用户名: 密码: 验证码:
气固两相流对旋风分离器壁面磨损机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋风分离器由于结构简单,耐高温、高压,维护方便等优点,在众多领域得到了广泛的应用。然而,在实际运行过程中也逐渐暴露出了一些问题,其中旋风分离器壁面的磨损,已成为严重制约其应用与发展的首要问题。目前,从国内外已有的研究工作来看,对旋风分离器壁面的磨损还缺乏足够的认识,仅有的结论也多源于现场经验,对于分离器壁面的磨损机理更是欠缺系统的分析。本文正是针对旋风分离器壁面存在的严重磨损问题,采用理论分析和数值试验相结合的研究方法,借助先进的计算流体力学技术,深入研究了气固两相流对旋风分离器壁面的磨损情况,探讨了壁面磨损的机理。
     首先对基于CFD的壁面磨损预测模型的基础理论进行了介绍,该模型主要包括内部流场计算、颗粒运行轨迹追踪和运用磨损方程计算磨损值三个部分。在此基础上,运用该方法计算了气固两相流对旋风分离器壁面的磨损情况。通过计算得知:分离器壁面以局部磨损为主,壁面严重磨损的区域有环形空间顶板附近区域、从入口方向看到的环形空间筒体壁面区域、分离空间筒体区域的螺旋磨损槽以及锥体末端区域。环形空间壁面磨损率在周向上呈先增加后降低的趋势;在分离空间筒体段磨损率沿轴向呈“波形”状变化,有明显的波峰和波谷出现;在分离空间锥体壁面,磨损率随着轴向位置的增加而增大,且在锥体末端附近出现磨损峰值,但随后又明显降低。
     其次研究了不同结构参数(排气管直径比、排尘口直径比、入口面积比)、不同入口结构型式、不同操作参数(入口速度、操作温度)以及颗粒粒径变化对旋风分离器壁面磨损的影响规律。研究结果表明:这些参数对旋风分离器壁面磨损的部位以及磨损率的大小都有不同程度的影响,为进一步完善和改进设计、优化结构尺寸以提高设备工艺性能奠定基础。
     最后结合实验室和工业现场应用旋风分离器的实际磨损情况,对壁面局部磨损部位的宏观形貌和微观形貌进行了观察分析,研究其失效行为,建立壁面磨损的模型,探讨了旋风分离器不同区域壁面磨损的产生机制,同时研究了固体颗粒对壁面局部区域磨损的微观机理。研究结果显示:旋风分离器壁面磨损的失效不是固体颗粒作用造成的大面积均匀的磨损,而是受到颗粒严重冲蚀的局部区域磨损。局部磨损区域发生了明显的塑性变形,有犁沟状冲蚀磨损形貌存在,基体表面布满均匀的条状磨痕,磨痕方向大体一致;局部区域伴随有带方向的凹坑出现,在凹坑的前方有明显的塑性变形和材料挤出的现象。就气固两相流体的流动特性而论,颗粒对壁面的磨损有三种主要机理:固体颗粒与壁面的直接碰撞磨损、湍流运动中固体颗粒与壁面的随机碰撞磨损和滑移颗粒与壁面之间的摩擦磨损。而旋风分离器壁面局部磨损的微观机制为冲刷—切削—撞击—冲刷—剥落,即以颗粒相对壁面碰撞角度较小的微观切削为主,以碰撞角度较大颗粒的撞击剥落为辅。
Cyclone separator has obvious advantages of simple structure, high temperature resistant, high pressure resistant and convenient maintenance. These make cyclone separator share a wide range of applications in many industries. However, some problems have revealed in the actual operation, especially the erosion of cyclone separator’s surface wall, which seriously restricts the cyclone’s development and application. At present, previous researches don’t have an adequate understanding of the wall erosion mechanism of cyclone separator. Most of existing conclusions are obtained from field experience rather than systemic theoretical analysis. In this paper, theoretical analysis and numerical simulation were adopted to study the serious erosion problem of cyclone separator. The advanced computational fluid dynamics was applied to investigate wall erosion of cyclone separator caused by gas-solid two-phase flow and discuss the erosion mechanism further.
