废弃环氧树脂再生技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热固性塑料作为塑料中的一大类,其制品已广泛渗入到生产和生活的各个领域,如用于制造建筑板材、汽车零部件、电子元器件、印制线路板(PCB)等。随着热固性塑料制品生产规模、需求不断扩大以及各类电子电器产品报废高峰期的到来,废弃热固性塑料,尤其是用于制造电子组件的环氧树脂塑料废弃量也随之剧增。靠传统的填埋或焚烧处理已不能满足可持续发展要求,然而热固性塑料不熔(溶)的特性又导致其不能像热塑性塑料那样采用重新加热熔融的方法将其再生利用。随着世界各国对电子废弃物资源化利用率要求越来越高,研发环境友好、经济可行的废弃环氧树脂再生技术势在必行,无论从资源循环利用还是环境保护角度看,都具有十分重要的意义。
     本课题以电子元器件封装用固化环氧树脂的生产废弃料为研究对象,进行了废弃环氧树脂再生技术的研究,利用废弃环氧树脂回收粉料(以下简称废环氧粉)与聚氯乙烯(PVC),经共混、模压工艺制备了具有较好应用前景的复合材料,深入分析了复合材料结构和性能的关系及其界面结合机理,优化了材料的配方和工艺条件,并在工厂中试生产了一种实用的再生产品,拟最大限度地实现废弃环氧树脂的资源化,最后进一步开展了应用硅烷偶联剂提高复合材料性能的研究。
     对废弃环氧树脂粉料的组成和性质进行了研究,采用红外光谱(FT-IR)、扫描电镜(SEM)和X射线能谱分析(EDS)等测试手段,分析得到该废环氧粉主要由形状不规则、表面粗糙的固化环氧树脂颗粒和球形的SiO2粉组成,粉料表面存在羟基、醚基、羰基、环氧基等活性和极性基团,并分析提出将废环氧粉与PVC共混,且以高填充量制备复合材料,具有一定的可行性。
     采用模压成型法研究制备了废弃环氧树脂复合材料,研究了废环氧粉的粒径、填充量以及模压工艺参数对复合材料力学性能的影响,并找出最佳的模压工艺参数组合。结果表明:细粒径的废环氧粉对复合材料力学性能有利;随着废环氧粉填充量的增加,复合材料力学强度整体呈下降趋势,其中冲击强度下降最明显;当废环氧粉填充量达60%(质量分数,下同)时,在最佳模压工艺操作下,复合材料的拉仲强度、冲击强度、弯曲强度和弯曲模量分别为34.65MPa、5.2KJ/m2、60.94MPa和6.1GPa,远超过普通木塑复合材料性能。在高比例填充时(≥50%),废环氧粉已成为主体材料被利用,而PVC和其它添加剂只起到粘合剂的作用将废环氧粉粘合成一个整体,相对于目前将其作为低组分填料在热塑性塑料中的应用研究而言,本课题的研究在一定程度上有助于提高废环氧粉的再利用率,具有较好的实际意义。
     探讨了废环氧粉/PVC复合材料的微观界面结构与性质,研究了在界面上可能发生的表面接枝反应并对反应过程进行了分析。将废环氧粉/PVC共混物经索氏抽提溶解掉物理吸附的PVC后,得到的残余物经FT-IR测试分析,结果证明PVC分子链在废环氧粉表面产生了化学接枝反应,该接枝反应可能是发生于废环氧粉中环氧基、羟基与PVC分子链间的亲核反应。说明废环氧粉与PVC界面间不但存在主要的次价键力作用,还存在强的主价键力作用,从而形成了多相性的整体网络结构,对复合效果起到关键的作用。SEM观察发现,废环氧粉和PVC基体间具有一定的界面相容性,两者接触面上有接枝交联点产生,但断面上界面处发生开裂和脱粘,说明界面结合力还有进一步提高的空间。
     为了正确了解配方中各组分的作用及其相互影响,为接下来进一步投入生产试制产品作准备。本课题在转矩流变仪上模拟实际生产条件,研究了不同助剂和添加剂对废环氧粉/PVC共混体系流变性能的影响规律。研究表明:丙烯酸酯类加工助剂ACR-401主要在塑化初期促进体系塑化;抗冲改性剂CPE-135A在缩短塑化时间的同时,能提高材料的冲击强度但也使材料的拉伸强度降低,本课题以4-6份为宜;废环氧粉对润滑剂有较强吸附作用和削弱作用,并得到在CaSt2和石蜡两者等量配比时能发挥润滑协同效应,且此时材料的耐冲击性能最好。
     在工厂进行了实用产品的生产研究,建立了采用锥形双螺杆挤出机挤出生产废弃环氧树脂再生产品的生产工艺流程,对各工艺环节和工艺参数进行了分析和优化。最终本课题成功生产了一种货运托盘,该托盘产品静载可达2000kg,动载为1000kg,已能达到市场上作为集装箱运输货物托盘的基本要求,而且还能满足货运托盘耐高温、耐冲击和耐酸度要求。对该生产线进行简单的成本效益分析表明,生产该托盘产品可带来一定的经济效益,同时还具有较好的环境效益和社会效益。
     研究了偶联剂在改善废弃环氧树脂复合材料性能中的应用,以硅烷偶联剂KH-550为例,分析了其偶联作用机理,并与未添加偶联剂时复合材料的性能进行了对比分析。结果表明:KH-550不但能有效改善复合材料的力学性能,还有利于改进共混体系的塑化和加工热稳定性;SEM观察结果也说明KH-550提高了废环氧粉和PVC间的界面结合强度,因而宏观上表现出复合材料更佳的力学性能。添加偶联剂后,废环氧粉/PVC复合材料的拉伸强度和弯曲强度均超过了国内普通工程塑料的要求,进一步提升了复合材料的可应用领域和产品附加值。
     对复合材料进行了动态热力学分析(DMA)和维卡软化点(VST)测试,结果说明:一方面,废环氧粉自身具有一定的增强耐热作用,因而使复合材料的储能模量、玻璃化转变温度和维卡软化点随废环氧粉含量的增加而提高;另一方面,废环氧粉与PVC相互作用形成了界面层,加入KH-550后使界面层强度提高,因而使复合材料的损耗模量和损耗因子峰值降低,复合材料的刚性和耐热性得到进一步改善。
     本课题的研究成果不仅为废弃环氧树脂的再生利用提供了技术支持,而且为其它种类废弃热固性塑料的资源化技术研究提供了重要的科学依据。
Thermosetting plastic, as one large category of plastic, generally applied in structural parts, stress parts and functional parts, its products have been widely permeated into every realm of society, such as in producing of construction formwork, automotive components, electronic components, printed circuit boards (PCB) and so on. The amount of waste thermosetting plastic, especially cured epoxy resin which applied in manufacturing of electronic components, is increasing dramatically as the growing of production scale and demanding for thermosetting plastic, let alone the arrival of discarding peak of various electronic and electrical products. The waste is now mainly treated by simple landfill or incineration, which can not meet the requirement of sustainable development. Owing to non-melt and indissoluble properties of thermosetting plastic, its waste can not be recycled by re-melting method, which is commonly applied to reclaim waste thermoplastics. Either from resource-recycling, or from environmental protecting view of point, as the increasing level for utilization rate of e-waste around the world, it is an imperative issue to develop environment-friendly and economically feasible recycling technologies of waste cured epoxy resin.
