纳米约束流体的结构和物性的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米约束流体与物理、化学、能源、环境、生命和地球科学等多个领域密切相关,引起人们的广泛关注,是近年来的研究热点。由于空间维度的限制,纳米约束流体的物理化学特性与体相流体具有很大差异。从分子层次上对纳米约束流体进行研究,不仅有助于人们理解其结构特性和动力学机理,还可以为纳米器件的设计和应用提供理论基础。伴随着计算机水平的迅速提高和理论计算方法的发展,理论模拟被广泛应用到纳米受限流体的研究领域。分子动力学模拟可以容易地获得许多在实验中难以获得的与原子有关的微观细节信息以及极端条件下的性质,是研究纳米受限流体的一种重要工具。本论文通过分子动力学模拟方法,对纳米受限流体的结构和物性进行系统的理论研究。主要研究内容包括以下四个方面:
     (1)研究碳纳米管对混合流体的选择吸附性,分析不同溶剂分子与碳纳米管间相互作用对碳纳米管选择吸附性的影响。对于甲醇水溶液,发现碳纳米管对甲醇具有很高的选择吸附。特别是(6,6)碳纳米管,在碳纳米管内的甲醇浓度几乎为100%,即几乎全部是甲醇分子。分析表明,碳纳米管与甲基的范德华力与流通分子间的氢键二者的协同作用是这种选择吸附性的微观根源。在范德华作用方面,由于甲基与碳纳米管的范德华作用比水强,因此甲醇进入碳纳米管内时获得的范德华作用能量高于水,有利于甲醇进入碳纳米管。在氢键方面,体相甲醇的氢键数量比水少,强度比水弱,因此甲醇进入碳纳米管内时损失的氢键能量低于水,也有利于甲醇进入碳纳米管内。这种微观机制具有普遍意义,可以被推广到多种其它体系中。这一研究为碳纳米管在液体燃料电池、纳米探测器件等领域的应用提供了理论基础。(第三章)
     (2)研究受限于两个平行疏水板间的单层水,探索纳米孔隙间距(D)、侧向压(PL)和侧向外电场(EL)对单层水结构和相行为的影响。在200K温度下,发现存在液相和四种单层冰相,其中包括两种文献没有报道过的单层冰相。这两种新的结构分别是中密度的六边形冰(middle-density hexagonal ice, MDHI)和平坦的高密度的菱形冰(flat high-density rhombic ice, FHDRI)。另外两种文献报道过的单层冰结构是由四边形和八边形组成的低密度的单层冰(low-density4·82ice, LD481)和褶皱的高密度的菱形冰(puckered high-density rhombic ice, PHDRI)。根据模拟结果,我们绘出了不同电场下单层冰的D-PL相图。无电场作用时,一条“小河”(液相区域)把两种高密度的菱形冰(FHDRI和PHDRI)与另外两种冰(LD48I和MDHI)分开。随着电场强度的增加,“小河”变窄,MDHI、FHDRI以及PHDRI的区域都增大。同时,LD48I区域有所减小,即有部分LD48I融化成水或转变成MDHI。当电场增至0.4V/nm时,“小河”变成“小湖”,液相区域被MDHI、FHDRI和PHDRI包围。当EX=1V/nm时,LD48Ⅰ和液相完全消失,只存在三种冰相(MDHI、FHDRI和PHDRI).在更高的电场作用下(EX=10V/nm),只有FHDRI和PHDRI这两种高密度冰相存在。通过这项研究,我们对单层水体系的结构和相行为获得了全面的了解。(第四章)
     (3)对纳米受限体系内甲烷水合物的成核和生长进行了理论研究。我们发现较高压强下,双分子层甲烷水合物可以在室温下成核并迅速生长。模拟结果显示,水合物孔穴结构为主体水分子形成的双层八边形(82)或七边形(72)结构,孔穴被单个客体甲烷分子占据。水合物孔穴通过面对面或四边形、五边形以及六边形双层冰连接形成大块无定形甲烷水合物。(第五章)
     (4)研究H2/O2、H2/N2、H2/CO和H2/CH4等四种二元流体通过单原子层纳米多孔材料石墨炔的选择透过性。模拟结果表明只有氢气分子可以通过石墨炔膜,而其它气体分子(O2、N2、CO和CH4分子)都不能通过石墨炔膜。随着压强差从0.047GPa增至1.5GPa,透过石墨炔的氢气流从7mol·m2·s-1升至6×105mol·m-2·s-1,对应的氢气透过性从1.5×10-7升至4×10-4mol·m-2·s-2·Pa-1,从选择性和透过性的综合效应上来说,石墨炔可能是最好的氢气提纯膜。(第六章)
The structure of the nanoconfined fluid is closely related to many fields, including physics, chemistry, energy, environment, life and earth sciences, etc. Nanoconfined fluid has attracted considerable attention over the years. Due to the restriction of the spatial dimensions, the physical and chemical properties of confined fluid can be dramatically different from their bulk counterpart. The study of the nanoconfined fluid in the molecular level not only helps us to understand the essential characteristics and kinetics law, but also provide the theoretical foundation for the design and production of nanodevices. With the enhancement of computer and the development of computational methods, theoretical calculations have been widely used in the nanoconfined fluid. Because it is easy to obtain the microscopic detail information that cannot be obtained in experiment and the properties in extreme condition, the molecular dynamics (MD) simulation has been used to study the confined fluid. In this thesis, we perform MD simulations to study the structures and physical properties of confined fluid. This thesis contents are stated for four parts as follows.
