混沌与支持向量机结合的多相催化建模与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建模与优化是工程技术研究的中心问题,预测是科学决策和规划的重要前提,预测的可靠性往往是衡量技术成功程度的重要指标,然而预测却是所有技术的薄弱环节,对于多相催化领域来讲亦是如此。随着国民经济的发展,尤其新能源需求、新材料的不断涌现,多相催化科学与技术面临新的挑战,既要从经济、安全、多功能等方面寻求新型、高效的催化剂,又要从化学进程全局出发全面考察催化剂的性能。基于历史数据的机器学习和数据深度挖掘已成为目前化工信息化领域中急需解决的重要问题。作为催化领域的难点和迫切需要解决的三个关键问题:催化剂的动力学关系模型、催化剂的活性关系模型、催化剂的优化设计,这无论是对于催化剂对象的特性研究,还是实际化工生产过程控制、优化、模拟等都具有重要的现实意义。
     本文结合混沌与支持向量机,围绕多相催化建模与优化问题展开工作,研究的主要内容包括三个方面:自适应混沌粒子群优化和支持向量机结合的模型预测、基于自适应混沌粒子群优化和支持向量机的最优化设计框架以及相空间重构和支持向量机结合的混沌时间序列模型预测。本文的研究内容属于信息科学、自动化科学、化学科学等学科的交叉领域。
     本文的主要创新性工作包括:
     (1)提出一种基于自适应混沌粒子群优化和支持向量机结合(Adaptive Chaos Particle Swarm Optimization-Support Vector Regression,ACPSO-SVR)的预测算法,引入ACPSO启发式寻优机制对SVR模型的超参数进行自动选取,在超参数取值范围变化较大的情况下,效果明显优于网格式搜索算法。选取UCI机器学习数据库中的Forest fires标准数据集进行测试,实验结果表明该方法具有较高的精度和良好的泛化能力,对于解决多变量的回归预测问题是一种有效的方法。将所提出的建模方法用于Cu-Zn-Al-Zr二甲醚合成催化剂建模,在反应动力学模型未知的情况下,同时获得了催化剂组份模型和动力学模型,取得了良好的预测效果。
     (2)提出一种基于多目标混沌粒子群优化和支持向量机相结合的最优化设计框架。针对多相催化反应具有多阶段、强相关性,获取催化剂性能指标非常困难的特点,将训练好的SVR模型作为最优化设计框架中的适应度评价近似模型,通过多目标ACPSO算法同时优化输入变量的空间,寻求具有全局最优催化性能的催化剂。将该策略用于Cu-Zn-Al-Zr二甲醚合成催化剂的研发,实验结果表明,经ACPSO-SVR最优化设计方法给出的两组新型催化剂的性能指标与实验测试值误差很小,可以缩短催化剂研发的时间,节约资金和时间消耗,不失为一种可行的、有效的实验室设计催化剂新方法。
     (3)提出一种基于相空间重构和支持向量机结合(Phase Space Reconstruction- Support Vector Regression,PSR-SVR)的非线性时间序列预测建模方法。针对多相催化剂在非定态下的复杂失活机理及活性受多种因素影响,获取催化剂失活过程的时间序列数据非常有限而降低建模效率和预测精度的情况,提出以高维相空间重构的数据表示方法重构失活数据序列,达到改写数据的规律性进而探讨催化剂失活内在复杂本质特征的目的。将该建模方法应用于甲醇氧化羰基化反应中Cu-Si-Al碳酸二甲酯合成催化剂失活过程建模,仿真结果表明催化剂失活模型的预测误差在满意的范围之内,给出的碳酸二甲酯时空收率的预测值可以为反应器的正确设计和操作、反应过程的优化提供有效信息。
Modeling and optimization are ones of the central issues in engineering and technological research, which can be employed as a significant prerequisite for scientific decision-making and planning. However, prediction is the weakness for all technologies including heterogeneous catalysis. With the development of economy, particularly the requirements for new energy and materials, the heterogeneous catalysis faces new challenges. During the development of new efficient catalysts, besides economic, safety and multi-function, the study of catalysts properties from a whole chemical process is also required. Machine learning and data depth mining based on history data has become the most important problem to be solved in the area of chemical engineering information. The difficulty and three major problems to be solved in the area of catalysis are the kinetic model, the structure-activity relation model, as well as design and optimization of catalysts. It is of great practical importance not only in the investigation of catalyst characters, but in the whole procedure of the control, optimization and modeling of chemical production.
     In this study, chaos and support vector regression (SVR) were employed to the modeling and optimization of heterogeneous catalysis. The major research contents includes modeling prediction based on the adaptive chaos particle swarm optimization and support vector regression (ACPSO-SVR), the design of optimal optimization algorithms based on ACPSO-SVR, and the modeling prediction of chaotic time series based on phase space reconstruction and support vector regression (PSR-SVR). The present study crosses the boundaries of numerous scientific fields of information, automation and chemical engineering etc.
