纤维改性可燃药筒的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可燃药筒是一种多孔结构的非均质复合材料,具有容器和提供装药能量的双重作用。可燃药筒可减轻弹药重量,增加随行载弹量;燃烧后自行消失,没有退壳和废壳堆积问题;药筒能量可起到部分发射药作用,提高弹丸初速;其制造工艺简单,成本低廉,便于战时大量、快速生产。可燃药筒的出现促进了火炮结构和装药结构的改进,并使模块化装药得以实现。然而可燃药筒的力学性能与燃烧性能是一对矛盾体,药筒结构的疏松多孔有助于燃烧,但却使得力学性能降低,结构致密时则相反,如何同时提高力学性能和燃烧性能是可燃药筒研究的一大难题。而随着现代的高膛压、高初速武器以及模块化装药技术的发展,对可燃药筒的燃烧性能和力学性能都有了更高的要求。
     本课题从提高可燃药筒能量角度入手,以提高体系中能量组分的含量来改善可燃药筒的燃烧性能。设计制造了一种含能纤维材料,用以提高模压可燃药筒的能量,改善药筒强度。以含能纤维部分替代硫酸盐木浆纸组分设计了一组可燃药筒配方。通过对配方的氧平衡与热力学参数计算,分析了纤维改性可燃药筒的燃烧性能,并与聚丙烯腈纤维增强的配方进行对比,以现行抽滤模压工艺制备了纤维改性可燃药筒。
     以氮气吸附孔径分布测试仪、压汞仪和电子显微镜等手段对所制纤维改性可燃药筒进行了微观结构分析。可燃药筒孔隙主要为长条状的狭缝形和楔形孔。通过压汞试验结合Menger海绵体构建了可燃药筒体积分维模型。以基体分维DH和孔隙分维Dv来表征可燃药筒中组分间的孔隙分布和组分的孔隙分布。
     以材料力学试验机、热分析仪、密闭爆发器试验和高低温交变湿热试验对纤维改性可燃药筒的力学性能、热分解特性、燃烧性能及吸湿性能进行测试分析。相比基础配方B可燃药筒,加入9%含能纤维的可燃药筒的压缩力与抗拉强度分别提高6.8%和17.2%。但随含能纤维替换量增大,可燃药筒的力学性能下降。
     加入9%含能纤维的可燃药筒定容燃烧结束时间为5.45ms,火药力为590.8 J·g-1;当含能纤维加入量达到16.5%时,可燃药筒燃烧结束时间缩短至1.64ms,火药力增加到664.6 J·g-1;而基础配方B可燃药筒的定容燃烧结束时间为7.63ms,火药力为536.9 J·g-1。结果表明,加入含能纤维有利于缩短可燃药筒燃烧时间,增加火药力,改善其燃烧性能。模拟装药射击试验表明,加入含能纤维后的可燃药筒有利于降低装药的发射烟、焰。
     定容燃烧试验中,随可燃药筒装填密度的提高,可燃药筒燃烧速度加快,燃烧更为充分,由0.12和0.16 g·cm-3装填密度下测得火药力为583.9 J·g-1,而0.16和0.20g·cm-3装填密度下测得火药力为602.8 J·g-1。随点火强度提高,可燃药筒燃烧速度加快,能量释放更完全,0.12和0.20 g·cm-3装填密度下,弱点火和强点火时测得火药力分别为590.8J.g~(-1)和672.5 J·g~(-1)
     可燃药筒的多孔结构是影响其吸湿速率的关键因素,材质对吸湿量影响较大。药筒吸湿性较强,吸湿速率快。在20℃RH80%条件下,基础配方B可燃药筒吸湿率达到3.91%。含16.5%的含能纤维的可燃药筒在20℃RH80%条件下,吸湿率为3.43%。吸湿后药筒燃烧速度明显下降,0.20g.cm~(-3)装填密度下,吸湿量为1.6%可燃药筒的燃烧结束时间由干燥样品的6.64ms大幅延长至12.02ms,并且低装填密度下的燃气生成速率波动明显。
Combustible cartridge case was a kind of porous composite energetic materials, with dual roles of the container and the energy component. There were no back shells and salvage-shells problems with combustible cartridge case. Using combustible cartridge could reduce the weight of ammunition to increase the bombs loading weight, improve artillery operating conditions and shooting speed, and reduce the arduous task of recovery and transportation. The manufacturing process of combustible cartridge case was simple and low cost, and easy for fast and stack production in wartime. It also saved lots of precious metal materials. The combustible cartridge had resulted in the improvement of artillery and the modular charge system. But the porous structure also led to a contradictionary problem between mechanical properties and combustion properties. Accompanying with the modern high-velocity weapons and modular charge technology improvement, higher standards of combustion performance and mechanical properties of the combustible cartridge were required.