     In this paper the recycling and reutilization of waste cured epoxy resin have been studied. The research object in this thesis was the mold residue of epoxy molding compound, which was generated as industrial waste in the molding process of electronic components packages. A physical method has been applied for reusing waste cured epoxy resin powders (waste epoxy powders) into poly (vinyl chloride) (PVC) blend to prepare composites. The relationships between the structure and the properties of the composites have been studied, both of the formulations and process conditions have been optimized, meanwhile a regenerative product has been preliminary developed, with the aim to reclaim waste cured epoxy resin and maximize its reutilization. Furthermore, a coupling agent has also been applied and studied to improve properties of the composites.
     The components and properties of waste epoxy powder have been studied by using infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray energy spectrum analysis (EDS). The results showed that waste epoxy powders mainly consisted of irregular cured epoxy resin particles with rough surface, and spherical silica powder. There are active and polar functional groups on the surface of the powder, such as hydroxyl groups, ether bonds, carbonyl, epoxy groups and so on, which make the powders have a certain activity. All the above functional groups make it possible to have both physical and chemical interactions between PVC chain and waste epoxy powders, which would contribute to miscibility between different phases in the blends, consequently the feasibility of blending waste epoxy powder with PVC resin, even at a high portion, was proposed.
     In the laboratory stage, waste cured epoxy resin was reused to produce regenerative composites by compression molding method. The effects of filler size and content on the mechanical properties of composites were investigated; the optimized molding parameters have been explored. The results showed that the smaller size of waste epoxy powder was benefit to mechanical properties of the composites. Simply blending of waste epoxy powder without any surface modification and PVC would result in the significant decline of the mechanical properties of the composites, especial for the impact strength. When the powder content was up to 60wt%, under optimized molding conditions, waste epoxy powder/PVC composites showed excellent mechanical properties, with tensile strength of 34.65MPa, impact strength of 5.2 KJ/m2, flexural strength of 60.94MPa and flexural modulus of 6.1GPa, which displayed much better mechanical performance than ordinary wood-plastics composites. It should be noticed that when waste epoxy powders are added at high ratio (>50wt%), the powders can not be counted as a filler component of "PVC composites", but become the main material, while PVC and other additives only play the role of adhesive in the composites to bond the powders together. Compared to be just as a general filler in thermoplastic, waste epoxy powder can be the main material to be reused, which indicates a distinguished increment of reutilization rate and shows its good practical sense.
     The structure and properties of the interface in waste epoxy powder/PVC composites have been studied; the mechanism of surface grafting reaction was also discussed. After dissolved PVC of the blends by Soxhlet extraction, the final residue was tested by FT-IR spectrometer, the results indicated that PVC chain had grafting onto the surface of waste epoxy powder, and concluded that the grafting reaction may attribute to nucleophilic substitution, which occur between hydroxyl or epoxy and PVC chain labile sites. A stable boundary layer structure was constructed, because there was not only the main physical adhesion (secondary bond force) existed, but also the strong chemical binding (primary bond force) existed between waste epoxy powder and PVC. SEM photos showed partly strong interfacial bonding, and crosslinking points on the interface, however, the interfacial cracking and debonding indicated that further improvement of interfacial bonding could be made in future.