     The main contents and basic findings are as follows:
     (1) An effective relevance prediction algorithm based on ACPSO-SVR was presented. A heuristic optimization method was introduced to automatic selection of hyper-parameters in SVR. The forest fires standard data set of UCI machine learning database was selected to test. The experimental results showed that the new method has high relatively precision and good generalization ability with a wide range of parameter values, better than that of mesh searching algorithm. It could be used as an effective method to solve the problems of multivariate regression predication. The method was applied to modeling of the Cu-Zn-Al-Zr based catalysts for the synthesis of dimethyl ester (DME). Under the condition of with unknown kinetic model, the catalyst composition model and the kinetic model were obtained and gave good prediction results was produced.
     (2) A new optimization framework was built by combining multi-objective chaotic particle swarm optimization algorithm with SVR. Considering that it is very difficult to obtain the catalytic performance due to mutli-stage process and strong relevance in heterogeneous catalysis, the trained SVR Model was used as the fitness approximation model, through using multi-object ACPSO algorithm optimizing the space of input variable for searching catalyst with optimal catalytic performance. The optimum strategy was employed in the exploring of the Cu-Zn-Al-Zr based catalysts for DME synthesis. The two new types of catalysts obtained through ACPSO-SVR optimized scheme show catalytic performance close to the experimental value. In conclusion, this optimization method shorts time and reduces cost in catalyst exploration, and is exactly an effective method for catalyst development in laboratory.
     (3) A novel method for nonlinear time series forecasting of the catalyst deactivation based on PSR-SVR was presented. Considering the complicated mechanisms of catalysts deactivation multi-factors influencing the catalyst performance; moreover, the limitation of getting time series data during the deactivation process of catalysts leads to the modeling efficiency and prediction precision. The data presentation method of high dimensions phase space reconstruction was used to assessment of the deactivation data and the regularity of data recomposition is attained. Finally, the aim of disclosing the nature of complicated character of catalyst performance was realized. The novel method was applied to predict the deactivation process of the Cu-Si-Al based catalysts for the synthesis of dimethyl carbonate (DMC). The simulation results showed that the prediction error of catalyst deactivation model is in a range of tolerance. The prediction space time yield (STY) value of DMC could provide important information for the design and operation of reactors as well as the optimization of the reaction conditions.
引文
[1]黄仲涛.工业催化剂手册[M].北京:化学工业出版社, 2004.
    [2]王红娟,祝丽丽,黄仲涛等. 21世纪能源资源转变对催化科学与技术发展的要求[J].现代化工, 2009, 29(4): 6-11.
    [3]李雪辉,黄仲涛,王乐夫等.组合催化技术研究进展[J].石油化工, 2001, 30(12): 942-946.
    [4]任军,冯杰,孙冬梅等.组合化学在多相催化领域的应用[J].工业催化, 2002, 10(6): 1-7.
    [5]焦家俊.合成化学新概念——组合化学[J].化学世界, 2002, 43(4): 217- 222.
    [6]边肇棋,张学工等.模式识别[M].北京:清华大学出版社, 2000.
    [7] Vapnik V. N. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
    [8] Vapnik V. N. Statistical Learning Theory [M]. New York: Springer Verlag, 1998.
    [9]张学工译, Vapnik V. N.著.统计学习理论的本质[M].北京:清华大学出版社, 2000.
    [10]许建安,张学工译, Vapnik V. N.著.统计学习理论[M].北京:电子工业出版社, 2004.
    [11] Boser B. E., Guyon I. M., Vapnik V. N. A training algorithm for optimal margin classifiers[C]. In: Haussler D. (Eds.). Proceedings of the 5th annual ACM workshop on Computational Learning Theory, Pittsburgh, PA: ACM Press, 1992: 144-152.
    [12] Scholkopf B., Burges C., Vapnik V. N. Extracting support data for a given task[C]. In: Fayyad UM, Uthurusamy R. (Eds.). Proceedings of First International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA: AAAI Press, 1995: 262-267.
    [13] Guyon I. M., Boser B. E., Vapnik V. N. Automatic capacity turning of very large VC-dimension classifiers[C]. In: Hanson S. et al. (Eds.). Advances in Neural Information Processing Systerms 5 (NIPS 92), Morgan Kaufmann, San Mateo, CA, 1993(5):147-155.
    [14] Cortes C., Vapnik V. N. Support vector networks[J]. Mach. Learn., 1995, 20: 273-297.
    [15] Vapnik V., Golowieh S., Smola A. Support vector method for function approximation, Regression Estimation, and Signal Processing[C]. In: Mozer M., Jordan M., Petsche T. (Eds.). Advances in Neural Information Processing Systems 9. Cambridge, MT: MIT Press, 1997: 281-287.
    [16] Packard N. H., Crutchfietd J. P., Farmer J. D. et al. Geometry from a time series[J]. Phys. Rev. Lett., 1980, 45(9): 712-716.