     (1) We perform MD studies on the structure and dynamics of methanol-water fluid mixtures surrounding an open-ended carbon nanotube (CNT). The main focus of this study is the trend of selective adsorption with different methanol concentrations in the bulk. Remarkably, for all CNTs considered in this study, the mass fraction (MF) of methanol inside CNTs is always much higher than that in the bulk. In particular, for the (6,6) CNT the selectivity of methanol is extremely high, and the MFs of CH3OH inside the (6,6) CNT are always nearly100%. By analyzing microscopic structures of the fluid mixture around CNTs, we find that the selective adsorption reflects a cooperative effect of the van der Waals (vdW) interaction between CNT and the methyl groups of CH3OH molecules, as well as the hydrogen bonding interaction among water and methanol molecules. This cooperative effect can be extended to other fluid systems, such as ethanol/water and ethanol/methanol mixtures.(Chapter3)
     (2) Molecular dynamics simulations of monolayer water confined in a nanoslit with two smooth hydrophobic walls (D=0.51-0.65nm) with or without lateral electric field (EL) at T=200K are carried out. Our simulations demonstrate that there are four classes of monolayer crystalline phases including two previously unreported confined monolayer ice phases. The two new monolayer ice phases are the middle-density hexagonal ice (MDHI) composed of hexagonal rings, a kind of ferroelectric with spontaneous polarization, and flat high-density rhombic ice (fHDRI), respectively. The other two monolayer ices previously reported are the low-density4-82ice (LD48I), and puckered high-density rhombic ice (pHDRI), respectively. Based on the results of MD simulations, we also give the D-PL phase diagrams for monolayer ice. From the D-PL phase diagrams, we find that in the absence of electric field, a creek (liquid phase) separates FHDRI and PHDRI from the LD48I and MDHI. With increase of EL, the creek narrow down, i.e. the liquid gradually freezes into MDHI, FHDRI or PHDRI phases, and LD48I is slowly induced into MDHI. When EL reaches0.4V/nm, the creek transforms a small lake. Up to1V/nm, only MDHI, FHDRI and PHDRI phases are observed, while the LD48I and liquid completely disappear. At EL=10V/nm, all the other phases completely transform into FHDRI or PHDRI phases, i.e. only FHDRI and PHDRI phases are observed.(Chapter4)
     (3) We report findings from MD simulations of the spontaneous nucleation and growth of bilayer methane hydrate. We find that bilayer methane hydrate can spontaneous nucleate and grow rapidly under high lateral pressure (500≤PL≤800MPa) at room temperature (300K). The resulting structure after nucleation and growth is a combination of bilayer octagon (82) and heptagon (72). The cages are face-sharing partial cages and linked by bilayer hexagonal, pentagonal and tetragonal rings, and the configurations of bilayer methane hydrate are amorphous phases.(Chapter5)
     (4) The permselectivity of H2/O2, H2/N2, H2/CO, and H2/CH4mixtures passing a graphdiyne membrane is studied by molecular dynamics simulations. At pressure from0.047GPa to4GPa, H2can pass the graphdiyne membrane quickly, while all the O2, N2, CO, and CH4molecules are blocked. At pressure of0.047GPa, the hydrogen flow is7mol·m-2·s-1. With increase of the pressure, the flow of H2molecules goes up, and reaches maximum of6x105mol·m-2·s-1at1.5GPa. Compared to other known membranes, graphdiyne can be used for means of hydrogen purification with the best balance of high selectivity and high permeance.(Chapter6)
引文
杜生平.2010.碳纳米管对二元混合溶液的选择性吸附的分子动力学模拟[D]:[硕士].合肥:中国科学技术大学,30.