     In order to prepare for the next trial in workshop, it is very important to understand the roles of each component in formulations and their interactions to each other. The effects of different additives on rheological behavior of waste epoxy powder/PVC blends have been studied by torque rheometer. It can be concluded that the processing aid ACR-401 promotes the fusion of PVC mainly in initial stage; the impact modifier CPE-135A could shorten the fusion time, and improves the impact strength meanwhile decreases the tensile strength of the composites, in this experiment the proper content was 4-6 phr; the internal and external lubricating effects of the various lubricants are weakened by waste epoxy powder, due to its high portion and absorption of lubricants; When CaSt2 and wax with equivalent ratio are added, the best impact property of composites can be reached.
     A practical product trial has been done in workshop, with the aim to develop a new process for making regeneration products by conical twin-screw extruder. In this paper, a kind of freight pallet has been developed successfully. The results of heap pressure, impact strength, heat and acid resistance tests showed that the produced pallet with static loading of 2000kg, dynamic loading of 1000kg, and good heat and acid resistance, all of which could meet the requirements for container transportation pallet. Results of simple cost-benefit analysis indicated that the developed regeneration technology would bring wonderful economic, social and eco-benefits.
     Application of coulping agent on improving waste cured epoxy resin regeneration composites has been investigated. Take silane coupling agent KH-550 as an example, the effects of KH-550 and its coulping mechanism have been studied and analyzed. The results displayed that KH-550, could not only strengthen and toughen the composites, but also help improving plasticizing and processing stability of the blends; SEM photos also showed that KH-550 improved the interfacial bonding between waste epoxy powder and PVC, which leaded to better mechanical performance. Both of the tensile strength and flexural strength of the modified composites exceeded the requirements for national ordinary engineering plastic, which meant that higher value-added products could be manufactured and further scope of application would be prospected.
     Dynamic mechanical thermal analysis(DMA) and Vicat softening temperature(VST) of the composites were measured. It can be concluded, in one aspect, the unmodified waste epoxy powder has some properties of strengthen and heat resistance, which could improve storage modulus, Tg and VST of the composites; in the other aspect, interfacial layer was formed owing to interactions between waste epoxy powder and PVC, and the interfacial layer was strengthened by adding KH-550, with declining trend of loss modulus and loss factor peak of the composites, it also indicated the improvement of rigidity and heat resistance of the composites after using KH-550.
引文
[1]张玉龙.常用热固性塑料及其成型技术[M].浙江:科学技术出版社,2004
    [2]刘均科.塑料废弃物回收与利用技术[M].北京:中国石化出版社,2001:191-213
    [3]李光耀,任广英.塑料在汽车工业上的应用及发展前景[J].橡塑技术与装备,2005,31(2):47-50
    [4]刘际泽.日本塑料回收现状[J].塑料,2006,35(1):23-30
    [5]刘际泽.西欧国家塑料回收现状[J].塑料,2002,31(3):43-47
    [6]Liu S L, Chen G, Yong M S. EMC characterization and process study for electronics packaging [J]. Thin Solid Films,2004,462(11):454-458
    [7]张爱仙,蔡杰..我国废旧塑料的回收现状与发展分析[J].化工技术经济,2004,10(6):12-15
    [8]曾一铮,游长江.热固性聚合物基复合材料废弃物回收利用进展[J].广州化学,2009,34(2):54-59
    [9]罗乐娟,竺宏亮.废旧家电逆向物流的激励机制研究[J].物流技术,2004,24(11):72-74
    [10]刘功.车用热固性废材可用于水泥生产[J].塑料科技,2007,35(5):42-43
    [11]胡鹏山,周伟.汽车回收工程与循环经济研究[J].中国资源综合利用,2000,18(4):8-11
    [12]王继辉,邓京兰.热固性复合材料的回收与利用[J].玻璃钢/复合材料,1997,24(5):37-40