    [17] Takens F. Determing strange attractors in turbulence[J]. Lect. notes Math, 1981, 898: 361-381.
    [18]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用, 1997, 14 (4): 613-615.
    [19]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策, 1999, 14(3): 285-288.
    [20]李昊,胡云昌,曹宏铎.加速混沌优化方法及其应用[J].系统工程学报, 2002, 17(1): 41-44.
    [21] Choi C., Lee J. Chaotic local search algorithms[J]. Artif. Life, 1998, 2(1): 41-47.
    [22]方崇智,萧德云.过程辨识[M].北京:清华大学出版社, 2002.
    [23]王振龙.统计哲学研究[M].北京:中国统计出版社, 2002.
    [24]陈念贻,钦佩,陈瑞亮等.模式识别方法在化学化工中的应用[M].北京:科学出版社,2000.
    [25]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社, 2000.
    [26]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社, 2000.
    [27]陈宝林.最优化理论与算法[M].北京:清华大学出版社, 2005.
    [28]马振华,刘坤林,陆漩等.现代应用数学手册(运筹学与最优化理论卷)[M].北京:清华大学出版社, 2001.
    [29] Carlos A., Coello C. A comprehensive survey of evolutionary-based multi-objective optimization techniques[J]. Knowl. Inf. Syst., 1999, 1(3): 269-308.
    [30] Carlos A., Coello C. An updated survey of GA-based multi-objective optimization techniques[J]. ACM Comput. Surv., 2000, 32(2): 109-143.
    [31] Deb K. Multi-objective genetic algorithms: problem difficuhies and construction of test functions[J]. Evol. Comput., 1999, 7(3): 205-230.
    [32]迟元成,方杰,魏鑫等.基于小生境和交叉选择算子的改进粒子群优化算法[J].系统仿真学报, 2010, 22(1): 111-114.
    [33]贾东立,张家树.基于混沌变异的小生境粒子群算法[J].控制与决策, 2007, 22(1): 117-120.
    [34]李方方,赵英凯.基于小生境粒子群的多峰函数全局优化算法的研究[J].机械与电子, 2007, (1): 58-60.
    [35] Bulsari A. B. Neural Networks for Chemical Engineers[M]. Amsterdam: Elsevier, 1995.
    [36] Kito S., Hattori T., Murakami Y.. Application of neural network for the estimation of catalytic performance[J]. Stud. Surf. Sci. Catal. 1995, 92:287-292.
    [37] Hattori T., Kito S., Neural network in catalyst design: an art turning into science[C]. in: Proceedings of the 15th World Petroleum Congress, New York: Wiley, 1998: 783-790.
    [38] Hattori T., Kito S. Neural network as a tool for catalyst development[J]. Catal. Today, 1995, 23(4): 347-355.
    [39] Corma A., Serra J., Argente E. et al. Application of artificial neural networks to combinatorial catalysis: Modelling and prediction of ODHE catalysts[J]. Chem. Phys. Chem., 2002, 3(11): 939-945.
    [40] Kito S., Satsuma A., Ishikura T. et al. Application of neural network to estimation of catalyst deactivation in methanol conversion[J]. Catal. Today, 2004, 97(1): 41-47.
    [41] Derouane E. Principles and methods for accelerated catalyst design & testing[M]. Dordrecht: Kluwer Academic Publisher, 2002.
    [42] Sundaram A., Ghosh P., Caruthers J. et al. Design of fuel additives using neural networks and evolutionary algorithms[J]. AIChE J., 2001, 47(6): 1387-1406.
    [43] Vegvari L., Tomposb A., Gobolos S. et al. Holographic research strategy for catalyst library design: Description of a new powerful optimization method[J]. Catal. Today, 2003, 81(3): 517-527.
    [44] Weaver D. Applying data mining techniques to library design, lead generation and lead optimization[J]. Curr. Opin. Chem. Biol., 2004, 8(3): 264-270.
    [45] Corma A., Serra J., Chica A. Application of genetic algorithms to the development and optimizationof light paraffin isomerisation catalysts[M]. Dordrecht: Kluwer Academic Press, 2002.
    [46] Corma A., Serra J., Serna P. et al. Optimization of olefin epoxidation catalyst applying high-throughput and genetic algorithms assisted by artificial neural networks (soft computing techniques)[J]. J. Catal., 2005, 225(2): 513-524.
    [47] Holeňa M., Baerns M. Feedforward neural networks in catalysis: A tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction[J]. Catal. Today, 2003, 81(3): 485-494.
    [48] Nandi S., Mukherjee P., Tambe S. et al. Reaction modeling and optimization using neural networks and genetic algorithms: Case study involving ts-l-catalyzed hydroxylation of benzene[J]. Ind. Eng. Chem. Res., 2002, 41(9): 2759-2769.