    陈光进,孙长宇,马庆兰.2008,气体水合物科学与技术[M].北京:化学工业出版社,4.
    Abascal J. L. F., Sanz E., Fernandez R. G., et al.2005, J. Chem. Phys.,122,234511.
    Akopian S N, Airapetian S N,2005, Biofizika,50,265.
    Alder B. J. and Wainwright T. E.,1957, J. Chem. Phys.,27,1208.
    Alexiadis A, Kassinos S,2008, Chem. Rev.,108,5014.
    Amiri M C, and Dadkhah A A,2006, Colloids Surf., A,278,252.
    Andersen H. C.,1980, J. Chem. Phys.,72,2384.
    Aoki K., Kusakabe K., Morooka S.,1998, J. Membr. Sci.,141,197.
    Aspenes G., Dieker L. E., Aman Z. M., et al.2010, J. Colloid Interface Sci.,343,529.
    Avouris P., Chen Z. H., and Perebeinos V.,2007, Nat. Nanotechnol,2,605.
    Babarao R., Eddaoudi M., Jiang J. W.,2010, Langmuir 2010,26,11196.
    Bai J, Angell C A, Zeng X C,2010, Proc. Natl. Acad. Sci. USA,107,5718.
    Bai D. S., Chen G. J., Zhang X. R., et al.2011a, Langmuir,2011,27,5961.
    Bai H, Zhu Y, Qiao Y., et al.2011b, RSC Advances,2011,1,768.
    Bagherzadeh S. A., Englezos P., Alavi S., et al.2012, J. Phys. Chem. B 2012,116,3188.
    Banhart F., Kotakoski J., Krasheninnikov A. V.,2011, ACS Nano,5,26.
    Bauer M., Tobbens D.M., Mayer E,2011, Phys. Chem. Chem. Phys,2011,13,2167.
    Berendsen H. J. C., Postma J. P. M., van Gunsterent W. F., et al.1984, J. Chem. Phys,81,3684.
    Berezhkovskii A, Hummer G,2002, Phys. Rev. Lett.,89,064503.
    Bieri M., Treier M., Cai J., et al.2009, Chem. Commun.45,6865 (2009).
    Blankenburg S., Bieri M., Fasel R., et al.2010, Small 6,2266.
    Bohannon J.,2008, Science,319,1753.
    Botan A., Rotenberg B., Marry V., et al.2010, J. Phys. Chem. C,2010,114,14962.
    Bratko D, Daub C D, Leung K, Luzar A,2007, J. Am. Chem. Soc.,129,2504.
    Bratko D, Daub C D, Luzar A,2008, Phys. Chem. Chem. Phys,10,6807.
    Brown T. D., Taylor C. E., Bernardo M. P.,2010, Energies,3,1154.
    Buch V.,1994, J. Chem. Phys.100,7610(1994).
    Buch V., Devlin J. P., Monreal I. A., et al.2009, Phys. Chem. Chem. Phys,11,10245.
    Burghaus U., Bye D., Cosert K., et al.2007, Chem. Phys. Lett.,442,344.
    Bussi G., Donadio D., and Parrinello M.,2007, J. Chem. Phys.,126,014101.
    Cao Z., Peng Y. X., Li S., et al.2009, J. Phys. Chem. C,113,3096.
    Cha S. B., Quar H., Wildeman T. R.,1988, J. Phys. Chem.,92,6492.