     This thesis studied the way of improving the combustion performance of combustible cartridge by increasing the content of energetic components. A novel energetic fiber have been designed and manufactured in this thesis. This novel energetic fiber could improve the combustion performance of combustible cartridge and it also had strengthing effect,. Series of modified combustible cartridge had been designed and manufactured by using this novel energetic fiber as strengthing components. As the adding amount of energetic fiber increased, cartridges oxygen balance greatly improved, and enthalpy of formation of combustible cartridge increased. The improvement of energy levels was theoretically beneficial to the improvement of combustion performance.
     The microstructures of modified combustible cartridge cases were investigated by gas adsorption and desorption analyzer, mercury instrusion porosimeters (MIP) and electron microscopy. Pores of cartridge case were mainly slit-shaped and wedge-shaped. The fractal model of pore structure of combustible cartridge cases was established by virtue of the fractal geometry, through combining Menger sponge with MIP test. The backbone fractal dimension (DH) was formed by the component's space and influenced by the amount and size of components; percolation fractal dimension (Dv) represented the pore structure of components themselves.
     Mechanical properties, combustion performance and moisture adsorption of modified combustible cartridge cases have been studied through materials mechanics testing machines, closed-bomb tests and temperature-humid alternating tests, respectively. The influences of different component content, test conditions and other factors on combustion properties of the combustible cartridge have been deeply studied. Compared with basic formula B combustible cartridge, the compression strength and tensile strength of formula PNF9 which added 9% energetic fiber increased 6.8% and 17.2%, respectively. As the energetic fibers adding amount increased, combustible cartridge mechanical performance declined.
     In constant-volume combustion, the burning-off time and impetus of formula PNF9 which added 9% energetic fibers were 5.45ms and 590.8J/g, respectively. While, the burning-off time and impetus of basic formula B were 7.63ms and 536.9 J/g. As the energetic fiber content increased, gas generation rate boosted and burning-off time shortened, combustion performance improved. The charge simulation test revealed that adding energetic fibers could also reduce the solid residues and combustible gases.
     In constant-volume combustion experiments, as loading density increased, the gas generation rate of combustible cartridge became faster, the combustion became more effective, cartridges energy released more complete. The impetus tested under 0.12 and 0.16 g/cm3 loading densities was 583.9 J/g, while it was 602.8 J/g under 0.16 and 0.20 g/cm3 loading densities. With the ignition power increased, the burning rates were accelerated, cartridges energy release were more complete. Under 0.12 and 0.20 g/cm3 loading density, impetus improved form 590.8 J/g of weak-ignition to 672.5 J/g of strong-ignition.
     The porous structure and component materials strongly affected the moisture adsorption of combustible cartridge. Moisture adsorption rate of formula B cartridge reached 3.91% under 20℃and RH80%. After adding 16.5% energetic fiber, moisture adsorption rate dropped to 3.43%. The gas generation rate decreased significantly after adsorpted moisture, and became more volatile in lower loading density. Under 0.20g/cm3 loading density, the burning-off time of combustible cartridge with 1.6% moisture extended from 6.64 ms of dry sample to 12.02 ms.
