转炉钢渣的理化性质及资源化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢铁工业的发展,钢渣的排放量逐年增加。钢渣的大量堆积不仅是不可再生资源的浪费,而且对环境造成巨大的污染。这就需要人们对钢渣进行综合利用,变废为宝。当前钢渣主要用来建筑行业等低附加值产品,为了拓展其应用途径,有必要对钢渣的本征特性进行深入研究。
     本实验以鞍山、宝山和南京钢铁公司的转炉钢渣为研究对象,观察了钢渣矿物在扫描电子显微镜背散射电子像下的特征形貌,进而识别了特征形貌的矿物类型,最终确立了代表性矿物的典型组成。对水杨酸-甲醇溶液(SAM)萃取钢渣中硅酸盐相进行了可行性研究,分析钢渣比表面积、溶解时间和水杨酸浓度对萃取硅酸盐相量的影响,对萃取机理也进行初步探讨。再者,研究了钢渣的粉磨性,并与矿渣的易磨性做出比较。最后,研究了钢渣作为火山灰质混合材在机械活化和碱激发作用下的胶凝性能。
     通过转炉钢渣的显微形貌及矿物相研究,探明了主要矿物的特征形貌、固熔形式和典型组成。结果表明:在高碱度钢渣中,硅酸二钙(C_2S)呈圆粒状和树叶状,硅酸三钙(C_3S)呈六方板状,铁铝钙相和镁铁相呈不规则形貌;主要矿物相为C_2S、铁铝钙及镁铁相固溶体,还含有少量的C_3S、f-CaO和MgO;铁铝钙相的典型组成是铁铝酸钙,其表达式为Ca_2(Al,Fe)_2O_5,还发现长期以来由于组成未知而被人们定名为RO相的物质成分是镁铁相,其代表性组成是MgO·2FeO。
     在水杨酸-甲醇(SAM)溶液萃取钢渣中硅酸盐相实验中发现,SAM溶液萃取硅酸盐相效果理想,通过对硅酸盐相萃取量的测定,为钢渣胶凝活性的快速评价提供了方法。实验结果表明:常温下,5g比表面积为600m~2/kg的钢渣,经300mlSAM溶液(水杨酸浓度为0.2g/mL)萃取3h,钢渣中的硅酸盐相可完全溶解,其他矿物不溶或溶解甚微。对硅酸盐相溶解于SAM溶液的机理进行了初步探讨,可认为:硅酸盐相溶解是由于水杨酸电离出的配体(HO-C_6H_4-COO~-)与矿物表面阳离子(Ca~(2+))生成的络合物,通过键极化作用削弱Si-O键的稳定性,降低硅酸盐溶解活化能而致。
     钢渣粉磨性的研究结果表明,钢渣中70%的矿物具有良好的易磨性能,影响钢渣粉磨性能的并不是矿物本身,而是金属铁粒以及少量矿物的致密结构。钢渣主要矿物的难磨程度由高到低:首先是RO、C_2S,其次是Ca_2(Al,Fe)_2O_5,最后是氧化镁和Ca(OH)_2,这种粉磨性能的差异为其分离提供了有效的手段。同时发现,钢渣的易磨性优于矿渣。
     通过机械活化、碱激发和掺于矿渣等手段,转炉钢渣可制备出高活性火山灰质混合材。钢渣经过机械活化后,各龄期抗压强度都有显著增长,但活化效果差于矿渣。在碱激发作用下,1.2模数的水玻璃激发钢渣效果最好,但与矿渣相比激发效果不显著。由于水化过程的叠加效应,掺于一定量的矿渣可明显改善机械活化和碱激发效果。掺50%矿渣的钢渣,其2×2×2cm小试块的28d抗压强度可达48.6MPa。
With the development of iron and steel industry,the output of steel increased year after year.It brought us a mass of steel slag,which is not reproducible and will bring lots of environmental pollutions.It is necessarily for people to reuse the steel slag comprehensively turning the waste into useful material.At current time,the steel slag is used as component of cement and construction aggregate material.Deep research on physicochemical properties should be carried out to find new recycle way.
     Micro-structures of slag samples from 3 steel plants were observed by the back scattered electron images of SEM.The element composition was determined by energy dispersive X-ray analysis,in order to ascertain mineral category the composition,data of the mineral phases with the same morphology characteristics was analyzed by statistics.And the possibility of extracting silicate phase from steel slag by Salicylic Acid Methanol(SAM) Solution was studied,and effect of specific surface area of steel slag, dissolving period of samples,concentration of salicylic acid on the extraction mass of silicate phase were analyzed.Furthermore,the basic extraction theory was also studied.With the grinding process,the ease of grinding of steel slag was investigated,and the comparison of grinding performance between steel slag and the slag was made.The cementitious behavior of the steel slag activated by mechanical and alkaline process was also studied.