    [49] Rodemerck U., Baerns M., Holena M. et al. Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials[J]. Appl. Surf. Sci., 2004, 223(1-3): 167-174.
    [50] Cundari T., Deng J., Zhao Y. Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms[J]. Ind. Eng. Chem. Res., 2007, 40(23): 5475-5480.
    [51] Serra J. M., Corma A., Valero S. et al. Soft computing techniques applied to combinatorial catalysis: A new approach for the discovery and optimization of catalytic materials[J]. QSAR Comb. Sci., 2007, 26(1): 11-26.
    [52] Serra J., Corma A., Argente E. et al. Neural networks for modeling of kinetic reaction data applicable to catalyst scale up and process control and optimization in the frame of combinatorial catalysis[J]. Appl. Catal. A: Gen, 2003, 254(1): 133-145.
    [53] Valero S., Argente E., Botti V. et al. Soft computing techniques applied to catalytic reactions[C]. In: Conejo R. (Eds.) CAEPIA-TTIA 2003, LNAI 3040. Berlin Heidelberg: Springer-Verlag, 2004: 536-545..
    [54] Valero S., Argente E., Serra J. M. et al. A soft computing technique applied to industrial catalysis[C]. In: R. Lopez de Mantaras, L. Saitta (Eds.). ECAI2004, IOS Press, 2004: 765-769.
    [55] Yee A. K., Ray A. K., Rangaiah G. P. Multiobjective optimization of an industrial styrene reactor[J]. Comput. Chem. Eng., 2003, 27(1): 111-130.
    [56] Ramanathan S. P., Mukherjee S., Dahule R. K. et al. Optimization of continuous distillation columns using stochastic optimization approaches[J]. Chem. Eng. Res. Des., 2001, 79(3): 310-322.
    [57] Nougués J. M., Grau M. D., Puigjaner L. Parameter estimation with genetic algorithms in control of fed-batch reactor[J]. Chem. Eng. Process., 2002, 41(4): 303-309.
    [58] Summanwar V. S., Jayaraman V. K., Kulkarni B. D. et al. Solution of constrained optimization problems by multiobjective genetic algorithms[J]. Comput. Chem. Eng., 2002, 26(10): 1481-1492.
    [59] Silva C. M., Biscaia Jr E. C. Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors[J]. Comput. Chem. Eng., 2003, 27(8-9): 1329-1344.
    [60] Hou Z., Dai Q., Wu X. et al. Artificial neural network aided design of catalyst for propane ammoxidation[J]. Appl. Catal. A: Gen, 1997, 161(1-2): 183-190.
    [61] Huang K., Chen F., Lu D. W. Artificial neural network-aided design of a multi component catalyst for methane oxidative coupling[J]. Appl. Catal.A: Gen, 2001, 219(1-2): 61-68.
    [62] Huang K., Zhan X. L., Chen F. Q. et al. Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm[J]. Chem. Eng. Sci., 2003, 58(1): 81-87.
    [63] Agarwal M., Jade A.M., Jayaraman V.K. et al. Support vector machines: a useful tool for process engineering applications[J]. Chem. Eng. Prog., 2003, 99 (1): 57-62.
    [64] Nandi, S., Badhe, Y., Lonari, J. et al. Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: Study of benzene isopropylation on hbeta catalyst[J]. Chem. Eng. J., 2004, 97(2-3): 15–129.
    [65]陈念贻,陆文聪.支持向量机算法在化学化工中的应用[J].计算机与应用化学, 2002, 19(6): 674-676.
    [66]陈念贻,丁亚平,叶晨洲等.支持向量回归—吸光光度法同时测定溶液中的Ph, Cd, Zn[J].计算机与应用化学, 2002,19(6): 717-718.
    [67]陆文聪,陈念贻,叶晨洲等.支持向量算法和软件介绍[J].计算机与应用化学, 2002, 19(6): 697-702.
    [68]冯瑞,张浩然,韵惠鹤.基于SVM的软测量建模[J].信息与控制, 2002, 31(6): 567-571.
    [69]阎威武,朱宏栋,韵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报, 2003, 15(10): 1494-1496.
    [70]黄钦,庄艳,乔学斌,徐筱杰.用支持向量机建立中药有效成分聚集体的预测模型[J].物理化学学报, 2007, 23(08): 1141-1144.
    [71]马喜波,阎爱侠.支持向量机算法用于烷基苯的热容和标准焓值的预测[J].北京化工大学学报, 2008, 35(2): 33-37.
    [72]段中兴,高伟林.基于支持向量机的催化剂颗粒浓度软测量[J].仪器仪表学报, 2008, 29(6): 1187-1192.
    [73]段中兴,稽启春.催化剂粉层浓度软测量建模研究与应用[J].系统仿真学报, 2008, 20(14): 3899-3906.
    [74]罗娜,钱峰.基于支持向量机的催化剂失活建模方法[J].计算机与应用化学2008, 25(7): 801-804.
