鄂尔多斯块体周边正倾斜活动断裂历史强震地表破裂分段[J].地震学报,2000,22(5):517-526.
    [16] 江为为,郝天珧,宋海斌.鄂尔多斯盆地地质地球物理场特征与地壳结构[J].地球物理学进展,2000,15(3):45-53.
    [17] 金爱民,楼章华,朱蓉等.地下水动力场的形成、演化及其流体特征分析——以鄂尔多斯盆地上古生界为例[J].浙江大学学报(理学版),2003,30(3):337-343.
    [18] 金奎励,陈中凯.我国某些天然固体沥青的岩石学研究,第四届全国有机地球化学会议论文集.1991.石油工业出版社.
    [19] 黎彤.地球和地壳的化学元素丰度[M].北京:地质出版社,1990.
    [20] 李灿,李美俊.拉曼光谱在催化研究中应用的进展.分子催化,2003,17(3):213-240.
    [21] 李清河,郭守年,吕德徽.鄂尔多斯西缘与西南缘深部结构与构造[M].地震出版社.1999.
    [22] 李庆贤,侯读杰,柳常青等.鄂尔多斯中部气田下古生界水化学特征及天然气藏富集区判别[J].天然气工业,2002,22(4):10-14.
    [23] 李清林,张文玉,张晓普等.鄂尔多斯及其周缘的地热分布特征[J].山西地震,1997,(12):122-123。
    [24] 李智民,赵文科,苏玉芳等.鄂尔多斯盆地侏罗纪坳陷湖泊的淤浅机制和聚煤作用[M].北京:地质出版社,1992.
    [25] 李思田.沉积盆地的动力学分析-盆地研究领域的主要趋向[J].地学前缘,1991,2(3-4):1-8.
    [26] 刘大锰,毛鹤龄,金奎励.前油沥青的成因类型及其形成机理[J].中国矿业大学学报,1996,25(1):66-72.
    [27] 马杏恒,刘昌栓,刘国栋.江苏响水至内蒙古满都拉地学断面[J].地质学报,1991,4(3):199-215.
    [28] 米敬奎,杨孟达.陈家山井田煤系地层油气来源研究[J].湘潭矿业学院学报,1998,13(4):17-22.
    [29] 潘爱芳,赫英,马润勇.鄂尔多斯盆地基底断裂地球化学研究[J].西北大学学报(自然科学版),2005b,35(4):440-444.
    [30] 任文军,张庆龙,张进,等.鄂尔多斯盆地中央古隆起板块构造成因初步研究[J].大地构造与矿,1999,23(2):191 196.
    [31] 孙少华,李小明,龚革联等.鄂尔多斯盆地构造热事件研究[J].科学通报,1997,42(3):306-309.
    [32] 汤显明,惠斌耀.鄂尔多斯盆地中央古隆起与油气聚集[J].石油与天然气地质,1993,14(1):64 71.
    [33] 涂光炽,李朝阳.浅谈比较矿床学[J].地球化学,2006,35(1):1-5.
    [34] 文志刚,张爱云.鄂尔多斯盆地奥陶系碳酸盐岩沥青A和沥青C的生物标志物特征[J].现代地质,1997,11(2):197-202.
    [35] 王同和.晋陕地区地质构造演化与油气聚集[J].华北地质矿产杂志.1995,10(3):283-398.
    [36] 魏永佩,王毅.鄂尔多斯盆地多种能源矿产富集规律的比较[J].石油与天然气地质,2004,25(4):385-392.
    [37] 吴征,杨远初,王新红.鄂尔多斯盆地下奥陶统原生原生—同层沥青分析[J].天然气工业,1999,19(6):14-17.
    [38] 肖贤明,刘德汉,傅家漠.沥青反射率作为烃源岩成熟度指标的意义[J].沉积学报,1991,9(增刊):138-146.
    [39] 谢增业,伍大茂,胡国艺等.鄂尔多斯盆地奥陶系烃源岩有效性判识.石油勘探与开发.2002,4(1):29-32.
    [40] 鄢明才,迟清华,顾铁新.中国东部地壳元素丰度与岩石平均化学组成研究[J].物探与化探,1997,21(6):451-459.
    [41] 于炳松,乐昌硕.沉积岩物质成分所蕴含的地球深部信息[J].地学前沿,1998,5(3):105-112.
    [42] 张子祥.鄂尔多斯盆地天环向斜盐矿床地质特征[J].中国煤田地质 2001,13(2):22-23,118.
    [43] 中国煤田地质总局.鄂尔多斯盆地聚煤规律及煤炭资源评价[M].北京:煤炭工业出版社.1996.
    [44] 庄军,吴景均,张群.鄂尔多斯盆地南部早中侏罗世聚煤特征与煤特的综合利用[M].北京:地质出版社.1996.
    [45] 泰勒(Taylor R P)等著,李文达译.稀土元素在矿床研究中的应用[M].北京:地质出版社.1987.
    [46] [美]柯林斯A G著,林文庄译.油田水地球化学[M].石油工业出版杜,1984.
    [47] B. Durand. Kerogen-lnsoluble Organic Matter from Sedimentary Rocks, (Edition by Durand) Technical, Paris, 1980:224-234.
    [48] Brimhall Gand Vrerar D. Ore fluids: magmatic to supergene. Thermdsynamic Modeling of Geological Mat erials[J].1987.17:235-321.