     With the study of micro-structure and the mineral phases of Converter Slag,the characteristic conformation,the form of solid solution and representative composition were determined.The results show that morphology of C_2S in high alkalinity slag is round or leaf shape,C_3S is hexagonal,and the phase of Fe_2O_3-Al2O_3-CaO and MgO-FeO all are irregular. The main phases in the slag are C_2S,Fe_2O_3-Al_2O_3-CaO and MgO-FeO solid solution,the minor mineral is C_3S,f-CaO and MgO.It was found that the representative composition of the Fe_2O_3-Al_2O_3-CaO phase is calcium aluminoferrite,the chemical formula of which is Ca_2(Al,Fe)_2O_5,the RO phase, which has been unknown for a long time,is MgO-FeO solid solution,its representative composition is MgO·2FeO.
     The possibility of extracting silicate phase from steel slag by SAM was studied,and the SAM solution showed good ability for extraction of silicate phases.One way for the determination of the cementitious performance of the steel slag was offered by the measurement of extraction amount of the silicate phases.The results show that,with the extraction for 3h at ordinary temperature,the silicate phase in 5g steel slag(600m~2/kg)can be totally extracted out,and only silicate phase was dissolved in SAM.It is in point that silicate phase extraction is due to forming the complex between legend of salicyclic acid and Ca~(2+)on the surface of mineral,which weakens the stability of Si-O bond,then decreases the activation energy of silicate phase.
     The grinding results showed that:the grinding performance of steel slag was influenced by metal grains and compact configuration of some mineral, instead of the steel slag itself,the ease of grinding performance listed in descending order is RO,C_2S,Ca_2(Al,Fe)_2O5,MgO and Ca(OH)_2,the different grinding performance of which provide us a effective way for the separation of the steel slag.The grinding performance of steel slag was much better than that of slag.
     The cementitious ability of steel slag,from which preparation of high activation pozzolanic materials,was studied by several ways.And its cementitious performance improved a lot with the mechanical process. However,the mechanical activation effect of steel slag is inferior to the slag. For the lower amount of glass state contained in steel slag,it was difficult to activated than slag.Cementitious performance improved by mixing into the stag in evidence,as a result of compound function of hydrate process.And the compressive strength for 28d of 2×2×2cm specimen with 50%steel slag was 48.6Mpa.
引文
[1]张雷,王飞,陈霞.钢铁渣资源开发利用现状和发展途径初探[J].中国废钢铁,2006,(1):42-44
    [2]朱桂林.加快钢铁渣资源化利用是钢铁企业的一项紧迫任务[J].中国废钢铁,2006,(6):33-42
    [3]朱桂林.中国钢铁工业固体废物综合利用的现状和发展[J].废钢铁,2003,(1):12-16
    [4]Shi C,Day RL.Early strength development and hydration of alkali-activated blast fumace slag:fly ash blends[J].Adv Cem Res,1999,11:189-96.
    [5]Caijun Shi.Characteristics and cementitious properties of ladle slag fines from steel production [J].Cement and Concrete Research,2002,32(3):459-462
    [6]Caijun Shi,Jueshi Qian.High performance cementing materials from industrial slags-a review[J].Conservation and Recycling,2000,29:195-207
    [7]Mason B.The constitution of some open-heart slags[J],Journal of Iron and Steel Institute,1994,(11):69-80
    [8]Murphy J.N,Meadowcroft T.R,Barr P.V.Enhancement of the cementitious properties of steelmaking slag[J].Canadian Metallurgical Ouarterly,1997,36(5):315-331
    [9]欧阳东,谢宇平.转炉钢渣的组成、矿物形貌及胶凝特性[J].硅酸盐学报,1991,12:56-58
    [10]唐明述.从矿物组成探讨用钢渣制造水泥[J].南京化工学院院报,1974,(2):65-76
    [11]冷光荣,程柏生.钢渣综合利用[J].江西冶金,2003,(6):125-128
    [12]唐为军.钢渣处理新工艺[J].江苏冶金,2005,33(3):53-54
    [13]刘绍璋.武钢三转炉将采用渣箱热泼技术[J].炼钢,1996,(2):45-62
    [14]刘佩忠.张建良钢渣风碎粒化技术[J].炼钢,1997,(3):33-37
    [15]谭策衡.热泼渣技术及其应用[J].上海宝工程设计,2001,(1):29-34
    [16]沈成孝.滚筒法渣处理技术的现状及发展[J].冶金设备,2003,(6):1-4
    [17]沈成孝.宝钢新型钢渣处理技术[J].中国冶金,2004,(5):32-34
    [18]宋坚民.几种钢渣处理技术[J].上海金属,1999,(5):14-17
    [19]蒲心诚,王勇威.高效活性矿物掺料与混凝土地高性能化[J].混凝土,2002,(2):3-6.
