轮腿式移动机器人平台运动学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现今的移动机器人为了满足在不同地形环境下快速行进和保持平稳的需要,大都采用两种或两种以上的复合行进方式,在不同环境下采用不同行进方式,极大地提高了机器人的地形适应能力。本文提出了一种新型的轮腿式移动机器人平台,其在平整地形环境下采用轮式行进方式,在非平整地形环境下采用轮腿复合行进方式。可跨越相当于1.2倍轮子直径高度的障碍,轻松爬上40°的斜坡,并可实现坡上制动,地形适应能力很强。本文详细叙述了轮腿式移动机器人平台的结构特点和尺寸参数,并就其驱动系统和轮腿系统的结构和工作原理作了详细说明,分析了其在不同地形环境下的行进策略和相应的姿态变化原理。
     对机器人平台进行了运动学分析,包括转向运动学分析、位姿模型分析和机器人平台参考点的位姿和轮腿末端姿态之间的变化关系。并运用MATLAB软件对逆运动学分析的结果进行了验证。
     分析了机器人平台的越障性能,就其越障能力与摩擦系数、结构尺寸之间的关系进行了分析。并求出了其在跨越台阶和沟槽时前后轮腿系统之间的转角关系,为机器人控制系统的设计做好了理论基础。
     用UG软件对机器人进行了运动学仿真。包括机器人模型的建立、装配、不同地形环境下的运动仿真。仿真结果验证了该设计方案的可行性和越障策略的正确性。并导出了其在不同地形环境下的驱动力曲线,从而为机器人电机的选型做好了理论准备。
Nowadays the mobile robot in order to satisfy the needs of quick trip and maintain stable in different terrain environment, mostly adopts two or more complex manner, using different travel mode in different environment, which has greatly enhanced the robot terrain adaptability. This paper presents a new type of wheel-legged mobile robot platform, it use wheeles march on a flat terrain environment and use wheel leg composite march method on a uneven terrain environment. It can span equivalent to 1.2 times wheel diameter high barriers, relaxed climb 40°slope, and can realize slopes braking, the terrain adaptability is strong.
     This paper describes the structure feature and size parameters of the wheel-legged mobile robot platform in detail , and describe its drive system and wheel-leg system structure and working principle in detail, analyses its march strategy and the corresponding posture change principle in different terrain environment.
     Carried out the kinematics analysis of the robot platform, including steering kinematics analysis, pose model analysis, and the relationship between the pose of the robot platform reference piont and the stance of the wheel-leg terminal. And used MATLAB to verify the result of the inverse kinematics analysis.
     Analyzes the over-obstacle performance of the robot platform, and analyzes the relationship between the over-obstacle performance and friction coefficient , structure size. And get the corner relationship of the front and rear wheel-leg system when it crossing step or groove, thereby make the theoretical basis ready for the robot control system design.
     Carried out the kinematics simulation of the robot by UG. Include robot model bulit, assemble, different terrain environment movement simulation.The simulation results verify the feasibility of this scheme and the correctness of the over-obstacle strategy. And export the driving force curves in different terrain environment, thus make the theoretical preparation ready for the robot motor selection.
引文
[1]张效祖.工业机器人的现状与发展趋势[J].世界制造技术与装备市场,2004,(5):1-3
    [2] I Han. Development of a stair-climbing robot using spring and planetary wheels. ImechE (2008) 1289~1296.
    [3] Fran?ois Michaud, Dominic Létourneau, Martin Arsenault,et. Multi-Modal Locomotion Robotic Plat- form Using Leg-Track-Wheel Articulations. Autonomous Robots. 2005,18:137~156
    [4] Takashi Kubota, Testuo Yoshimitsu. Asteroid Exploeration Rover. IEEE ICRA 2005 Planetary Rover Workshop, Barcelona, Spain, April, 2005.
    [5]侯国庆.移动机器人行走系统的运动学分析和稳定性研究:[硕士论文].天津:河北工业大学,2007.12
    [6] Koshiyama A,Yamafuji K. design and control of an all-directionsteering type mobile robot. The International Journal of Robotic Research. 1993,12(5):411~419
    [7]张伟.移动机器人的发展现状及其趋势[J].机器人技术,2001,(3):7-14 [ 8 ] Hidetoshi Ikeda, Yoshihito Katsumata, Michihikko Shoji, Takayuki Takahashi and Eiji Nakano. Cooperative Strategy for a Wheelchair and a Robot to Climb and Descend a Step. Advanced Robotics 22(2008)1439-1460
    [9] Yasuhisa Hirata, Zhidong Wang, Kenta Fukaya and Kazuhiro Kosuge. Transporting an Object by a Passive Mobot with Servo Brakes in Cooperation with a Human. Advanced Robotics23 (2009)387~404.
    [10] Parusha,Pulsifer. Understanding through Structure:The Challenges of Information and Navigation Architecture in Cybercartography[J]. Cartographica,2006,41(1):21-34
    [11]郭丽峰,陈恳,赵旦谱等.一种轮腿式变结构移动机器人研究,制造业自动化,2009,10(31):1~6
    [12] Estier T,Cransaz Y,Merminod B,et al. An innovative Space Rover with Extended Climbing Abilities. Proceedings of space and Robotics, Albuquerque, USA, February 27- March 2, 2000:781~786.
    [13] Hae Kwan Jeong, Keun Ha Choi, Soo Hyun Kim and Yoon Keun Kwak.. Driving Mode Decision in the Obstacle Negotiation of a Variable Single-Tracked Robot. Advanced Robotics22(2008)1421~1438.
    [14]陈惠宝,李婷,徐解民,等.关节式履带机器人的爬梯性能研究[J].电子机械工程,2006,2(22):60-63.