    [13]苏庆平,周俊治,史征绥.“白色污染”及废旧塑料的回收利用[J].四川环境,2000,19(4):26-29
    [14]马占峰.废旧塑料循环应用遭遇成长烦恼[J].中国包装工业,2006,15(10):63-64
    [15]邢艳红,胡莹.“白色污染”及废旧塑料的综合治理[J].青海师范大学学报,2003,48(4):65-67
    [16]张爱仙,蔡杰.我国废旧塑料的回收现状与发展分析[J].化工技术经济,2004,22(10):12-15
    [17]庾莉萍.国内外塑料循环利用和新技术进展情况[J].湖南包装,2006,19(7):12-16
    [18]饶兴鹤.美国塑料瓶回收利用率创新高[J].国外塑料,2006,24(4):13-14
    [19]钱伯章,朱建芳.废塑料回收利用现状与技术进展[J].化学工业,2008,26(12):33-40
    [20]李洁净.日本废塑料的回收[J].中国包装工业,2006,15(10):65-67
    [21]金白.日本开发塑料回收新工艺[J].再生资源研究,2006,27(4):44
    [22]彭琳.日本Hagihara工业公司开发出高效塑料回收系统[J].国内外石油化工快报,2006,34(10):25
    [23]钱伯章.国外废旧塑料回收利用概况[J].橡塑资源利用,2009,40(6):27-32
    [24]陈红,李丽娟.2005~2006年国外塑料工业进展[J].塑料工业,2007,38(3):1-25
    [25]钱伯章.欧美废旧塑料回收利用近况[J].国外塑料,2010,28(3):58-61
    [26]汪海,杨松伟,陈庆华.简析废旧塑料回收现状[J].中国资源综合利用,2009,27(7):11-13
    [27]戴宏民.绿点公司的组织、运作和资源化[J].包装工程,2003,24(1):8-11
    [28]罗亚明,李越,刘晓文.保护环境离不开“绿点”[N].中国包装,2002-3-29(3)
    [29]本刊编辑部.国外塑料回收情况、处理方法、相关立法[J].国外塑料,2006,24(11):52-64
    [30]王冠.欧盟WEEE指令和RoHS简介及其对我国电子电气产业的影响[J].上海计量测试,2007,35(2):36-38
    [31]马占锋.2006中国塑料回收再生利用年度报告[J].国外塑料,2007,25(8):20-30
    [32]关成,姜子波,何松元,等.中国塑料回收行业现状分析及发展前景[J].塑料,2009,38(3):36-38
    [33]秦鹏.国外再生资源回收利用立法对我国的启示[J].有色金属再生与利用,2006,5(7):31-32
    [34]周凤华.塑料回收利用[M].北京:化学工业出版,2005
    [35]徐禧,王琪.废弃高分子材料回收处理与再生利用新技术[J].工程塑料应用,1999,27(3):301-302
    [36]祝大同.废弃PCB再利用技术的新进展[J].印制电路信息,2006,14(6):18-22
    [37]王颖.废塑料的再生与利用[J].环境保护,2002,2(6):45-47
    [38]鹿桂芳,丁彦滨.国内外化学法回收废旧聚氨酯研究进展[J].化学工程师,2004,109(10):46
    [39]吴自强,曹红军.废聚氨酯的综合利用[J].再生资源研究,2003,24(4):19-23
    [40]刘益军,刘舫.聚氨酯废旧料的回收利用[J].化工科技市场,1999,22(9):11-14
    [41]李林楷.热固塑料的回收利用[J].国外塑料,2004,22(6):69-71
    [42]Conroy A, Halliwell S. Reynolds T, et al. Recycling fibre reinforced polymers in construction:a guide to best practicable environmental option[M]. UK:IHS BRE Press,2004
    [43]Scheirs J. Polymer recycling---science technology and applications[M]. London:Wiley,1998
    [44]Bledzki A K, Kurek K, Barth Ch. Development of a thermoset part with SMC reclaim. In: Proceeding of ANTEC 92 50 years:plastics shaping and the future[C]. Detroit:SPE Press, 1992.1558-1560
    [45]DeRosa R, Tefeyan E, Mayes S. Expanding the use of recycled SMC in BMCs[C]. In:Proceeding of Global plastics environmental conference. Detroit:SPE Press,2004.371-383
    [46]Petterson J, Nilsson P. Recycling of SMC and BMC in standard process equipment[J]. Journal of Thermoplastic Composite Materials,1994,7(1):56-63
    [47]Bledzki A K, Goracy K. The use of recycled fiber composites as reinforcement for thermosets[J]. Mechanics of Composite Materials,1993,29(4):352-356
    [48]Curcuras C N, Flax A M, Graham W D, et al. Recycling of thermoset automotive components [J]. SAE Technical Paper Series,910387,1991.16
    [49]Tanaka H, Fukumoto Y, Suehiro K.. A study on material recycling for Phenolic resin products[J]. Journal of Network Polymer,2000,21(4):185-193
    [50]Barbara A O, Hendrik D K. Recycling cured phenolic material[J]. Journal of Thermoplastic Composite Materials,1994,7(1):30-44
    [51]齐双春,邢广恩.玻璃钢废料改性不饱和聚酯树脂的研究[J].塑料工业,2005,33(7):20-22
    [52]Bream C E, Hornsby R P. Comminuted thermoset recyclate as a reinforcing filler for thermoplastics Part I characterisation of recyclate feedstocks[J]. Journal of Material Science, 2002,36(1):2965-2975
    [53]Bevis M J, Bream C E, Hornsby P R, et al. Thermoset recyclate as a functional filler for polymers[C]. In:Proceeding of 56th Annual Technology Conference ANTEC 98, Part 3. Atlanta: SPE Press,1998.26-30
    [54]Bevis M J, Bream CE, Hornsby PR, et al. Comminution and reuse of thermosetting plastics waste[C]. In:Proceeding of 20th British Plastics Federation Composites Congress. Hinckley:BPF Press,1996.111-112
    [55]Bream C E, Hornsby R P. Comminuted thermoset recyclate as a reinforcing filler for thermoplastics Part Ⅱ:Structure-property effects in polypropylene compositions[J]. Journal of Material Science,2002,36(1):2977-2990