    [20]胡曙光,韦江雄,丁庆军.水玻璃对钢渣水泥激发机理的研究[J].水泥工程,2001,5:32-35
    [21]杨杨,许四法,方诚.电炉钢渣胶凝材料的研究[J].浙江工业大学学报,1995,(4):67-74
    [22]李有光,龚七一,扬汝仕.粉煤灰钢渣复合砌筑水泥的研制[J].房材与应用,1995,3:29-33
    [23]肖琪仲,钱光人.钢渣在高温高压下的水热反应[J].硅酸盐学报,1999,4:15-18
    [24]林宗寿,陶海征,涂成厚.钢渣粉煤灰活化方法研究[J].武汉理工大学学报,2001,(23)2:4-7
    [25]李军华.钢渣微粉在水泥及混凝土中的作用[J].山东建材,2002,(4):21-22
    [26]陆雷,温金保,姚强.钢渣的机械力化学效应研究[J].钢铁钒钛,2005,26(2):39-43
    [27]田春云,鞠玉红.水泥助磨剂的发展概述[J].精细与化学专用品,2002,(15):12-13
    [28]许远辉,陆文雄,秀娟,等.钢渣活性激发的研究现状与发展[J].上海大学学报,2004,10(1):91-95
    [29]徐彬,邓国柱,张天石.碱激发钢渣水泥研究[J].重庆环境科学,1998,(6):39-41
    [30]李勇,孙树杉.提高钢渣水泥的强度和改善其性能的研究[J].冶金工业部建筑研究总院院刊,1998,(4):54-61
    [31]周选伍.涟钢冶金渣的综合利用实践[J].废钢铁,2003,31(1):46-48
    [32]刘树振.钢渣在炼钢领域中的应用[J].炼钢,1994(6):54-58
    [33]李灿华,钟风万.钢渣治理与利用技术的进展[J].武钢技术,2006,44(1):53-56
    [34]朱桂林.钢铁渣研究开发的现状与发展方向[J].废钢铁,2001,1(2):1-5
    [35]江勤,陆雷,董巍,等.复合废渣微晶玻璃的试验研究[J].中国矿业,2006,14(4):42-45
    [36]任玉森,张宏伟,顾德仁,等.钢渣在农业领域的应用研究(一)[J].宝钢技术,2005,(3):61-6
    [37]许远辉,陆文雄,秀娟,等.钢渣活性激发的研究现状与发展[J].上海大学学报,2004,10(1):91-95
    [38]胡曙光,韦江雄,丁庆军.水玻璃对钢渣水泥激发机理的研究[J].水泥工程,2001,(5):4-7
    [39]陈益民,张洪滔,郭随华,等.细钢渣粉作水泥高活性混合材料的研究[J].水泥,2001,(5):1-3
    [40]徐光亮,陈金祥,刘莉.采用分别粉磨提高钢渣细度增加钢渣掺量[J].山东建材,1998,(6):3-5
    [41]Ahmad M,Masoud K A.Producing Portland cement from iron and steel slags and limestone[J].Cement and Concrete Research,1999,29:1373-1377
    [42]Ionescu D.Meadowcroft T R.Early age hydration kinetics of steel slag[J].Advance in Cement Resarch,2001,13(1):21-30
    [43]赵三银,赵旭光,梁炜峰.转炉钢渣细粉的粉体特性[J].韶关学院学报,2006,26(7):79-82
    [44]李军华.钢渣微粉在水泥及混凝土中的作用[J].山东建材,2002,(4):21-22
    [45]Alton I A.Study on steel furnace slags with high MgO as additive in Portland cement[J].Cement and Concrete Research,2002,32(8):1247-1249
    [46]孙树杉,朱桂林.钢铁渣作水泥和高性能混凝土掺合料[J].废钢铁,2001,(2):23-27
    [47]张云莲,史美伦,陈志源.钢渣掺合料对水泥基材料渗流结构的影响[J].建筑材料学报,2005,8(3):316-320
    [48]Shaopeng Wu,Yongjie Xue,Qunshan Ye,Yongchun Chen.Utilization of steel slag as aggregates for stone mastic asphalt mixtures[J].Building and Environment,2006,42(7):2580-2585
    [49]方金兰.钢渣在道路工程中的应用研究[J].北方交通,2006,(8):9-11
    [50]武志芬.钢渣在路基和路面结构层中的应用[J].山西交通科技,2004,(1):25-26
    [51]邓明.钢渣在工程中的合理应用[J].工业建筑,2005,35:940-941
    [52]董晓丹,王涛.钢渣在污水处理及生态治理牛的应用[J].炼钢,2006,22(2):57-61
    [53]柳荣展,李志国,刘绪利,等.纺织染整工业废水污染物回收与废水处理[J].针织工业,2004,(5):115-120
    [54]谢复青.改性钢渣处理碱性品红染料废水研究[J].广东化工,2005,(9):75-85
    [55]谢复青.改性钢渣处理亚甲基蓝染料废水研究[J].针织工业,2006,1:68-70
    [56]马少健,刘盛余,胡治流,等.钢渣吸附剂对铬和铅重金属离子的吸附特性研究[J].有色矿冶,2004,20(4):57-59
    [57]宁丰收,游霞,杨海林,等.钢渣预处理含铬废水及其废渣与铬渣的固化[J].环境污染治理技术与设备,2006,7(4):120-123
    [58]刘平,马少健,蒋艳红.钢渣吸附剂去除废水中氟的试验研究[J].有色矿冶,2005,7:121-122
    [59]Manual-constructed wetlands treatment of municipal wastewaters[R].USA:National Risk Management Research Laboratory,1999
    [60]Drizo A,Frost C A,Grace J.Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems[J].Water Research,1999,33(17):3595 - 3602
    [61]欧阳东,谢宇平,何俊元.转炉钢渣的组成、矿物形貌及胶凝特性[J].硅酸盐学报,1991,19(6):488-493.