    Chen L., Honsho Y., Seki S., et al.2010, J. Am. Chem. Soc.132,6742.
    Chen H. Y., Gong X. G., Liu Z. F., et al.2011, J. Phys. Chem. C 115,4721.
    Choi E.-M., Yoon Y.-H., Lee S., Kang H.,2005, Phys. Rev. Lett.,95,085701
    Chu Y. S., Lister T. E., Cullen, W. G., et al.2001, Phys. Rev. Lett.,86,3364.
    Corry B,2008, J. Phys. Chem. B,112,1427.
    Cracknell R. F., Nicholson D., Quirke N,1995, Phys. Rev. Lett.74,2463.
    Cranford S. W., Buehler M.,2012, Nanoscale,4,4587.
    Cygan R. T., Guggenheim S., van Groos A. F. K.,2004, J. Phys. Chem. B,108,15141.
    Danielewicz-Ferchmin I., Ferchmin, A. R.,1996, J. Phys. Chem,100,17281.
    Danielewicz-Ferchmin I., Ferchmin, A. R., Szlaferek, A.1998, Chem. Phys. Lett.,288,197.
    Das P, Zhou R,2010, J. Phys. Chem. B,114,5427.
    Davy H. P.,1811, Trans Roy Soc,101,155.
    Davies S. R., Lachance J. W., Sloan E. D., et al.2010a, Ind. Eng. Chem. Res.,49,12319.
    Davies S. R, Sloan E. D., Sum A. K.,2010b, J. Phys. Chem. C,114,1173.
    Davidson D W,1973, Water:A Comprehensive Treatise, (Plenum, New York),2, pp 115-234.
    Davidson D W, Handa Y P, Ratcliffe C I, et al.1984, Nature,311,142.
    Daw M. S. and Bashes M.,1984, Phys. Rev. B,29,8486.
    de Vos R. M., Verweij H,1998, Science 279,1710.
    de Souza N R, Kolesnikov A I, Burnham C J, et al.2006, J. Phys.:Condens. Matter,18,2321.
    Desmedt A., Soetens J. C., Prager M., et al.2011, J. Phys. Chem. C,115,12689.
    Devlin J. P., Monreal I. A.,2010a, Chem. Phys. Lett,492,1.
    Devlin J. P., Monreal I. A,2010b, J. Phys. Chem. A,2010,114,13129.
    Dreyer D. R., Ruoff R. S, Bielawski C. W.,2010, Angew. Chem. Int. Ed,49,9336.
    Drost-Hansen W, Singleton J L,1992, Fundamentals of medical Cell Biology, (JAI, Greenwich, CT).
    Du H., Li J., Zhang J., et al.2011, J. Phys. Chem. C 115,23261.
    Dubbeldam D, Calero S, Vlugt T J H, et al.2004a, Phys. Rev. Lett.,93,088302.
    Dubbeldam D, Calero S, VlugtTJ H, et al.2004b,J. Phys. Chem. B,108,12301.
    Ehre D, Lavert E, Lahav M, et al.2010, Science,327,672.
    England J L, Park S, Pande V S,2008, J. Chem. Phys,128,044503.
    Erko M, Findenegg G. H., Cade, N., et al.2011, Phys. Rev. B,84,104205.
    Florusse L. J., Peters C. J., Schoonman J., et al.2004, Science,306,469.
    Fu Z, Luo Y, Ma J, et al.2011, J. Chem. Phys,134,154507.
    Garberoglio G.,2010, J. Phys.:Condens. Matter 22,415104.
    Gavish M., Wang J.-L., Eisenstein M., et al.1992, Science,256,815.
    Gay S C, Smith E J, Haymet A D J,2002, J. Chem. Phys.,116,8876.
    Gear C. W.,1971, Numerical initial value problems in ordinary differential equation. Englewood clifs:Frentice-Hall.1971,1-54.
    Geim A. K. and Novoselov K. S.,2007, Nat. Mater.,2007,6,183.
    George S. M., Yoon B., Dameron A. A.,2009, Acc. Chem. Res.42,498.
    Giovambattista N, Rossky P J, Debenedetti P G,2009, Phys. Rev. Lett.,102,050603.