    [75] Osuna E., Freund R., Girosi F. Training support vector machines: An application to face detection[A]. Proceedings of IEEE Conference on CVPR’97. Puerto Rico, 1997: 130-136.
    [76] Joachims T. Making large-scale SVM learning practical[M]. In: Scholkopf B., Burges C. J. C., Smola A. J. (Eds.), Advances in Kernel Methods-Support Vector Learning,Cambridge, MA: MIT Press, 1998.
    [77] Joachims T. Making large-scale support vector machine learning practical[C]. In: Joachims R. (Eds.). Advances in Kernel Methods: Support Vector Machines. Cambridge, MA, USA: MIT Press, 1999: 169-184.
    [78] Joachims T. Web Page on SVM Light: http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light.eng.html.
    [79] Lin C. J. On the convergence of the decomposition method for support vector machines[J]. IEEE T. Neural Networks, 2001, 12 (6):1288-1298.
    [80] Palagi L., Sciandrone M. On the convergence of a modified version of SVM light algorithm[J]. Optim. Method. Softw., 2005, 20(2-3): 315-332.
    [81] Platt J. Fast training of SVMs using sequential minimal optimization[C]. In: Scholkopf B., Burges C. Smola A. (Eds.), Advances in Kernel Methods: Support Vector Learning. Cambrige, MA: MIT Press, 1999: 185-208.
    [82] Keerthi S. S., Shevade S., Bhattacharyya C. et al. Improvements to Platt's SMO algorithm for SVM classifier design[R]. Tech. Report, Dept. of CSA, Banglore, India, 1999.
    [83] Keerthi S. S., Shevade S., Bhattacharyya C. et al. Improvements to SMO algorithm for SVM regression[J]. IEEE T. Neural Networks, 2000, 11(5): 1188-1193.
    [84] Flake G., Lawrence S. Efficient SVM regression training with SMO[J]. Mach. Learn., 2002, 46(1-3): 271-290.
    [85] Keerthi S. S., Gilbert E. G. Convergence of a generalized SMO algorithm for SVM classifier design[J]. Mach. Learn., 2002, 46(1-3): 351-360.
    [86] Lin C. J. Asymptotic convergence of an SMO algorithm without any assumptions[J]. IEEE T. Neural Networks, 2002, 13(1): 248-250.
    [87] Chen P. H., Fan R. E., Lin C. J. A Study on SMO-Type Decomposition Method for Support Vector Machines[R]. Department of Computer Science, National Taiwan University, 2005.
    [88] Fan R. E., Chen P. H., Lin C. J. Working set selection using the second order information for training SVM[J]. J. Mach. Learn. Res., 2005, 6: 1889-1918.
    [89] Suykens J., Vandewalle J. Least squares support vector machine classifiers[J]. Neural Process. Lett., 1999, 9(3): 293-300.
    [90] Zhang X. G. Using Class-center Vectors to Build Support Vector Macines[C]. Proceedings of NNSP'99, 1999: 3-11.
    [91] Scholkopf B., Smola A. J., Williamson R. C. et al. New support vector algorithms[J]. Neural Comput., 2000, 12(5): 1207-1245.
    [92] Chang C. C., Lin C. J. Training mu-support vector classifiers: Theory and Algorithms[J]. Neural Comput., 2001, 13(9): 2119-2147.
    [93] Ikeda K., Murata N. Geometrical Properties of Nu Support Vector Machines with Different Norms[J]. Neural Comput., 2005, 17(11): 2508-2529.
    [94] Ingo S. On the optimal parameter choice for v-support vector machines[J]. IEEE T. Pattern Anal., 2003, 25(10): 1274-1284.
    [95] Chen P. H., Lin C. J., Scholkopf B. A tutorial onν-support vector machines[J]. Appl. Stoch. Model. Bus., 2005, 21(2): 111-136.
    [96] Mangasarian O. L. Generalized support vector machines. In: Smola A., Bartlett P., Sch?lkopf B. et al. (Eds.), Advances in Large Margin Classifiers, Cambridge, MA: MIT Press, 2000: 135-146.
    [97] Yang M. H., Ahuja N. A geometric approach to train support vector machines[C]. Proceedings of CVPR 2000, Hilton Head Island, 2000: 430-437.
    [98] Chang C. C., Lin C. J. LIBSVM: A Library for Support Vector Machines (Version 2.3). 2001. http://www.csie.ntu.edu.tw/~cjlin/papers/ libsvm.pdf. 2001.
    [99] Liao S. P., Lia H. T., Lin C. J. A note on the decomposition methods for support vector regression[J]. Neural Comput., 2002, 14(6): 1267-1281.
    [100] Hsu C. W., Lin C. J. A simple decomposition method for support vector machines[J]. Mach. Learn., 2002, 46(1-3): 291-314.
    [101] Shawe-Taylor J., Cristianini N. Margin distribution bounds on generalization[R]. Neuro COLT2 Technical Report Series, NC2-TR-1998-020, July, 1998.