    [15]万宏.非平整地面六轮腿式移动机器人越障特性分析与研究:[硕士学位论文].南京:南京理工大学,2006.5
    [16]付廷贵,许瑛,杨光. 3自由度并联机构的位姿分析[J].南昌航空工业学院学报,2005,19(3):24-27
    [17]刘盾.六轮腿式移动机器人在非平整地面上的位姿分析、检测和控制:[硕士论文].南京:南京理工大学,2007.6
    [18]胡明,邓宗全,王少纯,等.月球探测车移动系统的关键技术分析[J].哈尔滨工业大学学报,2003,35(7): 795-798.
    [19]艾永强,马履中.一种三平移并联机器人运动学分析[J].机械设计,2005,22(11):19-22 [20 ] Fattah Abbas,Pusey Jason. Design and workspace analysis of a 6-6 cable-suspended parallel robot.Meehanism and Machine Theory. 2004.July,2004. 761-778
    [21]庞淑娟,倪受东.五自由度教学机器人的运动学分析及仿真[J].现代制造工程,2007(6):126-128
    [22] RuggiuM. Kinematics analysis of the CUR translationalmanipulator machine[J]. Mechanism and Machine Theory,2008,43(9):1087-1098
    [23] Kanaan D,WengerP,ChablatD. Kinematic analysis of a serial-parallelmachine to the VERNE machine[ J]. Mechanism andMachineTheory,2009,44(2): 487-498
    [24]王正林,刘明.精通MATLAB7[M].北京:电子工业出版社,2006,2-5
    [25]程刚.非结构化环境中移动机器人系统越障运动机理的研究:[博士学位论文].合肥:中国科学技术大学,2006.5
    [26]尚伟燕,李舜酩,邱法聚,等.新型四轮腿式月球车轮胎结构设计及分析[J].武汉理工大学学报. 2008,32(5):822-825
    [27] Bertrand R,Rieder R,Winnendael M V. European tracked micro-robot for planetary surface explorat- ion[J]. Space Technology,2001,20(2):55-64
    [28]张伯奋,郑菲,王振飞,等.理论力学[M].重庆:重庆大学出版社,2009,155-157
    [29]田海波,方宗德,周勇,等.轮腿式机器人倾覆稳定性分析与仿真[J].系统仿真学报,2009,21(13):4032-4034
    [30] Zhang C D,Song S M. Stability Analysis of Wave-crab Gaits aQuadruped[J]. Journal of Robotic Systems (S0741-2223),1990:243-276
    [31] Iagnemma K,Dubowsky S. Mobile Robot Rovgh-Terrain Control(RTC)for Planetary Exploration[C]. Proceedings of the 26th ASME Biennial Mechanisms and Robotics Conference. 2000:1-8
    [32]刘金国,王越超,李斌等.变形机器人倾翻稳定性仿真分析[J].系统仿真学报,2006,18(2):409-415
    [33] Chen Chuxin,Trivedi M. Reactive locomotion control of articulated-tracked mobile robots for obstacle negotiation[C]. The 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Jap,1993
    [34] Yoneda K,Hirose S. Three dimensional stability criterion of integrated locomotion and anipulation[J]. Journal of Robotics and Mechatronics(S0915-3942),1997,9(4):267-274
    [35] Elena Garcia,Pablo Gonzalez de Santos. An improved energy stability margin for walking machines subject to dynamic effects[J]. Robtica(S0263-5747),2005,23(11):13-20
    [36]赵海峰,李小凡,姚辰,等.新型轮-腿-履带复合移动机构及稳定性分析[J].机器人,2006,28(6): 576-581.
    [37] Chen C,Trivedim M. Reactive locomotion control of articulated tracked mobile robots for obstacle negotiation[A]. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. 1993, 1349-1356
    [38] Jiang L,Liu H. Autonomous control of multi-fingered hand[J]. Progress in Natural Science,2006,16(5):531-537
    [39] Sun D. Position synchronization of multiple motion axes with adaptive coupling control[J]. Automatica,2003, 39(6):997- 1005
    [40] Liu H,Wu K,Meusel P,et al. Multisensory five finger dexterous hand:The DLR/HIT Hand II[C]//IEEE/RSJ InternationalConference on Intelligent Robots and Systems. Piscataway,NJ,USA:IEEE,2008:3692-3697
    [41]李允旺,葛世荣,朱华等.四履带双摆臂机器人越障机理及越障能力[J].机器人,2010,32(2):157-164
    [42] P Gonzalez de Santos,E Garcia,J Estremera. Improving walking-robot performances by optimizing leg distribution[J]. Autonomous Robots (S0929-5593),2007,23(4):247-258
    [43] Iagnemma K,Rzepniewski A,Dubowsky S,et a1. Control of Robotic Vehicles with Actively Articulated Suspensions in Rough Terrain[J]. Autonomous Robots(S0929-5593),2003,14(1):5-16
    [44]梁大云.轮式与六杆机构复合移动机器人机械系统研究:[硕士论文].北京:北京交通大学,2008.6
    [45]宋振会. UG NX4.0三维建模基础教程[M].北京:清华大学出版社,2006. 6-8
    [46]章兆亮. UG NX5.0宝典.北京:电子工业出版社,2009. 85-97
    [47] (韩)金昌万. UG NX4权威指南—装配与运动仿真[M].北京:中国青年出版社,2007. 56-63
    [48]张晋西,张甲瑞,郭学琴. UGNX/Motion机构运动仿真基础及实例[M].北京:清华大学出版社,2009. 19-25.
    [49]胡小康. UG NX2运动分析培训教程.北京:清华大学出版社,2005. 84-96
    [50]张洪伟,陈书军,肖凯,等. UG NX高级应用指南.北京:中国水利水电出版社,2006. 153-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700