    Goldsmith J., Hinds B. J.,2011, J. Phys. Chem. C 115,19158.
    Gu C., Gao G. H., Yu Y. X., et al.2002, Fluid Phase Equilibria 194-197,297.
    Guggenheim S. and van Groos A. F. K.,2003, Geology,31,653.
    Hammerschmidt E. G.,1934, Ind. Eng. Chem,26 (8):851
    Han S, Choi M Y, Kumar P, et al.2010, Nat. Phys,6,685.
    Hankel M., Zhang H., Nguyen T. X., et al.2011, Phys. Chem. Chem. Phys.,13,7834.
    Haughney M., Ferrario M., and McDonald I. R.,1986, Mol. Phys.58,849.
    Hauser A. W. and Schwerdtfeger P.,2012, J. Phys. Chem. Lett.,3,209.
    Hawtin R. W., Quigley D., Rodger P. M.,2008, Phys. Chem. Chem. Phys.,10,4853.
    Hayes R., Warr G. G., and Atkin R.,2010, Phys. Chem. Chem. Phys.12,1709.
    Hess, B., Kutzner C, van der Spoel D., Lindahl E.,2008, J. Chem. Theory Comput.,4,435.
    Hockney R. W.,1970, Meth. Comput. Phys.9,136.
    Holt J K, Park H G, Wang Y M, et al.2006, Science,312,1034.
    Hoover W. G.,1985, Phys. Rev. A,31,1695.
    Hoover W. G.1991. Computational Statiscal Mechnics. New York:Elsenieer.121.
    Huang A, Caro J.,2011, Chem. Commun.47,4201.
    Huang B D, Xia Y Y, Zhao M W, et al.2005, J. Chem. Phys,122,084708.
    Hummer G, Rasaiah J C, Noworyta J P,2001, Nature,414,8.
    Hwang S, Shao Q, Williams H, et al.2011, J. Phys. Chem. B 115,6653.
    Iijima S,1991, Nature,354,56.
    Inaba H., Saitou T., Tozaki K., et al.2004, J. Appl. Phys,96,6127.
    Jacobson L. C., Hujo W., Molinero V.,2009, J. Phys. Chem. B,113,10298.
    Jacobson L. C., Hujo W., Molinero V.,2010a, J. Am. Chem. Soc.,132,11806.
    Jacobson L. C., Hujo W., Molinero V.,2010b, J. Phys. Chem. B,114,13796.
    Jacobson L. C, Hujo W., Molinero V.,2011, J. Am. Chem. Soc.,133,6458.
    Jahnert S, Chavez F V, Schaumann G E, et al.2008, Phys. Chem. Chem. Phys.,10,6039.
    Jelassi J, Grosz T, Bako I, et al.2011, J. Chem. Phys.,134,064509.
    Jiang D. E., Cooper V. R., Dai S.,2009, Nano Lett.9,4019.
    Jiao Y.,Du A., Hankel M., et al.2011, Chem. Commun.47,11843.
    Johnston J C, Kastelowitz N, Molinero V,2010, J. Chem. Phys.,133,154516.
    Jorgensen W. L., Chandrasekhar J., Madura J. D., et al.1983, J. Chem. Phys.,79,926.
    Jorgensen W. L., Briggs J. M., Conteras M. L.,1990, J. Phys. Chem.,94,1683.
    Jorgensen W. L., Maxwell D S, Tirado-Rives J.,1996, J. Am. Chem. Soc.,118,11225.
    Joseph S. and Aluru N. R.,2008, Nano Lett.8,452.
    Kalra A, Garde S, Hummer G,2003, Proc. Natl. Acad. Sci. U.S.A.,100,10175.
    Kalra A, Hummer G, Garde S,2004, J. Phys. Chem. B 108,544.
    Kastelowitz N, Johnston J. C., Molinero V.,2010, J. Chem. Phys.,132,124511.
    Koga K, Zeng X C, Tanaka H,1997, Phys. Rev. Lett.,79,5262.
    Koga K, Tanaka H, Zeng X C,2000, Nature,408,564.
    Koga K, Gao G T, Tanaka H, et al.2001, Nature,412,802.