引文
[1]王志军,尹建平.弹药学[M].北京:北京理工大学出版社,2005
    [2]刘定胜.钢制药筒的弹道性能与动态性能[J].兵器材料科学与工程,1985,(12):14-18
    [3]郭俊杰.弹药发展史上的一次革命-药简可燃化[J].金属世界,1998,6:8-9
    [4]Beal, K. F.; Schmidt, W. D. Combustible Cartridge Case and Method of Making Same[P]. US PATENT-2982 211,1953
    [5]Baker, W. S. Method of Making Combustible Cartridge Cases[P]. US PATENT-3 282 146,1965
    [6]Remaly, R. F.; Nusbaum, M. S.; Johnson, K. G.; Levine, S. Duplex Combustible Cartridge Case[R]. AD1648666,1974
    [7]Remaly, R. F.; Nusbaum, M. S.; Johnson, K. G.; Levine, S. Duplex Combustible Cartridge Case[P]. US PATENT-3 823 668,1972
    [8]Bobinski, J.; Picard, J. P. Water-Resistant Consumable Cartridge Case[P]. US PATENT-3 770563,1971
    [9]Puri, V. P. Combustible Cartridge Cases:An Account of the Current Technology and Proposals for Future Development[R]. WSRL-0471-TR,1986
    [10]Zimmerman, F.J The development of small caliber combustible cartridge case ammunition[R].AH-A03-37331,1968
    [11]Zimmerman FJ. Development of 7.62mm and 30mm Combustible Cartridge Case Ammunition [J]. J Spacecraft & Rockets,1969,6(3):312-314
    [12]Zimmerman, T. Combustible Cartridge Case[P]. US PATENT-3706279,1971
    [13]Office of the Secretary of the Army. Novel Combustible Cartridge Case and Process Therefore[P]. US PATENT-3 706 280,1970,
    [14]Robbins, F. W.; Colburn, J. W.; Zoltani, C. K. Combustible Cartridge Cases:Current Status and Future Prospects[R]. BRL-TR-3383,1992
    [15]军用可燃药简的制造(德)[C],1987年,ICT年会会议记录
    [16]刘庆荣,王泽山,吉法祥,徐复铭.火药装药设计[M].北京:国防工业出版社,1986
    [17]王德才.火药学[M].南京:南京理工大学,1988
    [18]王泽山,徐复铭,张豪侠.火药装药设计原理[M].北京:兵器工业出版社.1995
    [19]王泽山.火炸药科学技术[M].北京:北京理工大学出版社,2002
    [20]金长荣.火炸药理论与实践[M].中国北方化学工业总公司(内部发行),2001
    [21]Kurulkar G. R, Syal R. K, Singh H. Combustible Cartridge Case Formulation and Evaluation[J]. Journal of Energetic Materials,1996,14(2):127
    [22]张杏芳.国外火炸药原材料性能手册[M].北京:兵器工业出版社,1991
    [23]赵珍娣,彭金凤.含黑索今可燃药筒的性能[R].西安近代化学研究所研究报告
    [24]史纯厚,申胜达.可燃药筒的防护涂层[J].表面技术,1990,19(1):24-27
    [25]San Miguel, A. A Method for Evaluating Plastics as Gun Cartridge Case Materials[R]. NWC-TP-5356, Jul 1973
    [26]郑林,李生慧,魏学涛.硝化棉含氮量对叠氮硝胺发射药力学性能的影响[J].火炸药学报,2003,26(3):47-50
    [27]Abel, W.A. Process for Uniformly Depositing Resin in Combustible cartridge Cases[P]. US PAT-APPL-220 642,1972
    [28]张兆军,徐文娟,张会生.三种可燃药筒燃烧特性的分析[J].兵工学报,1996,1,26-31
    [29]第五旬宁.浅谈填加二氧化钛的绕丝可燃药筒对高膛压火炮身管的缓蚀作用[J].火炸药,1990,1:10-11
    [30]刘培生.多孔材料引论[M].北京:清华大学出版社,2004
    [31]曹晓明,武建军,温鸣.先进结构材料[M].北京:化学工业出版社,2005
    [32]Lorna J. Gibson, Michael F. Ashby. Cellular solids:structure and properties[M].Press Syndicate of the University of Cambridge,1997