    [56]Economy J, Andreopoulos A G. A new concept for recycling of thermosetting resins Ⅰ:The case of crosslinkable copolyesters[J]. Polymers for Advanced Technologies,1996,7(7):561-570
    [57]Perrin D, Leroy E, Clerc L, et al. Treatment of SMC composite waste for recycling as reinforcing fillers in thermoplastics [J]. Macromolecular Symposia,2005,221(1):227-236
    [58]杨安乐,肖泳,吴人洁.纤维增强热固性塑料的回收和利用[J].工程塑料应用,1999,27(6):37-40
    [59]吴自强,付桂珍.废旧玻璃钢的回收利用[J].再生资源研究,2002,23(3):11-14
    [60]Albert S. Recycling a mixture of plastics:A challenge in today's environment[J]. Conservation and Recycling,1984,8(1):419-428
    [61]Cunliffe M A, Nicola J, Paul T W. Recycling of fiber reinforced polymeric waste by pyrolysis: thermo-gravi-metric and bench-scele investigations[J]. Journal of Applied Pyrolysis,2003,70(1): 3151
    [62]Cunliffe M A, Paul T W. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis[J]. Fuel,2003,8(2):2223-2230
    [63]孙路石,路继东.印刷线路板的热解及其产物分析[J].燃料化学学报,2002,30(3):285-288
    [64]Charles N C, Arthur M F, Graham W D, et al. Recycling of thermoset automotive components[C]. In:Proceeding of SAE International Congress and Exposition. Detroit:SAE Press,1991.134-137
    [65]刘德勤.热固性SMC综合处理与再生技术[J].建材工业信息,2002,29(9):9-11
    [66]徐敏,李光明,贺文智,等.废弃印刷线路板热解回收研究进展[J].化工进展,2006,25(3):297-210
    [67]Chen K S, Yeh R Z. Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere[J]. Journal of Hazardous Materials,1996,49 (2):105-113
    [68]彭科,奚波,姚强.印刷电路板基材的热解实验研究[J].环境污染治理技术与设备,2004,5(5):34-37
    [69]孙路石,陆继东.印刷线路板废弃物热解实验研究[J].化工学报,2003,54(3):408-412
    [70]孙路石,陆继东.印刷线路板热分解动力学特性[J].华中科技大学学报,2001,29(12):40-42
    [71]鹿桂芳,丁彦滨,赵春山.国内外化学法回收废旧聚氨酯研究进展[J].化学工程师,2004,109(10):46-51
    [72]封禄田,赫秀娟.废聚氨酯化学降解与应用的研究[J].辽宁化工,1993,28(2):106-108
    [73]Butler K. Recycling of molded SMC and BMC materials[C]. In:Proceeding of Society of Plastics Engineers 46th Annual Composites Institute Conference. Detroit:SPE Press.1991,18B.1-8
    [74]Patel S H, Consalves K E, Stivala S S, et al. Recycling of Sheet Moulding Compounds (SMC)[J]. American Chemical Society Polymeric Materials Science and Engineering,1992, 67(3):24-33
    [75]Sugeta T, Nagaoka S, Otake K, et al. Decomposition of fiber reinforced plastics using fluid at high temperature and pressure[J]. Kobunshi Ronbunshun,2001,57(10):557-563
    [76]Pickering S J. Recycling technologies for thermoset composite materials-current status. Composites Part A:Applied Science and Manufacturing,2006,37(8):1206-1215
    [77]Leeg G. The advent of "green" computer design[J]. Computer,1998,47(9):16-19
    [78]阎利,刘应宗,黄文雄.废旧家用电器的机械破碎与分选技术[J].中国工程科学,2005,7(12):24-30
    [79]Dirk B. Electronic scrap:a growing resource[J]. Precious Metals,2001,22(7):21-24
    [80]Burke M. The gadget scrap heap[J]. Chemistry World UK,2007,12(6):45-48
    [81]Onorato D. Japanese recycling law takes effect[J]. Waste Age,2001,32(6):25-26
    [82]夏苏湘,金成舟.浅谈电子废弃物的再生利用[J].城市管理,2004,3(2):40-42
    [83]黄春洁.电子废弃物资源化与电子产品的污染防治[J].化学世界,2005,59(46):18-21
    [84]毛玉如,李兴.电子废弃物现状与回收处理探讨[J].再生资源研究,2004,25(2):11-14
    [85]EU. Directive 2002/96/EC of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment(WEEE)-joint declaration of the European parliament, the council and the commission relating to article 9. Official Journal of the European Union, L037: 24-39
    [86]国家环境保护总局第40号令,http://www.zhb.gov.cn/info/gw/juling/200709/t20070928_109698.htm
    [87]周全法,尚通明.废通讯器材与材料的回收利用[M].北京:化学工业出版社,2004
    [88]王建中.电子垃圾,亟待挖掘的金矿[J].中国投资,2006,20(7):113-115
    [89]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002
    [90]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社,1999