    Koga K,2002, J. Chem. Phys.116,10882.
    Koga K, Tanaka H,2005, J. Chem. Phys.122,104711.
    Kolesnikov A I, Zanotti J M, Loong C K, et al.2004, Phys. Rev. Lett.93,035503.
    Kolesnikov A I, Loong C K, de Souza N R, et al.2006, Phys. B:Condens. Matter,385,272.
    Kumar, P, Buldyrev S V, Starr F W, et al.2005 Phys. Rev. E,72,051503.
    Kvenvolden K. A.,1999, Proc. Natl. Acad. Sci. U. S. A.,96,3420.
    Lee C Y, McCammon J A, Rossky P J,1984, J. Chem. Phys.,80,4448.
    Lee C., Wei X., Kysar J. W. et al.2008, Science,321,385.
    Lee H., Lee J. W., Kim D. Y., et al.2005, Nature,434,743.
    Lee H. R., Kanezashi M., Shimomura Y., et al.2011a, AIChE Journal 57,2755.
    Lee K., Lee J., Kim S., Ju B.,2011b, Carbon 49,787.
    Li G., Li Y., Liu H., et al.2010a, Chem. Commun.46,3256.
    Li Y., Zhou Z., Shen P., et al.2010b, Chem. Commun.46,3672.
    Liang S., Kusalik P. G.,2010a, Chem. Phys. Lett.,494,123.
    Liang S., Kusalik P. G.,2010b, J. Phys. Chem. B,114,9563.
    Liang S., Kusalik P. G.,2011a, J. Am. Chem. Soc.,133,1870.
    Liang S., Kusalik P. G.,2011b, Chem. Sci.,2,1286.
    Liang S., Rozmanov D., Kusalik P. G.,2011c, Phys. Chem. Chem. Phys.,13,19856.
    Lino M, and Fujimura Y,2009, Appl. Phys. Lett.,94,261902.
    Liu Y C, Wang Q, Wu T, et al.2005a, J. Chem. Phys.123,234701.
    Liu Y C, Wang Q, Zhang L, et al.2005b, Langmuir,21,12025.
    Liu, S.; Luo, J.; Xie, G.; Guo, D.2009, J. Appl. Phys.,105,124301.
    Liu B., Smit B,2010a, J. Phys. Chem. Phys. C,114,8515.
    Liu Y., Consta S., and Goddard W. A.,2010b, J. Nanosci. Nanotechnol.10,3834.
    Long M., Tang L., Wang D., et al.2011, ACS Nano,5,2593.
    Luo G., Qian X., Liu H., et al.2011, Phys. Rev. B 84,075439.
    Lu W., Yuan D. Zhao C. I., et al.2010, Chem. Mater.,22,5964.
    Lu Y. H., Feng Y. P.,2011, Nanoscale,3,2444-2453.
    Mahoney M. W. and Jorgensen W. L.,2000, J. Chem. Phys.112,8910.
    Maniwa Y, Kataura H, Abe M, et al.2005, Chem. Phys. Lett.401,534.
    Martyna G. J., Tuckerman M. E., Tobias D. J., et al.1996, Mol. Phys.,87,1117.
    Mashl R J, Joseph S, Aluru N R, Jakobsson E,2003, Nano Lett.3,589.
    McElwain J. C., Wade-Murphy J., Hesselbo S. P.,2005, Nature,435,479.
    Mikami F, Matsuda K, Kataura H, et al.2009, ACS Nano,3,1279.
    Molinero V, and Moore E B,2009, J. Phys. Chem. B,113,4008.
    Moon C., Taylor P. C., Rodger P.M.,2003, J. Am. Chem. Soc.,125,4706.
    Moore E B, Molinero V,2010a, J. Chem. Phys.,132,244504.
    Moore E. B., De La Llave E., Welke K., et al.2010b, Phys. Chem. Chem. Phys.,12,4124.
    Morrone J. A., Haslinger K. E., and Tuckerman M. E.,2006, J. Phys. Chem. B 110,3712.
    Nagata K., Miyamoto M., Watabe T., et al.2011, Chem. Lett.40,19.
    Narita N., Nagai S., Suzuki S., et al.,1998, Phys. Rev. B 58,11009.