    [33]朱纪磊,奚正平,汤慧萍等.多孔结构表征及分形理论研究简况[J].稀有金属材料与工程,2006,35(Suppl 2):452-456
    [34]安江峰,闫玉华.多孔高分子复合材料的制备技术[J].生物骨科材料与临床研究,2005,2(6):53-56
    [35]白青龙,张春花,王冀敏.多孔材料的研究进展[J].内蒙古民族大学学报(自然科学版),2004,19(5):528-531
    [36]Sharon Gerecht, Seth A. Townsend, Heather Pressler etc. A porous photocurable elastomer for cell encapsulation and culture[J]. Biomaterials,2007,28:4826-4835
    [37]益小苏.先进复合材料技术研究与发展[M].北京:国防工业出版社,2006
    [38]赵文明,杨健,王晓琳等.热致相分离法制备高聚物微孔结构材料的研究进展[J].高分子材料科学与工程,2007,23(6):1-5
    [39]史玉升,李远才,杨劲松.高分子材料成型工艺[M].北京:化学工业出版社,2006
    [40]周达飞,唐颂超.高分子材料成型加工[M].北京:中国轻工业出版社,2005
    [41]高建明.材料力学性能[M].武汉:武汉理工大学出版社,2004
    [42]曹晓卿,王志华,马宏伟.微孔结构对多孔材料细观力学特性的影响[J].太原理工大学学报,2006,37(1):1-4
    [43]詹怀宇.纤维化学与物理[M].北京:科学出版社,2005
    [44]潘祖仁.高分子化学[M].北京:化学工业出版社,2002
    [45]曾汉民.功能纤维[M].北京:化学工业出版社,2005
    [46]王学松.现代膜技术及其应用指南[M].北京:化学工业出版社,2005
    [47]Peter L Deluca. Fibrillated Polyacrylic Fiber in Combustible Cartridge Cases[J]. Ind. Eng. Chem. Prod. Res.1984,23:438-441
    [48]DeLuca, Peter L, Williams, John C. Fibrillated polyacrylic fiber in combustible cartridge Cases[J]. Industrial & Engineering Chemistry, Product Research and Development, 1984,23(3):438-441
    [49]Brabets, R. I.; Levine, S. Wrapped Laminated Felted Monolithic Combustible Cartridge Case[P]. PATENT-3 901 153,1974
    [50]Brenner, W.; Iqbal, M. An R&D Exploratory Investigation of Resin Binders for the Combustible Cartridge Case for the 155mm Self Propelled (SP) Howitzer (XM198/M109A1) Ammunition[R]. NYU/DAS-80-19,1980
    [51]Kestusis G. Chesonis, Pauline M. Smith, William S. Lum. Investigation of Residue and Coating Stoichiometry on 120-mm Combustible cartridge case[R]. ARL-TR-2337,2000
    [52]Simpson, D. C.; Westley, S.; Moreira, R. Variations in Manufacturing Processes 155 mm Combustible Cartridge Case[R].ADA1318955,1983
    [53]Manning, C. Y. Porosity Measurement of Combustible Cartridge Case Materials[R]. ARLCD-TR-81003,1981
    [54]刘涌.自行反坦克炮战斗室失火原因分析及改进探讨[J].军械工程学院学报,2000,3(13):9-11
    [55]刘学书,石忠东.可燃药筒燃烧性能的分析[J].兵工学报武器分册.1984,4,44-50
    [56]Prosen, S. P.; Johnson, W. T. Plastics Obturator for 105MM Combustible Cartridge Case[R].NOL-TR-65-105,1965
    [57]申胜达.国外可燃药筒弹药的包装[J].包装工程,1990,11(4):32-34
    [58]王军波,文健,许路铁.指示剂带在半可燃药筒硝酸酯检测上的试验研究[J].火炸药学报,1999,4:51-53
    [59]郝红英,邵自强,谭惠民.不同含氮量的NC低分子溶液体系小分子扩散性能研究[J].火炸药学报,2002,2:54-56
    [60]吴宗贵.可燃药筒溶剂检测技术研究[J].兵工自动化,1993,4:35-38
    [61]王军波,赵晓莉,郭芳筠等.关于半可燃药筒弹药储存可靠性若干问题的讨论[J].火炸药学报,1999,1:37-41
    [62]王军波,范立思,文健等.半可燃药筒贮存性能可靠性评估[J].火工品,1999,2:5-8