    [62]王玉吉,叶贡欣.氧气转炉钢渣主要矿物相及其胶凝性能的研究[J].硅酸盐学报,1981,9(3):302-309.
    [63]徐光亮,钱光人,赖振宇,等.低碱度钢渣基油井及地热井胶凝材料的研究--Ⅰ低碱度钢渣的化学成分、矿物组成和矿相和矿相特征[J].西南工学院学报,2000,15(1):10-14.
    [64]唐明述,袁美栖,韩苏芬,等.钢渣中MgO、FeO、MnO的结晶状态与钢渣的体积安定性[J].硅酸盐学报,1979,7(1):35-46.
    [65]胡曙光,韦江雄,丁庆军.水玻璃对钢渣水泥激发机理的研究[J].水泥工程,2001,(5):4-7
    [66]陆雷,温金保,姚强.钢渣的机械力化学效应研究[J].钢铁钒钛,2005,26(2):39-43.
    [67]Tossavainen M,Engsteom F,Yang Q,et al.Characteristics of steel slag under different cooling conditions[J].Waste Manage,2007(27):1335-1344
    [68]江勤,陆雷,董巍,等.复合废渣微晶玻璃的试验研究[J].中国矿业,2006,14(4):42-45.
    [69]Shaopeng Wu,Yongjie Xue,Qunshan Ye,et al.Utilization of steel slag as aggregates for stone mastic asphalt(SMA)mixtures[J].Build Environ,2007(42):2 580-2585
    [70]欧阳东,谢宇平,何俊元.转炉钢渣的组成、矿物形貌及胶凝特性[J].硅酸盐学报,1991,19(6):488-493
    [71]王玉吉,叶贡欣.氧气转炉钢渣主要矿物相及其胶凝性能的研究[J].硅酸盐学报,1981,9(3):302-309
    [72]肖琪仲,钱光人.钢渣在高温高压下的水热反应[J].硅酸盐学报,1999,27(4):427-436
    [73]唐明述,袁美栖,韩苏芬,等.钢渣中MgO、FeO、MnO的结晶状态与钢渣的体积安定性[J].硅酸盐学报,1979,7(1):35-46
    [74]Takashima S.Systematic dissolution of calcium silicate in commercial Portland cement by organic acid solution[J].Jpn Cem EngAssoc,1958,(5):12-13.
    [75]Gutteridge W A.On the dissolution of the interstitial phases in Portland cement[J].Cem Concr Res,1979,9(2):319-324
    [76]欧阳东.转炉钢渣粉磨性能的试验研究[J].水泥工程,1997,2:36-38
    [77]谭凯旋,张哲儒,王中刚.矿物溶解的表面化学动力学机理[J].矿物学报,1994,14(3):207-214
    [78]Furrer G,Stumm W.The coordination chemistry of weathering:I.Dissolution kinetics of d-Al_2O_3 and BeO[J].Geochim Cosmochimi Acta,1986 50(9):1847-1860
    [79]胡华锋,刘世亮,介小磊,等.低分子量有机酸对矿物的溶解作用[J].农业基础科学,2005,21(4):104-109
    [80]徐光亮,陈金祥,刘莉.采用分别粉磨提高钢渣细度增加钢渣掺量[J].山东建材,1998,(6):3-5
    [81]国家环境保护局编.钢铁工业固体废物治理[M].北京:中国环境科学出版社,1992
    [82]Proctor D M.Physical and chemical characteristics of blast furnace,basic oxygen furnace,and electric arc furnace steel industry slags[J].Environ.Sci.Technol,2000,34:1576-1582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700