湖北铜绿山铜铁矿床地球化学特征与矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖北铜绿山铜铁矿床处于长江中下游铁铜成矿带西部鄂东成矿区内,是鄂东南地区典型的矽卡岩型铜铁矿床。矿体呈透镜状产于下三叠统大冶群第三至第七岩性段大理岩与铜绿山岩体的接触带。本文通过对铜绿山矿床硫、氢、氧、碳、铅同位素地球化学及稀土、微量元素地球化学研究,探讨了成矿热液中水、碳、硫、铅的来源以及成矿热液的演化,为了解热液和成矿物质来源进而为研究矿床成因提供依据。
     研究表明铜绿山石英二长闪长(玢)岩具有高硅、低镁、富碱(以钠为主)的特征。稀土配分曲线呈右倾斜型,即轻稀土富集,重稀土相对亏损。岩体富集大离子亲石元素Rb、Ba、Th、U、K、Sr,强烈亏损高场强元素Nb、Ta、Ti。
     矿床岩浆岩、矽卡岩、矿石、稀土元素配分曲线存在一定的相似性,均富集轻稀土,轻稀土部分较陡,重稀土部分趋于平缓,显示了铜绿山矿床与岩浆岩的密切联系。
     矿床成矿早期阶段流体主要来源于岩浆,后期大气降水比重加大;热液中的碳主要为深源岩浆来源,少量来自海相碳酸盐岩的溶解作用;矿石中硫化物的硫同位素组成特征反应了硫来自深源岩浆;矿石铅同位素组成稳定,为正常铅,主要来源于上侵过程中受地壳物质混染的幔源岩浆。
     通过LA-ICP-MS测得的铜绿山石英二长闪长玢岩的U-Th-Pb同位素等时线年龄为141±1.1Ma,与前人测得的矿床的成矿年龄137~140Ma,在误差范围内基本一致,存在较短的成岩成矿时差。铜绿山矿床与铜绿山岩体在时间、空间和成因上具有密切的联系。
Located in the southeastern Hubei metallographic province of the Middle-LowerYangtze River Fe-Cu metallogenic belt,the Tonglushan Cu-Fe deposit is a typicalskarn Cu-Fe deposit in the southeastern Hubei province. The ore bodies,in thelenticular forms, occur in the contact zone between the marble of4th-7th M embersof the Lower Triassic Daye Group. This paper mainly studied S,H,O,C,Pb isotopiccompositions, geochemistry of rare earth elements and trace elements, analyzed theindicative meaning of these isotopes to the ore fluids and the sources of theore-forming materials and intrusions to to provide basis for study of deposit genesis.
     The results show that Tonglushan rock body has the characteristics of highsilicon, low magnesium, rich alkali (mainly sodium). The REE distribution curves areof right inclination which indicates they are relative enrichment of LREE, relativedepletion of HREE. The rocks are highly enriched in the large ion lithophile elements(LILE) such as Rb, Ba, Th, U, K, Sr but strongly depleted in the high field strengthelements(HFSE)such as Nb,Ta and Ti.
     The magmatic rock,skarn,ore have similar REE distribution curves that they areall relative enrichment of LREE and the LREE part of the curves is steeper,whilethe HREE part is flatter shows that deposit has a close relation with the magma.
     Ore fluids were most likely composed of magmatic water at the earlyore-forming stage and mixed with much meteoric water at the late ore-forming stage;Sulfur and carbon isotopic data suggest that the ore forming materials were mainlyderived from the deep magma and the carbon derived subordinately from thedissolution of wall rocks or the mantle. The Pb isotopic composition of ore sulfidesare stable and they are ordinary common lead. Ore lead derived from mantle magmawhich was subjected to the hybridization of crust materials in the course of intrudedupward.
     The U-Th-Pb harmonic age of the rock body is141±1.1Ma,measured byLA-ICP-MS.The data indicate that the age of Tonglushan rock body are almostidentical to the mineralization age (137~140Ma) from previous researches. Tonglushan deposit has a close relation with the rock body in space time and genesis.
引文
Boynton W V.1984. Cosmochemistry of the rare earth elements.meteorite studies. DeuGeochem.,(2):63~114.
    Clayton R N, O' Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water.Geophys. Res.,1972,7:3057~3067.
    Emst,R.E.,Buchan,K.L.,2003.Recognizing mantle Plumes in the geological record. Ann RevEar th Planet Sci,v.31,P.469~523
    Friedman I and O’Neil J R. Compilation of stable isotope fractionation factors ofgeochemical interest//Fleischer M.U.S. Geological professional paper. Washington:U.S.Government Printing Office,1977:1~124.
    Flynn RT and Burnham CW.An experimental determination of rare earth partitioncoefficients between a chloride containing vapor phase and silicate melts.Geoch Cosmoch Ae ta,1978,42:685~701.