     Firstly, the theories of CFD-based erosion prediction model were introduced in this paper. Usually this model consists of three main sections: internal flow field modeling, particle trajectory tracking, and erosion computing modeling. On this basis, using this method compute the erosion of cyclone separator’s surface wall caused by gas-solid two-phase flow. Through calculation find that the eroded surface wall of cyclone separator is mainly local erosion. Several severe erosion regions are the annular space near the roof, the cyclone barrel which is in the direct line-of-sight of the inlet, the helical-shaped grooves in separated barrel space and the lower cone. Erosion rate of annular space increases first and then decreases along circumferential direction. At separated barrel space, the trend of erosion rate distribution along the axial direction is“wave”shape; there are clear sharp crests and troughs appearance. At separated cone space, erosion increases rather strongly with axial distance down the cone section and reaches its maximum value in the lower or lowermost section of the cone and then lower apparently.
     Secondly, in this paper the erosion law of cyclone separator’s surface wall was studied under different structure parameters (vortex finder diameter ratio, dust exit diameter ratio, and inlet area ratio), different inlet structure, different operation parameters (inlet velocity and operation temperature) and different particle diameter. The results show that these parameters have varying degrees influence on the erosion location and erosion rate of cyclone separator’s wall.
     Finally, based on the laboratory and industrial field application of cyclone separator, observe macro and micro morphology of local wear parts wall, study its failure analysis and establish wall erosion model. At the same time, the erosion mechanisms of different parts of cyclone separator and micro mechanisms of severe local erosion zone caused by particles impingent are also studied in this section. Research results show that the failure of cyclone separator’s wall is not the uniform erosion of surface wall, but the local erosion caused by particles seriously impact. The local eroded regions have obviously plastic deformation and appear plough troughs. Grinding strips are uniform on the surface wall, grinding mark cardinally identical direction. There are pits appear accompanied with the local eroded regions. Plastic deformation and extrusion is observed at the tip of the leading edge of the large trough. In terms of gas-solid two-phase flow characteristics, there are three main mechanisms: the directional impingement of solid particles, the random impingement of particles in turbulent motion, and the friction of a sliding bed pressing onto the wall. The micro mechanism of local erosion on surface wall of cyclone separator’s is scousr-cutting-impingement-scousr-exfoliation. That is to say, micro-cutting arises primarily from the small collision angle of particle and surface, while collision exfoliation arises from the bigger collision angle.