    [91]Shunli Zhang, Eric Forssberg, Bo Arvidson et al. Aluminum recovery from electronic scrap by High-Force eddy-current separators[J]. Resources, Conservation and Recycling,1998,23(4): 225-241
    [92]Zhang Shunli, Forssberg E. Mechanical separation-oriented characterization of electronic scrap[J]. Resources, Conservation and Recycling,1997,21(4):247-269
    [93]庄燕,陆文雄,李小亮,等.废弃线路板中非金属材料的回收和利用[J].上海化工,2008,33(6):1-5
    [94]陈锋.废弃印制线路板中的环氧树脂回收处置技术[J].污染防治技术,2006,19(5):44-46
    [95]戴金辉,葛兆明.无机非金属材料概论[M].哈尔滨:哈尔滨工业大学出版社,1999:1-2
    [96]William J H, Paul T W. Separation and recovery of materials from scarp printed circuit boards[J]. Resources, Conservation and Recycling,2007,51(3):691-709
    [97]彭科,奚波,姚强.印刷电路板基材的热解实验研究[J].环境污染治理技术与设备,2004,5(5):34-37
    [98]Chen K S, Yeh R Z, Wu C H. Kinetics of thermal decomposition of epoxy resin in nitrogen-oxygen atmosphere[J]. Journal of Environmental Engineering,1997,123(10):1041-1046
    [99]Barontini F, Cozzani V, Petarca L, et al. Modeling the Formation and Release of Hazardous Substances in the Loss of control of Chemical Systems containing Brominated Flame Retardants[C]. In:Proceeding of the 10th International Symposium. Stockholm:Elsevier Press, 2001.1251-1262
    [100]Luda M P, Balabanovich A I, Camino G. Thermal decomposition of fire retardant brominated epoxy resins[J]. Journal of Analytical andApplied Pyrolysis,2002,65(1):25-40
    [101]Tange L, Drohmann D. Waste electrical and electronic equipment plastics with brominated flame retardants-from legislation to separate-treatment thermal processes[J]. Polymer Degradation and Stability,2005,88(1):35-40
    [102]孙路石,陆继东,王世杰,等.溴化环氧树脂印刷线路板热解产物的分析[J].华中科技大学学报,2003,31(8):50-52
    [103]Frank S, Gerhard E. Chemical Recycling of Polymer Materials[J]. Chemical Engineering & Technology,1998,21(10):777-789
    [104]Tai C M, Gotanda T, Tsuda K. Method for recycling thermoset resin materials[P]. US6465531, 2002-10-15
    [105]Paul P H, Dodds C, Hyde J, et al. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water[J]. Compites,2008, Part A(39):454-461
    [106]李健民编译.用常压溶解法回收再利用热固性树脂复合材料[J].粘接,2006,27(4):52-54
    [107]Mitsunori T. A study on the chemical recycle process of glass epoxy type printing wiring broad[J]. Polymer Preprints,2006,55(2):5529-5530
    [108]Dang Weirong, Kubouchi M, Sembokuya H, et al. Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid [J]. Polymer,2005,46(6):1905-1912
    [109]刘宇艳,孟令辉,黄玉东,等.溶剂法回收玻璃纤维/环氧复合材料的实验研究[J].哈尔滨工业大学学报,2005,37(4):470-472
    [110]Sembokuya H, Shiraishi F, Kubouchi M, et al. Corrosion behavior of epoxy resin filled with ground resin in sulfuric acid solution[J]. Society of Materials Science,2003,52(8):903-908
    [111]周翠红,路迈西.废旧电路板的组成与解离特性研究[J].环境污染治理技术与设备,2005,6(4):28-31
    [112]Mou Peng, Xiang Dong, Duan Guanghong. Products made from nonmetallic materials reclaimed from waste printed circuit boards[J]. Tsinghua Science And Technology,2007,12(3):276-283
    [113]Panyakapo P, Panyakap M. Reuse of thermosetting plastic waste for lightweight concrete[J]. Waste Management,2008,63(28):1581-1588
    [114]Yokoi T. A consideration of fundamental material recycling of epoxy resin[J]. Sen'i Gakkai/Society of Fiber and Technology Japan,2001,57(11):326-331
    [115]Iji M, Yokoyama S. Recycling of printed wiring boards mounting electronic components[C]. In: Proceeding of the Printed Circuit World Convention Ⅶ. Basel:Print Circuit World Convention, 1996. M21/1-9
    [116]Bruni T. Recycle of cured epoxy resins[C]. In:Polymeric Materials Science and Engineering Proceeding of the ACS. Denver:ACS,1987.446-448
    [117]Masahiro I, Ken S, Teruyuki Y, et al. Material recycle of glass fiber reinforced epoxy resin[C]. In: 55th SPSJ Annual Meeting. Nagoya:Society of Polymer Science,2006.2283-2286