    [63]Ho, C. H.; Moneyhun, J. H.; Agouridis, D. C.; Gayle, T. M.; Hurst, G. B. Detection of nitroesters and moisture in combustible cartridge case wall by indicator strips and instruments[R]. ORNL/TM-12286,1992
    [64]Singh, Haridwar, Peshave, J.R. Observation of change in colour of combustible cartridge cases on ageing-A qualitative tool[J]. Defence Science Journal,2003,53(4):367-370
    [65]Griest, W. H., Ho, C. H., Moneyhun, J. H.etc. Indicator strip and portable instrument technologies for determining nitroesters or moisture in combustible cartridge cases[R]. CONF-9306110-2,1993
    [66]Syal, R.K.; Sindker, D.V.; Narr, P.S.; Diwakar, R.P. Hazard assessment for manufacture of combustible cartridge cases using picrite[J]. Defence Science Journal,1996,46(2):71-75
    [67]丹尼尔R.斯塔尔.燃烧与爆炸原理[M].南京:华东工学院,1976
    [68]华东工程学院《内弹道实验原理》编写组.内弹道实验原理[M].北京:国防工业出版社,1984
    [69]严传俊,范玮.燃烧学[M].西安:西北工业大学,2005
    [70]李嘉.可燃药筒燃烧规律的研究[J].兵工学报,1981,2:9-19
    [71]徐文娟,张兆钧,于军.可燃药筒在密闭爆发器中燃烧规律初步探讨[J].华东工程学院学报,1984,2:147-160
    [72]徐文娟.两种可燃药筒燃气生成规律的分析比较[J].兵工学报,1990,3:16-22
    [73]马忠亮,王志强,刘幼平等.发泡无壳弹药柱燃烧性能研究[J].华北工学院学报,2002,23(3):157-160
    [74]李欣.可燃药筒装药对弹丸初速或然误差影响的分析[J].弹道学报,1994,2:24-29
    [75]Weed, D. W. Product Improvement Test of Combustible Cartridge Case,152-mm, XM157 (Effect of Flareback)[R]. DPS-2430,1967
    [76]徐文娟,庄国镇.抽滤型可燃药筒加主装药的静态试验研究[J].弹道学报,1993,2:52-59,69
    [77]徐文娟.可燃药筒与主装药匹配的研究[J].弹道学报,1994,4:29-33
    [78]Kelso, J. R.; Koszoru, A. A.; Horst, A. W. Experimental Testing of a Combustible Case for the 155mm Howitzer[R]. ARBRL-MR-03162,1982
    [79]张会生,徐文娟.可燃药筒实际燃烧速度的研究[J].弹道学报,1996,8(4):24-27
    [80]徐文娟,张会生.可燃药筒活性的分析[J].南京理工大学学报,1996,20(1):21-25
    [81]Erikson, T. Combustion Mechanisms of 25MM Combustible Cartridge[R]. IITRI-C6253-FR,1973
    [82]徐文娟,张晓卫.可燃药筒燃烧特性参数的试验分析[J].南京理工大学学报,1993,5(71):49-55
    [83]Robbins, F. W.; Bundy, M. L.; Von Wahlde, R. Combustible Metallic Igniter Casing for Tank Guns[R]. BRL-MR-3944,1991
    [84]徐文娟,于军.抽滤型可燃药筒性能及燃烧规律的研究[J].华东工学院学报,1988,1:130-139
    [85]Syal, R.K. Cook-off study of combustible cartridge cases[J]. Defence Science Journal, 1992,42(2):113-116
    [86]张兆钧,徐文娟,张会生.三种可燃药筒燃烧特性分析[J].兵工学报,1996,17(1):26-31
    [87]Colburn, J. W.; Robbins, F. W. Combustible Cartridge Case Ballistic Characterization[R]. BRL-MR-3835,1990
    [88]熊春燕,朱江疆,王依民.新型多孔聚酯纤维的制备[J].合成技术及应用,2005,20(4):48-51
    [89]李安青,王广月.聚酯中空微多孔长丝的试制[J].济南纺织化纤科技,2002,1:16
    [90]Osman San, Cem Ozgur. Fabrication of glassy ceramic membrane filters for filtration of spring water with clogging phenomena[J]. Journal of Membrane Science,2007, (305): 169-175