引文
[1]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312
    [2]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25
    [3]邵荷生,张清.金属的磨粒磨损与耐磨材料[M].北京:机械工业出版社,1988
    [4]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992:440
    [5] Tilly G P. Erosion caused by impact of solid particles [A].Treatise Science and Technology [C]. New York:Academic Press, 1979, 13:287-319
    [6]刘英杰,成克强.磨损失效分析[M].北京:机械工也出版社,1991:43
    [7]岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994:413-438
    [8]张新育.撞击式浓淡燃烧器及弯管内气固多相流动特性的研究[D].杭州:浙江大学,1998
    [9] Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, V3:87-103
    [10] Levy A. V., Chik P. The effects of erodent composition and shape on the erosion of steel [J]. Wear, 1983, V89 (2):151-162
    [11] Hutchings I., Winter R., Field J. Solid particle erosion of metals: The removal of surface material by spherical projectiles [C]. Proceedings of the Royal Society of London, Series A, 1976, 348:443-457
    [12] Bellman R., Levy A. Erosion mechanism in ductile metals [J]. Wear, 1981, V70 (1):443-457
    [13] Bitter J. G. A. A study of erosion phenomena, PartⅠ[J]. Wear, 1963, V6:5-21
    [14] Bitter J. G. A. A study of erosion phenomena, PartⅡ[J]. Wear, 1963, V6:169-190
    [15] Tilly G., Sage W. The interaction of particle and material behavior in erosion process [J]. Wear, 1970, V16:447-465
    [16] Jahanmir S. The mechanics of subsurface damage in solid particle erosion [J]. Wear, 1980, V61 (2):309-338
    [17] Hutchings I. Some comments on the theoretical treatment of erosive particle impacts [C]. Proceedings of the 5th International conference on erosion by liquid and solid impact, 1980:36-1-36-6
    [18] Andrews D. An analysis of solid particle erosion mechanisms [J]. Journal of Physics D: Applied Physics, 1981, V14:1979-1991
    [19] Chase D., Rybicki E., Shadley J. A model for the effect of velocity on erosion of N80 steel tubing due to the normal impingement of solid particles [J]. Journal of Energy Resources Technology, 1992, V114:54-64
    [20] Zhang Y. L. Application and improvement of computational fluid dynamics (CFD) in solid particle erosion modeling [D]. Tulsa: The University of Tulsa, 2006
    [21] Danyluk S., Shack W. J., Park J. Y. The erosion of a type 310 stainless steel cyclone from a coal gasification pilot plant [J]. Wear, 1980, V4 (1):95-104
    [22] Zughbi H. D., Schwarz M. P, Turner W. J., et al. Numerical and experimental investigations of wear in heavy medium cyclones [J]. Minerals Engineering, 1991, V4 (3/4):245-262
    [23]夏兴祥.流化床内旋风分离器设计与运行中的几个问题[J].上海化工,1996,(2):28-31
    [24]赵水星,程学稳.循环流化床锅炉旋风分离器磨损的原因及对策[J].中国井矿盐,2006,37(6):43-45
    [25]吴剑恒.CFB锅炉旋风分离器的磨损分析及解决措施[J].工业锅炉,2003,(5):51-53
    [26]吴剑恒.35t/h CFBB旋风分离器磨损分析及对策[J].节能,2004,(6):49-52