    [118]Guo Jie, Guo Jiuyong, Cao Bin, et al. Manufacturing process of reproduction plate by nonmetallic materials reclaimed from pulverized printed circuit boards[J]. Journal of Hazardous Materials, 2009,163(2):1019-1025
    [119]张宗科,周玉敬,吴国清,等.废旧线路板粉末增强复合材料的制备与性能[J].玻璃钢/复合材料,2008,35(2):20-22
    [120]Zheng Yanghong, Shen Zhigang, Cai Chujiang, et al. The reuse of nonmetals recycled from waste printed circuit boards as reinforcing filler in the polypropylene composites[J]. Journal of Hazardous Materials,2009,163(2):600-606
    [121]余佳平,王远明,刘乐.废旧PCB粉末作为沥青改性添加剂的研究[C].上海市化学化工学会2007年度学术年会论文集.上海:《化学世界》,2007.105-106
    [122]Patton R. New NEC technology boosts reusable waste [J]. Plastic News,1995,33(7):12
    [123]Wilson D M. The implementation of recycled thermoset composites in thermoforming molds[J]. Journal of Industrial Technology,2003,19(2):1-5
    [124]Liu Yuyan, Meng Linghui, Huang Yudong, etal. Method of recovering the fibrous fraction of glass/epoxy composites[J]. Journal of Reinforced Plastics and Composites,2006,25(14): 1525-1533
    [125]刘德勤.热固性SMC综合处理技术与再生技术[J].建材工业信息,2002,9(1):9-11
    [126]Tange L, Drohmanm D. Waste management of plastics containing brominated flame retardants[C]. In:Proceeding of flame retardants 2002. London:Interscience Communications Press,2002.259-266
    [127]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003:26-40
    [128]黄丽.聚合物复合材料[M].北京:中国轻工业出版社,2001:1-28
    [129]王清文,王伟宏.木塑复合材料与制品[M].北京:化学工业出版社,2007:27-54
    [130]宋焕成,赵时熙.聚合物基复合材料[M].北京:国防工业出版社,1986
    [131]曹延生,黄文迎.环氧塑封料中填充剂的作用和发展[J].电子与封装,2009,9(5):5-10
    [132]王德中.环氧树脂生产与应用[M].第二版.北京:化学工业出版社,2001
    [133]Iji M. Recycling of epoxy resin compounds for moulding electronic components[J]. Journal of Materials Science,1998,8(33):45-53
    [134]杨明山,李林楷,陆晓中.塑料改性工艺、配方与应用[M].北京:化学工业出版社,2006
    [135]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009
    [136]何益艳,杜仕国.无机填料的改性及其在复合材料中的应用[J].化工新型材料,2001,29(12):14-17
    [137]王经武.塑料改性技术[M].北京:化学工业出版社,2005
    [138]赫丽华,宁荣昌,孔杰.纳米粒子在聚合物增强增韧中的应用[J].工程塑料应用,2002,30(4):53-55
    [139]杨桂贞,郑善德.粉煤灰填充PF、PV、SBR的研究[J].青岛化工学院学报,1994,15(1):67-71
    [140]高家武,周福珍,刘士昕.高分子材料热分析曲线集[M].北京:科学出版社,1990
    [141]穆腊亚马T.聚合物材料的动态力学分析[M].北京:轻工业出版社,1988
    [142]孙水升,张玲,立春忠,等.纳米碳酸钙性质对聚氯乙烯复合材料界而及性能的影响[J].化工学报,2005,56(11):2233-2238
    [143]Lipatov Y S, Demchenko S S, Privalko V P. Enthalpy of relaxation at the glass transition of filled polystyrene[J]. Doklady Akademii Nauk SSSR,1983,273(1):128-131
    [144]周玉敬.废旧线路板粉料/玻璃纤维增强复合材料研制[J].化工新型材料,2008,36(12):100-102
    [145]彭振博,胡斌,苏庆德,等.稀土PVC稳定剂的作用机理[J].中国稀土学报,2003,21(3):255-259
    [146]付勰,皮红,郭少云.PVC/TiO2共混物界面的力化学改性研究[J].塑料工业,2009,37(7):54-57
    [147]Wan Chaoying, Qiao Xiuying, Zhang Yong, et al. Effect of epoxy resin on morphology and physical properties of PVC/organophilic montmorillonite nanocomposites[J]. Journal of Applied Polymer Science,2003,89(9):2184-2191
    [148]刘荣榕.PVC/木粉复合材料的制备及其性能的研究[D].上海:上海交通大学,2008
    [149]王清文,王伟宏,郭垂根,等.木塑复合材料与制品[M].北京:化学工业出版社,2006
    [150]王汝敏,郑水蓉,郑亚萍.聚合物及复合材料及工艺[M].北京:科学出版社,2004:139-171
    [151]高光涛,张勇.改性纳米碳酸钙增韧PVC研究[J].塑料工业,2008,36(1):48-52
    [152]洪升,钱志军,姜岩世,等.高强度高韧性PVC复合材料的研究[J].现代机械,2007,33(6):86-87
    [153]杨庆贤,刘治生.木/塑复合材料建筑模板的研制[J].工业建筑,1995,25(2):23-25
    [154]赵阳,朱凤.聚氯乙烯塑化性能的表征[J].上海氯碱化工,2003,17(1):25-27
    [155]杜启玫,周持兴.哈克转距流变仪在聚合物加工中的应用[J].实验室研究与探索,2004,23(7):46-47
    [156]周持兴.聚合物流变实验与应用[M].上海:交通大学出版社,2003:30-55
    [157]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2004
    [158]王贵斌.硬质聚氯乙烯制品及工艺[M].北京:化学工业出版社,2008
    [159]周洪荣,高磊,许鹏.未增塑聚氯乙烯(PVC-U)异型材配方基础[J].聚氯乙烯,2008,36(2):1-5
    [160]李蔷.哈克转矩流变仪在PVC配方研究中的应用[J].上海塑料,2008,35(3):30-33
    [161]Kim H S, Cotterell B, Mai Y W. Unnotched impact bend test assessment of the degree of gelation in unplasticized poly(vinyl chloride) pipe[J]. Journal of Polymer Engineering & Science,1987, 27(4):277-281
    [162]栾照辉,王喧.温度和剪切力对U-PVC干混料塑化过程的影响[J].哈尔滨理工大学学报,2007,12(2):131-137