    Noon W H, Ausman K D, Smalley R E, et al.2002, Chem. Phys. Lett.355,445.
    Nose S.,1984, J. Chem. Phys.,81,511.
    Novoselov K. S., Geim A. K., Morozov S. V., et al.2004, Science,306,666.
    Ohta Y., Akamatsu K., Sugawara T., et al.2008, J. Membr. Sci.315,93.
    Oyama S. T., Lee D., Hacarlioglu P., et al.2004, J. Membr. Sci.244,45.
    Pan L. D., Zhang L. Z., Song B. Q., et al.2011, Appl. Phys. Lett.98,173102.
    Park S. H. and Sposito G.,2003, J. Phys. Chem. B,107,2281.
    Park Y., Kim D. Y., Lee J. W., et al.2006, Proc. Natl. Acad. Sci. U. S. A.,103,12690.
    Parrinello M., Rahman A.,1981, J. Appl. Phys.,52,7182.
    Quar H., Cha S. B., Wildeman T. R.,1992, Chem. Eng. Res. Des.,70,48.
    Ripmeester J. A., Ratcliffe C I, Powell B. M.,1987, Nature,325,135.
    Sarupria S., Debenedetti P. G.,2011, J. Phys. Chem. A,115,6102.
    Schreiber A, Ketelsen I, Findenegg G H,2001, Phys. Chem. Chem. Phys.,3,1185.
    Schrier J. and McClain J.,2012, Chem. Phys. Lett.,521,118.
    Shao Q, Huang L, Zhou J, et al.2007, J. Phys. Chem. C,111,43.
    Shevade A. V., Jiang S. Y., Gubbins K. E.,2000, J. Chem. Phys.113,6933.
    Shi L., Goldbach A., Xu H. Y.,2011, Int. J. Hydrogen Energy 36,2281.
    Shim Y, Jung Y, Kim H J,2011, Phys. Chem. Chem. Phys.,13,3969.
    Sloan E D,2003, Nature,426,353.
    Sloan E D and Koh C A,2008, Clathrate hydrates of natural gases, CRC Press, Boca Raton, FL, 3rd ed.
    Srinivasu K., Ghosh S. K.,2012, J. Phys. Chem. C,116,5951.
    Staykova D. K., Kuhs W. F., Salamatin A. N.,2003, J. Phys. Chem. B,107,10299.
    Struzhkin V. V., Militzer B., Mao W. L., et al.2007, Chem. Rev.,107,4133.
    Striolo A, Chialvo A A, Gubbins K E, et al.2005, J. Chem. Phys.122,234712.
    Sun Y. Q., Wu Q. O., Shi G. Q.,2011, Energy Environ. Sci.,4,1113.
    Svishchev I M, Kusalik P G,1994, Phys. Rev. Lett.,73,975.
    Svishchev I M, Kusalik P G,1996a, J. Am. Chem. Soc.,118,649;
    Svishchev I M, Kusalik P G,1996b, Phys. Rev. B,53, R8815.
    Swope W. C., Andersen H. C., Berens P. H., et al.1982, J. Chem. Phys.,76,637.
    Takaba H., Matsuda E., Nair B. N., et al.2002, J. Chem. Eng. Jpn.35,1312.
    Toney M F,1994, Nature,368,444.
    Tsuru T., Shintani H., Yoshioka T., et al.2006, Appl. Catal. A 302,78.
    Tung Y. T., Chen L. J., Chen Y. P., et al.2010, J. Phys. Chem. B,114,10804.
    Tung Y. T., Chen L. J., Chen Y. P., et al.2011, J. Phys. Chem. C,115,7504.
    Tulipa P R, Bates S P,2009, J. Chem. Phys.,131,015103.
    Uchida T., Ebinuma T., Ishizaki T.,1999, J. Phys. Chem. B,103,3659
    Uchida T., Ebinuma T., Takeya S., et al.2002, J. Phys. Chem. B,106,820.
    Uchida T., Takeya S., Chuvilin E. M., et al.2004, J. Geophys. Res.,109, B05206.
    van der Spoel D., Lindahl E., Hess B., et al.2005, J. Comput. Chem.26,1701.