    [27]何祥义,郭森魁,姚本荣.CFB旋风分离器内衬磨损机理分析及选材建议[J].节能,1998,10:31-33
    [28]何祥义,郭森魁,姚本荣.CFB锅炉旋风分离器内衬磨损机理分析及选材建议[J].锅炉技术,1998,12:16-18
    [29]沈恒根,刁永发,丁士发等.燃煤电厂锅炉除尘用旋风分离器磨损因素的分析[J].通风除尘,1998,(2):4-6
    [30]刘家海,袁红斌.旋风分离器磨损失效分析与对策[J].石油化工设备技术,2000,21(3):12-16
    [31]蔡仁杰,余龙红.选用新型旋风分离器消除装置瓶颈[J].石油化工设备技术,2003,24(6):9-10,25
    [32]钱成伟,董雅娟,刘宗良.多管式三旋旋风管堵塞和磨蚀原因分析和对策[J].炼油技术与工程,2008,38(12):31-33
    [33] McLean J. B. FCC catalyst properties can affect cyclone erosion [J]. Oil & Gas Journal, 2000, V98 (1):33-36
    [34] Reppenhagen J., Werther J. Catalyst attrition in cyclones [J]. Powder Technology, 2000, V113 (1-2):55-69
    [35] Hoffmann A.C., Stein L.E. Gas cyclone and swirl tubes: principles, design and operation [M]. Springer-Verlag Berlin Heidelberg, 2002: 257-279
    [36]霍夫曼A.C.,斯坦因L.E.旋风分离器—原理、设计和工程应用[M].彭维明,姬忠礼.北京:化学工业出版社,2004:175-188
    [37]谢建民,洪秉铃,张志军,等.旋风分离器磨损与防磨措施的研究[J].工业安全与环保,2005,31(1):36-37
    [38]向晓东,幸福堂,余战桥等.环缝气垫高效耐磨旋风除尘器的研究[J].武汉冶金科技大学学报,1997,20(4):418-423
    [39]魏耀东,刘仁桓,燕辉,等.蜗壳式旋风分离器的磨损实验和分析[J].化工机械,2001,28(2):71-75
    [40] Silva P. D., Briens C., Bernis A. Development of a new rapid method to measure erosion rates in laboratory and pilot plant cyclones [J]. Powder Technology, 2003, V131 (2-3):111-119
    [41]王薇,焦清介.旋风除尘器灰环磨损与锥体角度关系的研究[J].安全与环境学报,2004,4(3):11-14
    [42]李勋,刁永发,李浩,等.带内锥的方形扩散式分离器壁面磨损的数值分析[J].环境科学与管理,2008,33(12):117-120
    [43] Meng H. C., Ludema K. C. Wear models and predictive equations: their form and content [J]. Wear, 1995, V181-183:443-457
    [44] Finnie I., Mcfadden D. H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence [J]. Wear, 1978, V48:181-190
    [45] Finnie I. Some reflections on the past and future of erosion [J]. Wear, 1995, V186-187:1-10
    [46] Finnie I. Some observations on the erosion of ductile metals [J]. Wear, 1972, V19:81-90
    [47] Neilson J., Gilchrist A. Erosion by a stream of solid particles [J]. Wear, 1968, V11:111-122
    [48] Tilly G P. Two stage mechanism of ductile erosion [C]. Wear, 1973, V23:87-96
    [49] Tabakoff W., Kotwal R., Hamed A. Erosion study of different materials affected by coal ash particles [J]. Wear, 1979, V52:161-173
    [50] McLaury B. S. A model to predict solid particle erosion in oilfield geometries [D]. Tulsa: The University of Tulsa, 1993
    [51] Zhang Y. L., McLaury B. S., Shirazi S. A., et al. Simulations of particle-wall-turbulence interaction, particle motion and erosion in with a commercial CFD code [C]. Proceedings of 2006 ASME Joint U.S.-European Fluids Engineering Summer Meeting, Miami, FL, 2006, FEDSM2006-98037:1-16
    [52] Zhang Y. L., Reuterfors B. S., McLaury B. S., et al. Comparison of computed and measured particle velocities and erosion in water and air flows [J]. Wear, 2007, V263:330-338
    [53] Russell R., Shirazi S., Macrae J. A new computational fluid dynamics model to predict flow profiles and erosion rates in downhole completion equipment [C]. Proceedings of SPE Annual Technical Conference and Exhibition, 2004, SPE90234:3723-3749