    Li J W, Zhao X F, Zhou M F, Ma C Q, de Souza, Z.S and VasconcelosP. Late Mesozoicmagmatism from the Daye region, eastern China: U–Pb ages, petrogenesis,and geodynamicimplications. Contributions to Mineralogy and Petrology,2009,157(3):383~409.
    Michard A.1989.Rare earth element systemaljes in hydrothermalfluids.Geoehim.Cosmoehi-m.Aeta,53:745~750
    Ohmoto Hand Rye R O. Isotopes of sulfur and carbon [A]. In:Barnes H L, ed. Geochemistryof hydrothermal ore deposits [C].New York: John Wiley&Sons,1979:509~567.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ.Geol,1972,67:551~578.
    Peter Koděra, Jaroslav Lexa, Anthony E. Fallick. Formation of the Vysoká–Zlatno Cu–Auskarn–porphyry deposit, Slovakia. Miner Deposita,2010,45:817–843
    Streckeien A. Le Maitre R.W.A chemical approximation to the model QAPF classification ofigneous rocks.Neues Yahrb.Mineral.Abh.1979,136:169~206
    Taylor B E. Magmatic volatiles:Isotope variation of C, H and S. Reviews inMineralogy.In:Stable isotopes in high temperature geological process.Mineralogical Society ofAmerica,1986,16:185~226.
    Taylor H P. The application of oxyen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposition. Econ. Geol.,1974,69(6):843~883.
    Veizer J,Holser W T,Wilgus C K. Correlation of13C/12C and34S/32S secularvariation.Geochim. Cosmochim.Acta,1980,44:579~588.
    Xie G Q,Mao J W,Zhao H J,Wei K T,Jin S G,Pan H J,Ke Y F and Du A D.2010.Timing ofskarn Cu~Au~Fe deposit from the Tonglushan ore district,Southeast Hubei,Middle-LowerYangtze River belt and its implication. Ore Geology Reviews.(in press)
    Yiming Zhao, Yongguan Dong, Daxin Li,et al. Geology, mineralogy, geochemistry, andzonation of the Bajiazi dolostone~hosted Zn–Pb–Ag skarn deposit, Liaoning Province, China. OreGeology Reviews,2003,23:153~182.
    Zartman R E and Doe B R. Plumbtectonics:The model. Tectonophysics,1981,75(1-2):135~162.
    Zhao ZF,Zheng YF,Wei CS,et al. Zircon isotope evidence for recycling of subductedcontinental crust in post~collisional granitoids from the Dabie terrane in China. GeophysicalResearch Letters,2004,VOL.31, L22602.
    Zheng Y F. Calculation of oxygen isotope fractionation in anhydrous silicateminerals.Geochimica et Cosmochimica Acta,1993a,57:1079~1091
    Zhu Guang, Wang Yongsheng, Liu Guosheng, Niu Manlan, Xie Chenglong, Li Changcheng.40Ar/39Ar dating of strike~slip motion on the Tan–Lu fault zone, East China. Journal of StructuralGeology,27(8):1379~1398
    陈培良.《长江中下游铁铜金银成矿规律》论文集编委会汇编.长江中下游铁铜金银矿产地质.冶金工业出版社,1996
    地质部宜昌地质矿产研究所同位素地质研究室.铅同位素地质研究的基本问题.北京:地质出版社,1979
    韩吟文,马振东.地球化学.地质出版社,2002
    黄崇轲,白冶,朱裕生,等.中国铜矿床.地质出版社,2001
    李长民.锆石成因矿物学与锆石微区定年综述.地质调查与研究,2009,33(3):161~173
    李建威,马昌前,赵新福,等.大冶地区晚中生代埃达克质侵入岩时代、成因及地球动力学意义.全国岩石学与地球动力学研讨会,2006
    李科,顾雪祥,董树义.山东沂南金铜铁矿床同位素地球化学研究.矿床地质,2009,28(1):93~103
    刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,2004,23(1):3~6.
    卢武长,杨绍全.利用氧键计算兰晶石、十字石等矿物的氧同位素分馏方程.矿物岩石,1982,(2):106~112.
    马光.鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向:[博士学位论文].湖南:中南大学,2005
    马松贵.铜绿山矿金云母矽卡岩含矿性研究.矿业研究与开发,1999,19:39~42
    毛景文,邵拥军,谢桂青,等.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,2009,28(2):109~119
    梅玉萍,李华芹,陈富文.鄂东铜绿山矿区石英正长闪长玢岩锆石SHRIMP U-Pb定年及其地质意义.地球学报,2008,29(6):805~809
    庞春勇.我国矽卡岩型铜矿床同位素地质特征及其“三位一体”成矿模式.矿产与地质,1995,9(5):368~374.