    [102] Herbrich R., Graepel T. A PAC-Bayesian margin bound for linear classifiers[J]. IEEE T. Inform. Theory, 2002, 48(12): 3140-3150.
    [103] Lin Y. Support vector machines and the Bayes rule in classification[R]. Department of Statistics, University of Wisconsin, Madison, 1999, Also Data Mining and Knowledge Discovery, 2002, 6(3): 259-275.
    [104] Burges C. J. C. A tutorial on support vector machines for pattern recognition[J]. Data Min. Knowl. Disc., 1998, 2(2): 121-167.
    [105] Opper, M., Winther, O. Gaussian processes and svm: mean field and leave-one-out[C]. In: Smola, A. J., Bartlett, P. L., Sch?lkopf, B., Schuurmans, D. (Eds.), Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 2006: 311-326.
    [106] Joachims T. Text categorization with support vector machines: Learning with many relevant features[C]. In: Proc. 10th European Conference on Machine Learning (ECML), Chemnitz, Germany, 1998: 137-142.
    [107] Wahba G., Lin Y., Zhang H. Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities[R]. Techical Report. Department of Statistics, University of Wisconsin, Feb., 25, 1999.
    [108] Vapnik V. N. Principles of risk minimization for learning theory[C]. In: Moody, J., Hanson, J., Lippmann, R. (Eds.), Advances in neural information processing systems IV, Morgan Kaufman, San Mateo, CA. 1992: 831-838.
    [109] Chapelle O., Vapnik V. N., Bousquet O. et al. Choosing multiple parameters for support vector machines[J]. Mach. Learn., 2002, 46(1): 131-159.
    [110] Vapnik V. N., Chapelle O. Bounds on error expectation for support vector machines[J]. Neural Comput., 2000, 12(9): 2013-2016.
    [111] Schittkowshi K. Optimal parameter selection in support vector machine[J]. J. Ind. Manag. Optim., 2005, l(4): 465-476.
    [112] Ayat N. E, Cheriet M, Suen C. Y. Automatic model selection for the optimization of the SVM kernels[J]. Pattern Recog., 2005, 38(10): 1733-1745.
    [113] Adankon M. M, Cheriet M. Optimizing resources in model selection for support vector machine[J].Pattern Recog., 2007, 40(3): 953-963.
    [114] Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1): 113-116.
    [115] Chapelle O., Vapnik V. N., Mukherje S. Choosing Multiple Parameters for Support Machines[J]. Mach. 1earn., 2002, 46(3): 131-159.
    [116] Lee T. F., Cho M. Y., Shieh C. S. et al. Particle swarm optimization-based SVM application: Power transformers incipient fault syndrome diagnosis [C]. Proc of IEEE ICHIT’2006, Cheju Island, 2006: 468-472.
    [117] Lee B. H., Kim S. U., Seok J. W. et al. Nonlinear system identification based on support vector machine using particle swarm optimization[C]. Proc of IEEE SICE-ICASE' 2006, Busan, 2006: 5614-5618.
    [118]周辉仁,郑丕谔,赵春秀.基于遗传算法的LS-SVM参数优选及其在经济预测中的应用[J].计算机应用, 2007, 27(6): 1418-1419.
    [119]陈果.基于遗传算法的支持向量机分类器模型参数优化[J].机械科学与技术, 2007, 26(3): 347-350.
    [120]倪丽萍,倪志伟,李锋刚等.基于蚁群算法的SVM模型选择研究[J].计算机技术与发展, 2007, 17(9): 95-98.
    [121]袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策, 2006, 21(1): 111-117.
    [122] Dong J. X., Adam K., Ching Y. S. An improved handwritten Chinese character recognition system using support vector machine[J]. Pattern Recog. Lett., 2005, 26 (12): 1849-1856.
    [123] Osuna E., Freund R., Girosi F. Training support vector machines: an application to face detection[C]. In: Proc. of. Computer Vision and Pattern Recognition, CVPR’1997, Puerto Rico, 1997: 130-136.
    [124] Sung K. K., Poggio T. Example-based learning for view-based human face detection[J]. IEEE T. Pattern Anal., 1998, 20(1): 39-51.
    [125] Jonsson K., Kittler J., Li Y. P. et al. Support vector machines for face authentication[J]. Image Vision Comput., 2002, 20(5-6): 369-375.
    [126] Blanz V., Scholkopf B., Bullthoff H. et al. Comparison of View-based Object Recognition Algorithms Using Realistic 3D Models[C]. Artificial Neural Networks-ICANN'96, Berlin, 1996, 1112: 251-256.
    [127] Pontil M., Verri A. Support vector machines for 3D object recognition[J]. IEEE T. Pattern Anal., 1998, 20(6): 637- 646.