    [54] Oka Y., Okamura K., Yoshida T. Practical estimation of erosion damage caused by solid particle impact. Part 1: Effect of impact parameters on a predictive equation [J]. Wear, 2005, V259:95-101
    [55] Oka Y., Okamura K., Yoshida T. Practical estimation of erosion damage caused by solid particle impact. Part 2: Mechanical properties of materials directly associated with erosion damage [J]. Wear, 2005, V259:102-109
    [56] Fan J. R., Zhou D. D., Jin J., et al. Numerical simulation of tube erosion by particle impaction [J]. Wear, 1991, V142 (1):171-184
    [57] Fan J. R., Zhou D. D., Zeng K. L., et al. Numerical and experimental study of finned tube erosion protection methods [J]. Wear, 1992, V152 (1):1-19
    [58] Fan J. R., Sun P., Zheng Y. Q., et al. A numerical study of a protection technique against tube erosion [J].Wear, 1999, V225-229:458-464
    [59]姚军,章本照,樊建人.弯管减磨方法的实验研究[J].动力工程,2000,20(4):792-796
    [60] Fan J. R., Yao J., Cen K. F. Antierosion in a 90o bend by particle impaction [J]. AIChE Journal, 2002, V48 (7):1401-1412
    [61]姚军.气固两相圆柱绕流的直接数值模拟和肋条弯管抗磨机理的数值试验研究[D].杭州:浙江大学,2002
    [62]姚军,陈丽华,樊建人,等.一种气固两相流中弯管抗磨方法的数值试验研究[J].中国电机工程学报,2002,22(5):134-138
    [63]林建忠,吴法理,余钊圣.一种减轻固粒对壁面冲蚀磨损的新方法[J].摩擦学学报,2003,(3):231-235
    [64]林建忠,朱泽飞,沈利平.气固两相边界层中拟序结构对壁面磨损的影响[J].工程热物理学报,2000,21(4):496-500
    [65]章本照,沈新荣,方建农.矩形截面弯管内气固两相流及对管壁磨损的数值分析[J].空气动力学学报,1995,13(4):435-441
    [66]章本照,陈洪波.曲线管道内颗粒运动及对管壁磨损的数值分析[J].空气动力学学报,1992,10(2):225-234
    [67]柳成文,毛靖儒,俞茂铮.90o弯管内稀疏气固两相流及固粒对壁面磨损量的数值研究[J].西安交通大学学报,1999,33(9):53-57
    [68]毛靖儒,柳成文,俞茂铮.弯管内气动防磨方法的数值检验及其应用[J].西安交通大学学报,2000,34(3):17-20
    [69]毛靖儒,柳成文,相晓伟.弯管内二次流对固粒磨损壁面的影响[J].西安交通大学学报,2004,38(7):746-749
    [70]郑友取,张新育.90o方形弯管内颗粒冲蚀磨损研究[J].热力发电,2007,(4):34-37,43
    [71]曹会敏,张少峰.弯管中液固两相流固粒对壁面磨损的数值模拟[J].石油和化工设备,2008,(1):4-8
    [72]梅丹,幸福堂.气固两相流风机磨损率的数值预测研究[J].流体机械,2007,35(10):25-28
    [73]梅丹.离心风机叶轮内气固两相流动及叶片磨损研究[D].武汉:武汉科技大学,2006
    [74] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. Journal of Aircraft, 1975, V12 (5):471-478
    [75]马志刚,方梦祥,王勤辉,等.矩形截面流化床内磨损特性的分析[J].中国电机工程学报,2007,27(23):227-232
    [76]马志刚,方梦祥,王勤辉,等.二次风对矩形流化床锅炉磨损特性的影响[J].燃烧科学与技术,2008,14(3):38-44
    [77]陈丽华,金军,樊建人,等.电站锅炉受热面管束防磨技术的研究[J].中国电机工程学报,1999,19(7):67-71
    [78]赵云华,何玉荣,陆慧林,等.流化床内沉浸管磨损特性的理论预测[J].中国电机工程学报,2007,27(2):6-10
    [79]黄勇,施哲雄,蒋晓东.CFD在三通冲蚀磨损研究中的应用[J].化工装备技术,2005,26(1):65-67
    [80]罗坤,刘小云,金军,等.气固管道流动中肋条防磨效率的数值研究[J].中国电机工程学报,2004,24(5):207-211
    [81]赵立新,朱宝军,张勇.基于离散相模型的双锥型水力旋流器磨蚀分析[J].化工机械,2007,34(6):317-320
    [82] McLaury B. S. Predicting solid particle erosion resulting from turbulent fluctuations in oilfield geometries [D]. Tulsa: The University of Tulsa, 1996
    [83] Nokleberg L., Sontvedt T. Erosion in choke valves-oil and gas industry applications [J]. Wear, 1995, V186-187:401-412