    [163]周文.硬质PVC管材塑化度及调整[J].塑料加工,2006,41(4):33-34
    [164]张学明,刘浩,贾小波.UPVC的塑化性能分析研究[J].齐鲁石油化工,2009,37(2):93-96
    [165]谢建玲,桂祖桐,蔡绪福,等.聚氯乙烯树脂及其应用[M].北京:化学工业出版社,2007:84-87
    [166]Hua Youqing, Huang Yiqun, Siqin Da-lai. Studies of molecular weight distribution, particle morphology, and rheological behavior of ultra-high molecular weight suspension PVC[J]. Journal of Vinyl Technology,1994,16(1):235-245
    [167]Saha S. Rheological and morphological characteristics of polyvinyl chloride/polychloroprene blends-effect of temperature and mixing speed[J]. European Polymer Journal,2001,37(3): 399-410
    [168]赵雄燕,李淑敏,徐辉,等.核/壳型丙烯酸酯类R-PVC改性剂的研究[J].中国塑料,1994,8(3):49
    [169]赵劲松,李宁.PVC加工形态研究[J].聚氯乙烯,1999,27(4):36-39
    [170]赵雄燕,李淑敏.CS-ACR-IV改善硬质聚氯乙烯加工性能的研究[J].河北轻化工学院报,1995,16(34):43-49
    [171]冯伟刚.PVC异型材塑化质量的探讨[J].塑料科技,2004,32(2):27-32
    [172]徐思亭.塑料材料与助剂[M].天津:天津大学出版社,2007.279
    [173]刘成柱.润滑剂在PVC管材配方中的重要作用[J].塑料制造,2008,33(2):106-108
    [174]刘芳,李杰,夏飞.硬脂酸钙对石蜡、硬脂酸润滑作用的影响及其理论分析[J].聚氯乙烯,2005,33(11):26-30
    [175]杨国娟.转矩流变仪在测定PVC树脂塑化性能方面的应用[J].中国氯碱,2004,24(9):26-28
    [176]周殿明.塑料挤出机及制品生产故障与排除[M].北京:中国轻工业出版社,2002
    [177]王善勤.塑料挤出成型工艺与设备[M].北京:中国轻工业出版社,2000
    [178]Ali R, lannace S, Nicolais L. Effects of processing conditions on the impregnation of glass fiber mat in extrusion/calendaring and film stacking operations[J]. Composites Science and Technology,2003,63(15):2217-2222
    [179]劳温代尔C.塑料挤出[M].北京:中国轻工业出版社,1996
    [180]张玉龙,王喜梅.塑料挤出成型入门[M].北京:化学工业出版社,2009
    [181]周殿明.塑料挤出成型工艺员手册[M].北京:化学工业出版社,2008
    [182]吴清鹤.塑料挤出成型[M].北京:化学工业出版社,2009
    [183]杨东洁.塑料制品成型工艺[M].北京:中国纺织出版社,2007
    [184]吴念.塑料挤出生产线使用与维修手册[M].北京:机械工业出版社.2007
    [185]李小云.重质碳酸钙表而改性及其在聚合物中的应用[D].甘肃:兰州大学,2008
    [186]杨森,王少会,熊伟,等.无机填料的表面改性研究进展[J].现代塑料加工应用,2006,18(5):53-56
    [187]隋金玲,周海.表而处理剂对PVC仿木复合材料性能的影响[J].工程塑料应用,2007,35(2):17-20
    [188]王玮,翟红波,徐卫兵. (PP/EPDM)-g-MAH对PP/EPDM/云母复合材料力学性能的影响[J].现代塑料加工应用,2000,13(6):1-4
    [189]钟鑫,薛平,丁筠.木塑复合材料性能研究的关键问题[J].工程塑料应用,2003,31(11):67-70
    [190]高登征,吕宪俊,郝爱友.聚合物复合材料中填料的表面处理[J].山东科技大学学报(自然科学版),2003,22(2):30-32
    [191]Akovali G, Akman M A. Mechanical Properties of Plasma Surface-Modified Calcium Carbonate-Polypropylene Composites[J]. Polymer Internatioal,1997,42(2):195-202
    [192]赵贞,张文龙,陈宇.偶联剂的研究进展和应用[J].塑料助剂,2007,11(3):4-10
    [193]Gulzhian 1, Dzhard J. Frontal polymerization of metal containing monomers:A Topical Review[J]. Journal of Inorganic and Organometallic Polymers,2002,12(2):1-21
    [194]郑玉涛,陈就记,王东山,等. 偶联剂与甘蔗渣/PVC复合材料性能的研究[J].中国塑料,2005,19(6):94-98
    [195]Shah B L, Matuana L M. Novel coupling agents for PVC/Wood-flour composites [J]. Journal of Vinyl & Additive Technology,2005,11(4):160-165
    [196]Park R, Jang J. A study of the impact properties of composites consisting of surface-modified glass fibers in vinyl ester resin [J]. Composites Science and Technology,1998,58(9):979-985
    [197]Xu Min, Cai Zhi. Effect of different modifiers on the properties of wood-polymer composites[J]. Journal of Foresty Research,2004,15 (1):77-79
    [198]冯钠,苏鸿翔,王志强,等.表面处理工艺对PA6/硅灰石复合材料力学性能的影响[J].工程塑料应用,2009,37(1):5-9
    [199]Du X S, Xiao M, Meng Y Z. Synthesis and Characterization of polyaniline-graphite conducting nanocomposites[J]. Journal of Polymer Science, Part B:Polymer Physics,2004,42(10): 1972-1978
    [200]王春红,王瑞,于飞,等.竹原/亚麻复合材料力学性能的模糊评价[J].纺织学报,2007,28(3): 34-37
    [201]戴自璋,陆平.材料性能测试[M].武汉:武汉理工大学出版社,2002
    [202]周红军,林轩,尹国强,等.PP/POE-g-GMA/纳米SiO2复合材料性能研究[J].塑料,2009,38(1):74-82
    [203]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002:52-59
    [204]M Ashida, T Noguchi, S Mashimo. Effect of matrix's type on the dynamic properties for short fiber-elastomer composite[J]. Journal of Applied Polymer Science,1985,30(4):1011-1021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700