    [128] Brown M., Lewis H. G., Gunn S. R. Linear Spectral Mixture Models and Support Vector Machines for Remote Sensing[J]. IEEE T. Geosci. Remote, 2000, 38(5): 2346-2360.
    [129] Guyon I., Weston J., Vapnik V et al. Gene selection for cancer classification using support vector machines[J]. Mach. Learn., 2002, 46(3): 389-422.
    [130] Lorena A. C., Carvalho A. C. P. L. F. Protein cellular localization prediction with Support Vector Machines and Decision Trees[J]. Comput. Biol. Med., 2007, 37(2): 115-125.
    [131] Dumais S., Platt J., Heckerman D. et al. Inductive learning algorithms and representations for text categorization[R]. Technical Report, Microsoft Research, 1998.
    [132] Joachims T., Cristianini N., Shawe-Taylor J. Composite kernels for hypertext categorization[C]. Proceedings of the International Conference on Machine Learning, ICML'01, Morgan Kaufmann. ,2001: 250-257.
    [133] Mitra V., Wang C. J., Banerjee S. Text classification: A least square support vector machine approach[J]. Appl. Soft. Comput., 2007, 7(3): 908-914.
    [134] Musicant D. R., Alexander F. Active set support vector regression[J]. IEEE T. Neural Networks, 2004, 15(2): 268-275.
    [135] Na M. G., Upadhyaya B. R. Model predictive control of an SP-100 space reactor using support vector regression and genetic optimization[J]. IEEE T. Nucl. Sci., 2006, 53(4): 2318-2327.
    [136] Muller K. R., Smola A. J., R?tsch G. et al. Prediction time series with support vector machines[C]. Proceeding of the International Conference on Artificial Neural Networks. Lausaunne, Switzerland: Springer, 1997: 999-1004.
    [137] Mukherjee S., Osuna E., Girosi F. Nonlinear prediction of phaotic time series using a support vector machines[C]. Neural Networks for Signal Processing VII-Proceeding of the 1997 IEEE Workshop, New York, 1997: 511-520.
    [138] Brown M., Gunn S. R.. Empirical data modeling algorithms: additive spline models and support vector machines[C]. Proceeding of UKACC International Conference on Control, Swansea, UK, 1998,: 709-714.
    [139]朱国强,刘士荣,俞金寿.支持向量机及其在函数逼近中的应用[J].华东理工大学学报, 2002, 28(5): 555-559.
    [140]王定成,方廷健,高理富等.支持向量机回归在线建模及应用[J].控制与决策, 2003, 18(1): 89-91.
    [141]张浩然,韩正之,李昌刚.基于支持向量机的非线性系统辨识[J].系统仿真学报, 2003, 15(1): 119-121.
    [142] Zhao Y. P., Sun J. G., Wang J. K. Online parsimotions least squares support vecctor regression and its application[J]. J. Nanjing Univ. Aeron. Astron.(Nanjing. Hangkong Hangtian Daxue Xuebao), 2008, 25(4): 254-261.
    [143]李军,赵峰.最小二乘小波支持向量机在非线性控制中的应用[J].电机与控制学报, 2009, 13(4): 620-625.
    [144] Lorenz E. N. Deterministic non-period flow[J]. J. Atoms. Sci., 1963, 20:130-141.
    [145] Packard N. H., Crutchfield J. P, Farmer J. D. et al. Geometry from a time series[J]. Phys. Rev. Lett, 1980, 45(9): 712-716.
    [146] Takens F. Determing strange attractors in turbulence[J]. Lect. notes Math., 1981, 898 (29): 361-381.
    [147] Grassberger P., Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9: 189-208.
    [148]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社, 2002.
    [149] Kim H. S., Eykholt R., Salas J. D. Nonlinear dynamics delay times, and embedding windows[J]. Physica D, 1999, 127(1): 48-60.
    [150] Cao L. Y., Mee A., Judd K. Dynamics from multivariate tune series[J]. Physica D, 1998, 121(1-2): 75-88.
    [151] Wang H. Y., Zhu M. A prediction comparison between univariate and multivariate chaotic time series[J]. J. Southeast Univ. (English Edition), 2003, 19(4): 414-417.
    [152]卢山,王海燕.多变量时间序列相空间重构的优化[J].系统工程理论方法应用, 2006, 15(3): 234-237.
    [153] Christian H. R., Bernd P. Time series prediction by multivariate next neighbor methods with application to zooplankton forecasts[J]. Math. Comput. Simulat., 2000, 52(3-4): 289-310.
    [154] Boccaletti S., Valladares D. L., Pecora Louis M. et al. Reconstructing embedding spaces of coupled dynamical systems from multivariate data[J]. Phys. Rev. E, 2002, 65(3): 1-4.
    [155]姚洪兴,吴越.多变量经济混沌时序的小波神经网络预测[J].江苏大学学报, 2004, 25(4): 319-323.
    [156]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用, 1997, 14(4): 613-615.