    Vaitheeswaran S, Yin H, Rasaiah J C,2005, J. Phys. Chem. B,109,6629.
    Vatamanu J., Kusalik P. G.,2010, Phys. Chem. Chem. Phys.,12,15065.
    Vatamanu J., Kusalik P. G.,2006a, J. Am. Chem. Soc.,128,15588;
    Vatamanu J., Kusalik P. G.,2006b, J. Phys. Chem. B,110,15896;
    Vatamanu J., Kusalik P. G.,2008, J. Phys. Chem. B,112,2399.
    Verlet L.,1967, Phys. Rev.,159,98.
    Walsh M. R., Koh C. A., Sloan E. D., et al.2009, Science,326,1095.
    Walsh M. R., Rainey J. D., Lafond P. G., et al.2011a, Phys. Chem. Chem. Phys.,13,19951.
    Walsh M. R., Beckham G. T., Koh C. A., et al.2011b, J. Phys. Chem. C,115,21241.
    Wang J, Zhu Y, Zhou J, Lu X H,2004, Phys. Chem. Chem. Phys.,6,829.
    Wang J., Lu H., Ripmeester J. A., and Becker U.,2010, J. Phys. Chem. C,114,21042.
    Wang H.-J., Xi X.-K., Wu Y.,2008, Science,322,80.
    Wensink E. J. W., Hoffmann A. C., van Maaren P. J., et al.,2003. J. Chem. Phys.119,7308.
    Wesolowski R. P., Terzyk A. P.,2011, Phys. Chem. Chem. Phys.13,17027.
    Woodcock L. V.,1971, Chem. Phys. Lett.,10,257.
    Xia X, Berkowitz, M L,1995, Phys. Rev.Lett.,74,3193.
    Xiu P., Zhou B., Qi W. P., et al.2009, J. Am. Chem. Soc.131,2840.
    Xiu P, Yang Z, Zhou R, et al.2011, J. Phys. Chem. B,115,2988.
    Yan J Y, Patey G N,2011, J. Phys. Chem. Lett.,2,2555.
    Yang J., Meng S., Xu L. F., Wang E. G.2004, Phys Rev Lett.,92,146102.
    Yang L, Gao Y. Q.,2010, J. Am. Chem. Soc.,132,842.
    Yang L, Garde S,2007, J. Chem. Phys.,126,084706.
    Yeh I C, Berkowitz M. L.,1999, J. Chem. Phys.,110,7935.
    Yeh I C, Hummer G,2004, Proc. Natl. Acad. Sci. U.S.A.,101,12177.
    Yu M., Funke H. H., Noble R. D., et al.2011, J. Am. Chem. Soc.133,1748.
    Zangi R, Mark A E,2003a, Phys. Rev. Lett.,91,025502.
    Zangi R, Mark A E,2003b, J. Chem. Phys.,119,1694.
    Zangi R, Mark A E,2004a, J. Chem. Phys.,120,7123.
    Zangi R,2004b J. Phys.:Condens. Matter,16, S5371.
    Zhang J. F., Hawtin R. W., Yang Y., et al.2008, J. Phys. Chem. B,112,10608.
    Zang J., Konduri S., Nair S., et al.2009, ACS Nano 3,1548.
    Zhang G, Zhang W, Dong H,2010, J. Chem. Phys.,133,134703.
    Zhang H., Zhao M., He X., et al.2011, J. Phys. Chem. C,115,8845.
    Zhao J. F., Yao L., Song Y. C., et al.2011, Magn. Reson. Imaging,29,281.
    Zheng J., Lennon E. M., Tsao H., et al.2005, J. Chem. Phys.122,214702.
    Zhou K. X., Lu G. W., Zhou Q. C., et al.2000, J. Appl. Phys.,88,1802.
    Zhou X. Y., Lu H. J.,2007, Chin Phys.,16,335.
    Zhou J.,Lv K, Wang Q., et al.2011a, J. Chem. Phys.134,174701.
    Zhou Q., Lu X. C., Liu X. D., et al.2011b, J. Colloid Interface Sci.,355,237.
    Zornoza B., Seoane B., Zamaro J. M., et al.2011, Chem. Phys. Chem.,12,2718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700