    [84] Shirazi S. A., Shadley J. R., McLaury B. S., et al. A procedure to predict solid particle erosion in elbows and tees [J]. Journal of Pressure Vessel Technology, 1995, V117:45-52
    [85] Wang J. R., Shirazi S. A., Shadley J. R., et al. Application of flow modeling and particle tracking to predict sand erosion rates in 90 degree elbows[J]. ASME FED, 1996, V236:725-734
    [86] Wang J. R., Shirazi S. A. A CFD based correlation for erosion factor for long-radius elbows and bends [J]. Journal of Energy Resources Technology, 2003, V125:26-34
    [87] Forder A., Thew M., Harrison D. A numerical investigation of solid particle erosion experienced within oilfield control valves [J]. Wear, 1998, V216:184-193
    [88] Edwards J. K. Development, validation, and application of a three-dimensional, CFD-based erosion prediction procedure [D]. Tulsa: The University of Tulsa, 2000
    [89] Barrientos T. Mechanistic model for erosion prediction in sudden expansions based on results from a computational fluid dynamics procedure [D]. Tulsa: The University of Tulsa, 2003
    [90] Chen X. H., McLaury B. S., Shirazi S. A. Effect of applying a stochastic rebound model in erosion prediction of elbow and plugged tee [J]. ASME FED, 2002, V257:247-254
    [91] Chen X. H. Application of computational fluid dynamics (CFD) to single-phase and multiphase flow simulation and erosion prediction [D]. Tulsa: The University of Tulsa, 2004
    [92] Chen X. H., McLaury B. S., Shirazi S. A. Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbow and plugged tee [J]. Computers & Fluids, 2004, V33:1251-1272
    [93] Chen X. H., McLaury B. S., Shirazi S. A. Numerical and experimental investigation of the relative erosion severity between plugged tees and elbows in dilute gas/solid two-phase flow [J]. Wear, 2006, V261:715-729
    [94] Zhang Y. L., McLaury B. S., Shirazi S. A. Effects of multiple impacts and size distribution of particles on erosion predictions using CFD [C]. Proceedings of FEDSM2007 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, California USA, 2007, FEDSM2007-37364:1-8
    [95] Zhang Y. L., McLaury B. S., Shirazi S. A. Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code [J]. Journal of Fluids Engineering, 2009, V131: 031303-1-9
    [96] Olson T. J., Ommen R. V. Optimizing hydrocyclone design using advanced CFD model [J]. Minerals Engineering, 2004, V17:713-720
    [97]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:2,215
    [98] Fluent user’s guild. Fluent Inc, Lebanon, USA, 2005
    [99]岑可法,倪明江,严建华,等.气固分离理论及技术[M].杭州:浙江大学出版社,1999:78-88
    [100]毛在砂.颗粒群研究:多相流尺度数值模拟的基础[J].过程工程学报,2008,8(4):645-659
    [101]郭慕孙,李洪钟.流态化手册[M].北京:化工出版社,2008:106
    [102] Clift R., Grace J R., Weber M E. Bubbles, Drops, and Particles [M]. New York: Academic Press, 1978:30-33,112,131
    [103]由长福,祁海鹰,徐旭常.Basset力研究进展与应用分析[J].应用力学学报,2002,19(2):31-33
    [104]《化学工程手册》编辑委员会.化学工程手册(第5卷).北京:化学工业出版社,1989,43-45
    [105]薛晓虎.旋风分离器全空间内气固两相流动特性的分析[D].北京:中国石油大学(北京),2005
    [106]张建.催化裂化三旋内部气固两相流动分析[D].东营:中国石油大学(华东),2009