    [49] Buback M, Crerar D and Kopl'rtz L. Vibrational and electronic spectroscopy of hydrothermal systems Hydrothermal Experimental Techniques[J]. 1987.333-359.
    [50] Curiale J A. Origin of solid bitumen, with emphasis on biological marker results[J].Org Geochem, 1986,10(1~3):559~580.
    [51] Dieckmann V, Schenk H J, Horsfield B, et al, Kinetics of Petroleum generation and cracking by Programmed temperature close-syslem pyrolysis of Toarcian Shales[J]. Energy & Fuel, 1998,77(1/2):23-31.
    [52]Hemley R. Raman spectroscopy of SiO_2 glass at high pressure. Phys. Rev. Let[J]. 1986.57:747-750.
    [53]Hess N and Ghose S. Raman spectra of the calcite-CaCC_2, (II) structural phase transition as a function of pressure. EOS, Trams. Am. Geophy. Union[M]. 1988.69:500.
    [54]H. Jacob Classification structure, Geneses and Practical importance of Natural Solidoil Bitumen (Migrabitumen), Interna, J. Coal Petrol, 1989,11:65-79.
    [55]Hwang R J, Teerman S C and Carlson R M. Geochemical comparison of resrvoir solid bitumen with diverse origins[J]. Org Geochem, 1998, 29(1~3) :505~517.
    [56]Karweil. J Die Metamorphose der Koblen vom Standpunkt der Physikalishen Chemie. Z Deutsch Geol Ges,1955,107:132-139.
    [57]Liu F, Xu Z, K atayamal al. Mineral in clusions in zircons of para- and orthogneiss frompre-pilot drill hole CC SD-PP1, Chinese Continental Scientific Drilling Project. Llthos[J]. 2001. 59:199-215.
    [58]Luth R, Mysen B and Virgo D. Raman spectroscopic study of the solubility behavior of H, in the system Na_2O-Al_2O_3-SiO_2. Am. Mineral [J]. 1987. 72:481-488.
    [59]Matson D, Sharma S and Philipotts J. Raman spectra of some tectosilicates and glasses and nephelineanorthitejoins. Am. Mineral [J]. 1986.69:622-644.
    [60]McMillan P, and Holloway. Water solubility in aluminosilicate melts. Contrib. Mineral. Petrol [J]. 1987, 97:320-332.
    [61] McMillan P. A Raman spectroscopic study of glasses in the system CaO-MgO-SiO_2. Am. Mineral [J]. 1984b. 69:645-659.
    [62] Mcmillan P. Raman spectroscopy in mineralogy and geochemistry. Ann. Rev. Earth P anet. Sci[J]. 1989.17:255-283.
    [63]McMillan P. Structure studies of silicate glasses and melts-applications and limitations of Ramanspectroscopy. Am.M ineral[J]. 1984a. 69:622-644.
    [64]MysenB , Virgo D and Seifert F Relationships etween properties and structure of aluminosilicate melts. Am . Mineral[J]. 1985, 70:88-105.
    [65]PASTERIS J D, WOPENKA B, SEITZ J C. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions [J]. Geochim Cosmochim Acta,1988, 52:979-988.
    [66]Robert P. Organic Matumorphism and Geothermal History. Boston: D Reidel Publishing Company, 1988. 61-129.
    [67]ROEDDER E Fluid inclusion analysis :prologue and epilogue[J].Geochim Cosmochim Acta, 1989,54:495-507.
    [68]Rogers Sigsliffcance Reservoir Bitumens Thermal Maturation Studies. Western Canada Basin, AAPG 1974, 58(9):1806-1824.
    [69]Raman C and NedungadiT The a- β transformation of quartz. Nature[J]. 1940. 145-147.
    [70] ROSSO KM, BODNARR J. Microthermometric and Raman spectroscopic detection limits of CO_2 in fluid inclusions and the Raman spectroscopic characterization of CO_2[J].Geochim Cosmochim Acta, 1995, 59:3961-3975.
    [71]Seifert F, Mysen B and Virgo D. Roman study of densified vitreous silica. Phys, Chem, Glasses [J].1983. 24:141-145.
    [72]Stasiuk L D. The origin of pyrobitumens in Upper Devonian Leduc Formation gas Alberta Aco, Alberta, Canada: an optical and EDS study oil to gas transformation[J]. Marine Petrol Geol, 1997,14(7~8) :915~929.
    [73]Wilkins R W T. Exploration Research News 2 [J]. CSIOR Division of Exploration Geosciences, 1989,15:3-4.
    [74]Williams Q, Jeanloz R and McMillans The vibrational spectrum of MgSiO_2 perovskite:zero-pressure. Raman and mid-infrared spectra to 27Gpa. J. Geophys.Res [J]. 1987. 92:8116-8128.
    [75]Ye K, Yao Y and Katayama I. Large area extent of ultra high-pressure metamorphism in the Suluultra high-pressure terrane of East China:new implications from c oesite and omphacite inclusions in zirc on of graniticgeiss. Lithos. 2000. 52:1 57-164.
    [76]Yu Qi tai. Three increase incurves for description and prediction of oil field development indexes[J]. China Off shore Oil and Gas (Geology), 1995, 19(2):141-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700