    [157]修春波,刘向东,张宇河.双混沌机制优化方法及其应用[J].控制与决策, 2003, 18(6): 724-726.
    [158] Sun C. Z., Chen Z. F., Li H. M. Chaotic optimization and Taboo search algorithms for design of underwater thruster motor[A]. In: 6th international Conf on Electrical Machines and Systems[C]. Beijing: Institute of Electrical and Electronics Engineers Inc, 2003: 149-152.
    [159]李亚东,李少远.一种新的遗传混沌优化组合方法[J].控制理论与应用, 2002, 19(1): 143-145.
    [160]张志新,张明廉.基于并行混沌和单纯形法的混合全局优化算法[J].系统仿真学报, 2004, 16(1): 35-37.
    [161] Zou X. F., Wang M. T., Zhou A. M. Evolutionary optimization based on chaotic sequence in dynamic environments[A]. In: Proceedings of IEEE International Conf. on Networking Sensing & Control. Beijing: Institute of Electrical and Electronics Engineers Inc, 2004: 1364-1369.
    [162] Liu B., Wang L., Jin Y. H. Improved particle swarm optimization combined with chaos[J]. Chaos Soliton. Fract., 2005, 25(5): 1261-1271.
    [163] Wang L., Smith K. On chaotic simulated annealing[J]. IEEE T. Neural Networks, 1998, 9 (4): 716-718.
    [164] Toshijiro T., Etsumasa H. Computational abilities of a chaotic neural network[J]. Phys. Lett. A, 2003, 315(3): 225-230.
    [165] Zhou C. S., Chen T. L., Huang W. Q. Chaotic neural network with nonlinear self-feedback and its application in optimization[J]. Neurocomputing, 1997, 14(3): 209-222.
    [166]张强,马润年,王超等.具有暂态混沌动力学的神经网络及其在函数优化计算中的应用[J].自然科学进展, 2003, 13(1): 104-107.
    [167]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社, 2008.
    [168]梁艳春,吴春国,时小虎等.群智能优化算法理论及应用[M].北京:科学出版社, 2009.
    [169] Dorigo M., Maniezzo V., Colorni A. The ant system: optimization by a colony of cooperating agents[J]. IEEE T. Syst. Man CY B, 1996, 26(1): 29-41.
    [170] Kennedy J., Eberhart R. C. Particle swarm optimization[C]. Proceeding of IEEE International Conference on Neural Networks, Perth, Australiam, 1995, Piscataway: IEEE Press, 1995: 1942-1948.
    [171] Kennedy J. Bare bones particle swarms[C]. Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2003), Indianapolis, Indiana, 2003: 80-87.
    [172] Shi Y., Eberhart R. C. Empirical study of particle swarm optimization[C]. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL, 2000: 1945-1950.
    [173] Boeringer D. W., Werner D. H. Particle swarm optimization versus genetic algorithms for phased array synthesis[J]. IEEE T. Antenn. Propag., 2004, 52(3): 771-779.
    [174] Robinson J., Sinton S., Rahmat-Samii Y. Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna[C]. IEEE Antenn. Propag. S, International Symposium and URSI National Radio Science Meeting, 2002, 1: 314-317.
    [175] Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[C]. Proceedings of IEEE Congress on Evolutionary Computation (CEC1999), Piscataway, NJ, 1999: 1931-1938.
    [176] Kennedy J., Mendes R. Population structure and particle swarm performance[C]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii USA, 2002: 1671-1676.
    [177] Fukuyama Y., Yoshida H. A particle swarm optimization for reactive power and voltage control in electric power systems[A]. Proceedings of the IEEE Conference on Evolutionary Computation [C]. Soul: IEEE , 2001: 87-93.
    [178] Salman A., Ahmad I., Al-Madani S. Particle swarm optimization for task assignment problem [J]. Microprocess. Microsy., 2002, 26(8): 363-371.
    [179]符强,夏瑛,张华等.基于粒子群算法的粗轧宽展控制模型优化仿真[J] .冶金自动化, 2003, 27(3): 1-4.
    [180]秦元庆,孙德宝,李宁等.基于粒子群算法的移动机器人路径规划[J].机器人, 2004, 26(3): 222-225.
    [181]高尚,韩斌,吴小俊等.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004, 19(11): 1286-1289.
    [182]闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004, 23(1): 18-21.
    [183] Haggstrom O. Finiter Markov chains and algorithmic application[M]. New York: Cambridge University Press, 2002.
    [184] Newman D. J., Hettich S., Blake C.L. et al. UCI repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science, 1998, Available: http://www.ics.uci.eduhmlearn/MLRepository.html.
    [185]亢茂青,任兆鑫.二甲醚(DME)的制备及应用[J].合成化学, 1994, 2(4): 320-323.
    [186] Anderson A. A. Investigation of the oxidative carbonylation of methanol to dimethyl carbonate over copper zeolite catalysts[D]. University of Wisconsin-Madison, USA, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700