    [107] Slack M. D., Prasad R. O., Bakker A., et al. Advances in cyclone modeling using unstructured grids [J]. Chemical Engineering Research and Design, 2000, 78(8): 1098-1104
    [108]曹晴云.CFB锅炉旋风分离器内气固两相流动的数值模拟[D].东营:中国石油大学(华东),2008
    [109] Benim, A. C., Nahavandi A., Syed K. J. URANS and LES analysis of turbulent swirling flows[J]. Progress in Computational Fluid Dynamics, 2005. 5(8): 444-454
    [110]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程, 2003, 18(4): 337-342
    [111] Kazuyoshi MATSUZAKI, Yasuhito KUDO, Mizue MUNEKATA, et al. A study of swirling flows in a cyclone separator using a large eddy simulation [J]. Journal of Environment and Engineering, 2007, 2(3): 632-642
    [112]王海刚.旋风分离器中气-固两相流数值计算与实验研究[D].北京:中国科学院,2003
    [113] Wegner B., Maltsev A., Schneider C., et al. Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments [J]. International Journal of Heat and Fluid Flow, 2004, 25(3): 528-536
    [114]陶文铨.数值传热学[M] .西安:西安交通大学出版社,2001:337-338,353-359
    [115]惠胜利.循环流化床锅炉用旋风分离器分离性能的实验研究[D].东营:中国石油大学(华东),2008
    [116]姬忠礼,时铭显.旋风分离器内流场的测试技术[J] .石油大学学报(自然科学版),1991,15(6):52-58
    [117]王建军. PDC型高效旋风管性能计算方法的研究[D],东营:中国石油大学(华东), 1998
    [118] Cortés C., Gil A. Modeling the gas and particle flow inside cyclone separators [J]. Progress in energy and Combustion Science, 2007, 33: 409-452
    [119] Karagoz I., Kaya F. CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone [J]. International Communication in Heat and Mass Transfer, 2007, 34(9-10): 1119-1126
    [120] Peng W., Hoffmann A. C., Boot P. J. A. J., et al. Flow pattern in reverse-flow centrifugal separators [J]. Powder Technology, 2002, 127(3): 212-222
    [121]胡瓅元,吴小林,时铭显.旋风分离器内颗粒轨迹的计算方法[J].中国石油大学学报(自然科学版), 1998. 22(4): 64-68
    [122]张海红.旋风分离器流场与分离性能的数值模拟研究[D],郑州:郑州大学,2004
    [123] Derksen J. J. Separation performance predictions of a stairmand high-efficiency cyclone [J]. AIChE Journal, 2003, 49(6): 1359-1371
    [124] Wang B., Xu D. L., Chu K. W., et al. Numerical study of gas-solid flow in a cyclone separator [J]. Applied Mathematical Modeling, 2006, 30(11): 1326-1342
    [125]吴小林,严超宇,时铭显.双入口直切式旋风分离器流场内旋进涡核现象的研究[J].化工机械,2002,29(1):1-4,7
    [126]吴小林,熊至宜,姬忠礼,等.旋风分离器旋进涡核的数值模拟[J].化工学报, 2007,58(2):383-390
    [127]吴小林,时铭显,曹颖.旋风分离器内旋进涡核现象及其分离性能的影响[J].过程工程学报, 2002,2(增刊):427-430
    [128]赵海鹏,张秀欣.旋风分离器涡核非稳现象的分析与研究[J].煤矿机械, 2004,7:43-45
    [129] Shi M. X. The cyclone separators performance under high temperature in PFBC Unit [J]. Heat Recovery & CHP, 1995, 15(2): 191-198
    [130]许世森,许晋源.温度和压力对旋风分离器高温除尘性能影响的研究[J] .动力工程,1997,17(2):52-58
    [131]万古军,魏耀东,薛晓虎,等.温度对旋风分离器内颗粒浓度分布影响的模拟[J] .燃烧科学与技术,2008,14(6):562-568
    [132]万古军,魏耀东,时铭显.高温条件下旋风分离器内气相流场的数值模拟[J] .过程工程学报,2007,7(5):871-876
    [133]魏耀东,宋健斐,陈建义,等.旋风分离器内气相流场的相似模化分析(Ⅰ)流动参数[J] .化工学报,2010,61(9):2265-2273
    [134]全国电力行业CFB机组技术交流服务协作网.循环流化床锅炉磨损机理及防治[M].北京:中国电力出版社,2008 :158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700