    [91]Simon D. McAllister, Rubha Ponraj, I. Francis Cheng etc. Increase of positive active material utilization in lead-acid batteries using diatomaceous earth additives[J]. Journal of Power Sources,2007, (173):882-886
    [92]何云.湿法纺丝制备水溶性PVA纤维工艺探讨[J].合成纤维工业,2004,27(4):31-34
    [93]潘则林,王才.水溶性高分子产品应用技术[M].北京:化学工业出版社,2006
    [94]孙俊芬,王庆瑞.添加剂PVP对聚醚砜超滤膜微结构和性能的影响[J].膜科学与技术,2003,23(3):1-4
    [95]负延滨,李继定,陈翠仙PVPK30和Tween80对中空纤维超滤膜结构和性能的影响[J].水处理技术,2006,32(1):14-17
    [96]曹瑾,王新威,胡祖明,刘兆峰.溶剂及溶液中无机盐对电纺纤维的影响[J].合成纤维,2006,3:9-12
    [97]何曼君,张庆红,陈维孝.高分子物理(第三版)[M].上海:复旦大学出版社,2006
    [98]John W. Nicholson. The Chemistry of Polymers[M]. The Royal Society of Chemistry, 1997
    [99]王海云,朱永年,储富祥等.溶解纤维素的溶剂体系研究进展[J].生物质化学工程,2006,40(3):54-58
    [100]钟俊文,黄志虹,丁群.溶剂挥发与硝化棉表饰剂流动性关系研究[J].皮革科学与工程,2003,13(5):49-52
    [101]黄宇,程振锋,刘庆林.聚合物-溶剂体系中溶剂的活度模型[J].化工学报,2006, 57(9):2039-2042
    [102]任琳,王颖.溶剂结构对PVP分子链尺寸的影响[J].安徽建筑工业学院学报(自然科学版),2006,14(3):50-52
    [103]程能林,胡声闻.溶剂手册[M].北京:化学工业出版社,1987
    [104]Ramon J. Albalank.聚合物脱挥[M].北京:化学工业出版社,2005
    [105]管新海.TCS微孔化新合纤微观形态与性能研究[J].合成纤维,2004,6:18-20
    [106]张耀鹏,胡赛珠,邵惠丽,沈新元,胡学超.凝固浴条件对Lyocell膜表面结构和性能的影响[J].东华大学学报(自然科学版),2002,28(3):1-6
    [107]吕少丽,朱宝库,徐又一.凝固浴温度对相转化聚醚砜中空纤维膜结构与性能的影响[J].膜科学与技术,2006,26(5):26-31
    [108]M. Grujicic, B. Pandurangan, R. Qiao etc. Parameterization of the porous-material model for sand with different levels of water saturation[J]. Soil Dynamics and Earthquake Engineering,2008, (28):20-35
    [109]Ge'raldine Rohman, Franc,oise Laupre^tre, Sylvie Boileau etc. Poly (D,L-lactide)/poly(methyl methacrylate) interpenetrating polymer networks:Synthesis, characterization, and use as precursors to porous polymeric materials[J]. Polymer,2007, (48): 7017-7028
    [110]HU Guoming, WAN Hui, ZHANG Youlin etc. A Large Deformation Model for the Elastic Moduli of Two-dimensional Cellular Materials[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed,2006,21(2):154-157
    [111]胡继文,黄勇,沈家瑞.聚丙烯中空纤维膜的微孔结构的控制[J].功能高分子学报,2002,15(1):24-28
    [112]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社,1982
    [113]GUO Yong-sheng, WANG Jie, SONG Xi-ji. Characterization of cellulose acetate micropore membrane mem rane ilmmobilized acvylase I[J]. J. Zhejiang Univ SCI,2004, 5(12):1608-1612
    [114]贾学军,王晓明.Kelvin结构多孔材料弹性模量分析[J].中国材料科技与设备,2006,2:35-39
    [115]LIU Yi, HUANG Zhuping. Macroscopic Strain Potentials In Nonlinear Porous Materials[J]. Acta Mechanica Sinica,2003,19(1):52-58
    [116]屠小昌,张素君,王健生.可燃药筒在某型号发动机点火器中的应用[J].推进技术,1996,17(2):59-61
    [117]周刚,杨国清,崔奇等.武器射击试验装药气体生成强度的测量[J].火炸药学报,2002,2:61-62
    [118]张素贤,戴安全,刘魁梅等.军用硝化棉系列标准协调性探讨[J].国防技术基础,2003,1:24-26