    邱瑞龙,杨义忠.铜官山地区矽卡岩型铜金矿床稀土元素特征及其成因意义.地球化学,1994,23(4):357~365
    瞿泓滢.安徽铜陵凤凰山矽卡岩型铜矿床成矿过程研究[博士学位论文]..北京:中国地质科学院,2010
    施俊法,唐金荣,周平,等.世界找矿模型与矿产勘查.北京:地质出版社,2010
    舒全安,陈培良,程建荣.鄂东铁铜矿产地质.北京:冶金工业出版社,1992
    苏欣栋,刘陶梅.同位素地质在鄂东南铜铁矿床地质研究中的应用.地质与勘探,1994,30(1):27~32
    谭洁,孙涛,王春梅,等.铜绿山深部矿体矿石工艺矿物学研究.现代矿业,2010,5:48~50
    谭秋明.鄂东南地区岩浆岩中的矿物包裹体特征及其地质意义.湖北地质,1991,5(1):36~46
    田世洪,丁悌平,侯增谦,等.安徽铜陵小铜官山铜矿床稀土元素和稳定同位素地球化学研究.中国地质,2005,32(4):604~612
    涂光炽.矿床地球化学.北京:地质出版社.1997
    王建中.安徽铜陵朝山金矿床成因及其成矿动力学背景[硕士学位论文].湖北:中国地质大学,2007
    魏克涛,李享洲,张晓兰.铜绿山铜铁矿床成矿特征及找矿前景.资源环境与工程,2007,21(增刊):41~42.
    吴言昌,常印佛.关于岩浆矽卡岩问题.地学前缘,1998,5(4):291~301
    谢桂青,赵海杰,赵财胜,等.鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-OS同位素年龄及其地质意义.矿床地质,2009,28(3):227~239
    谢桂青,李瑞丽,蒋国豪等.鄂东南地区晚中生代侵入岩的地球化学和成因及对岩石圈减薄时限的制约.岩石学报,2008,24(8)):1703~1714
    谢桂青,毛景文,李瑞玲,等.长江中下游鄂东南地区大寺组火山岩SHRIMP定年及其意义.科学通报,2006,51(19):2283~2291
    薛迪康,葛宗侠,张宏泰等.鄂东南铜金矿床成矿模式与找矿模型.中国地质大学出版社.1997
    徐晓春,陆三明,谢巧勤,等.安徽铜陵冬瓜山铜金矿床流体包裹体微量元素地球化学特征及其地质意义.岩石学报,2008,24(8):1866~1872
    徐晓春,陆三明,谢巧勤,等.铜陵狮子山矿田岩浆岩及金矿床的稀土元素地球化学.中国稀土学报,2006,24(5):615~625.
    晏久平.长江中下游地区地层与成矿的关系.中南矿冶地质,1998,l:30~62
    杨明银,崔彬,魏世昆,等.鄂东南徐家山金矿田成因研究.地质科学情报,2003,22:82~86.
    袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社,1985
    余宏全.鄂东成矿区铜金多金属矿床成矿地质条件深入研究(长江中下游铁铜金银矿产地质-为30届国际地质大会撰写).北京:冶金工业出版社,1996
    余元昌,李刚,肖国荃,等.湖北省大冶县铜绿山接触交代铜铁矿床.武汉:中国地质大学出版社,1985
    岳书仓,徐晓春.火山一侵入杂岩带的成岩一成矿专属性.地学前缘,1999,6(2):305~311.
    张泽湖,周承芝,欧阳南等.湖北省大冶市铜绿山铜铁矿床边深部普查找矿地质报告.大冶有色设计研究院有限公司,2008:1~22
    张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985
    张宗保.湖北铜绿山矿田成矿系统研究[博士学位论文].北京:中国地质大学,2011
    赵一鸣,林文蔚,毕承思等.中国地质科学院院报,1986,14:59~87
    赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床.北京:地质出版社,1990
    赵一鸣.矽卡岩矿床研究的某些重要进展.矿床地质.2002,21(2):113~117
    赵海杰,毛景文,向君峰,等.湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征.岩石学报,2010a,26(3):768~784.
    赵海杰.湖北铜绿山矽卡岩型型铁矿床地球化学及成矿机制[博士学位论文].北京:中国地质科学院,2010b
    赵斌,赵劲松,李兆麟,等.大冶-九江地区Fe,Cu(Au)和Au(Cu)矿床矽卡岩矿物里的熔融包裹体特征.中国科学,2002,32(7):550~561
    赵斌,赵劲松,刘海臣.长江中下游地区若干Cu(Au)、Cu~Fe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学.地球化学,1999,28(2):113~125.
    赵斌,赵劲松.长江中下游地区若干铁铜(金)矿床中块状及脉状钙质矽卡岩的氧锶同位素地球化学.地球化学,1997,26(5):34~53.
    赵丽丽.安徽铜陵狮子山矿田金矿床和铜矿床微量元素地球化学[博士学位论文]..安徽:合肥工业大学,2008
    赵新福,李建威,马昌前.鄂东南铁铜矿集区铜山口铜(钼)矿床40Ar/39Ar年代学及对区域成矿作用的指示.地质学报,2006,80(6):849~862
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000
    周涛发,岳书仓,袁峰,等.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究.中国科学(D辑),2000,30(增刊):123~128
    朱炳泉,李献华,戴童谟.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化.北京:科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700