    [119]陆明,吕春绪.氧平衡对粉状硝铵炸药爆炸性能影响的数学计算方法[J].兵工学报,2004,2(25),,225-228
    [120]徐文娟,于军.可燃药筒燃烧规律的实验研究[J].兵工学报武器分册.1984,3,40-44
    [121]Brabets, R. I. Combustible Cartridge Case Characterization[R]. ADA1406644,1984
    [122]王伯羲,冯增国,杨荣杰.火药燃烧理论[M].北京:北京理工大学出版社,1994
    [123]刘继华.火药物理化学性能[M].北京:北京理工大学出版社,1997
    [124]王康谊,韩焱.可燃药筒密度检测系统[J].火炮发射与控制学报,2002,1:54-56
    [125]近藤精一,石川达雄.吸附科学(第二版)[M].北京:化学工业出版社,2006
    [126]杨通在,罗顺忠,许云书.氮吸附法表征多孔材料的孔结构[J].炭素,2006,1:17-22
    [127]刘培生.多孔材料比表面积和孔隙形貌的测定方法[J].稀有金属材料与工程,2006,35(Suppl 2):25-29
    [128]C.A. Ulven, U.K. Vaidya. Impact response of fire damaged polymer-based composite materials[J]. Composites:Part B,2008, (39):92-107
    [129]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006
    [130]张玉龙.高技术复合材料制备手册[M].北京:国防工业出版社,2003
    [131]D.W.范克雷维伦.聚合物的性质[M].北京:科学出版社.1981
    [132]Krohn C E, Thompson A H. Fractal sandstone pore:Automated measurements using scanning-electron-microscope images[J]. Physical Review B (Condensed Matter),1986,33(9): 6366-6374
    [133]Benoit B Mandelbrot. The Fractal Geometry of Nature[M]. New York:W. H. Freeman and Co.,1982
    [134]Benoit B Mandelbrot. Fractal analysis and synthesis of fracture surface roughness and related forms of complexity and disorder[J]. International Journal of Fracture,2006,138(1-4): 13-17
    [135]Perrier E, Bird N, Rieu M. Generalizing the fractal model of soil structure:the pore-solid fractal approach[J]. Geoderma,1999,88(11):137-164
    [136]韦江雄,余其俊,曾小星等.混凝土中孔结构的分形维数研究[J].华南理工大学学报(自然科学版),2007,35(2):121-124
    [137]Schlueter E M, Zimmerman R W, Witherspoon P A, et al. The fractal dimension of pores in sedimentary rocks and its influence on permeability[J]. Engineering Geology,1997, 48(3-4):199-215
    [138]邸小波,奚正平,汤慧萍等.不锈钢纤维烧结多孔材料孔结构分形分析[J].稀有金属材料与工程,2007,36(suppl.3):571-573
    [139]荣利霞,解立平,董宝中等.同步辐射小角X射线散射方法研究由城市固体垃圾制备的活性炭[J].物理学报,2003,52(3):630-634
    [140]盛永刚,徐耀,李志宏等.气体吸附法测定二氧化硅干凝胶的分形维数[J].物理学报,2005,54(1):221-227
    [141]Gibson J R, Lin H, Bruns M A. A comparison of fractal analytical methods on 2-and 3-dimensional computed tomographic scans of soil aggregates [J]. Geoderma,2006,134 (3-4): 335-348
    [142]赵宏立.火药密闭爆发器标准装置的不确定度分析[J].航空计测技术,2004,24(4):26-28
    [143]晋小莉,赵孝彬,刘刚.新型密闭爆发器测试系统的研制[J].火工品,2004,3:44-46
    [144]张会生,徐文娟.可燃药筒点火问题浅析[J].弹道学报.1995,7(2):27-31
    [145]赵永翔.装药元件对湿热环境适应性研究[J].火炸药学报,2000,4:51-52
    [146]Syal, R.K.; Talegaonkar, S.B.; Peshave, J.R. Drying characteristics of combustible cartridge cases[J]. Chemical Engineering World,1995,30(6):119
    [147]傅尤章.可燃药筒水份含量自动检测技术研究[J].兵工自动化,1993,4:27-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700