哈茨木霉生物转化盾叶薯蓣中的皂苷及其产物提取分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薯蓣皂苷元(Diosgenin)是合成多种甾体激素类药物和甾体避孕药的理想前体,占甾体激素类药物原料的60%。盾叶薯蓣(Dioscorea zingiberensis C.H. Wright)是我国特有的多年生藤本植物,也是我国生产薯蓣皂苷元的最主要原料之一。薯蓣皂苷元在植物中以甾体皂苷的形式存在,通常用酸将皂苷水解为苷元。传统的酸水解生产方法不仅破坏了薯蓣皂苷元的结构,造成苷元提取率低,而且对环境造成极其严重的污染。生物转化法条件温和、操作简单、成本低廉、环境友好。本文利用生物转化法直接将盾叶薯蓣药材中的皂苷转化为薯蓣皂苷元,并对其转化途径及产物的提取分离进行了研究。
     首先,筛选出一株能够直接利用盾叶薯蓣药材发酵生产薯蓣皂苷元的微生物菌种,经形态学、分子生物学鉴定为哈茨木霉(Trichoderma harzianum)。哈茨木霉转化盾叶薯蓣过程中甾体成分种类没有变化,也没有其它副产物形成,薯蓣皂苷元得率高,该菌是一株高效的、具有应用潜力的菌种。
     其次,对哈茨木霉转化盾叶薯蓣中皂苷的发酵培养条件进行了优化。以薯蓣皂苷元产量为优化目标,最适的摇瓶培养温度为30℃,培养基最佳药材载量为33.33g/L,发酵培养基的最适接种量为6%。当培养基以pH 6.0的Na2HPO4-KH2PO4缓冲液为基质、添加2 mmol/L的Fe2+或0.03%(w/v)的吐温-85时,薯蓣皂苷元产量分别比空白对照提高50.28%、22.07%和33.35%。响应面法优化得到的盾叶薯蓣发酵培养基组成为0.06mol/L的Na2HPO4-KH2PO4、0.07%(w/v)的吐温-85和0.93 mmol/L的Fe2+,优化条件下哈茨木霉发酵盾叶薯蓣120 h,薯蓣皂苷元产量为30.05±0.59 mg/g,转化率为73.63±0.54%。
     再次,建立了描述哈茨木霉转化皂苷的动力学模型,用数学软件Matlab对皂苷转化过程进行模拟。结果表明:总甾体浓度实际值与动力学模拟计算数值拟合较好,可决系数(coefficient of determination)为0.97;薯蓣皂苷元、盾叶新苷、葡萄糖三糖苷、三角叶薯蓣皂苷、延龄草次苷、葡萄糖二糖苷以及prosapogenin的浓度变化符合M-M酶催化动力学,其可决系数(coefficient of determination)分别为0.99、0.98、0.94、0.85、0.82、0.79和0.66;皂苷转化过程中鼠李糖和葡萄糖的水解同时存在,葡萄糖的水解包括末端葡萄二糖和单糖的水解,甾体母核C3位相连的糖苷键的水解与糖链上其它葡萄糖苷键的水解不同,对于单葡萄糖的水解甾体母核C3位相连的糖苷键水解活性高于其它糖苷键,对于葡萄二糖的水解甾体母核C3位相连的糖苷键水解活性低于其它糖苷键;生成薯蓣皂苷元的主要途径为盾叶新苷先水解鼠李糖,再水解葡萄二糖,最后水解末端单葡萄糖生成薯蓣皂苷元。
     最后,应用双水相和三液相对皂苷及薯蓣皂苷元进行了提取分离研究。以乙醇/硫酸铵双水相体系为溶剂,利用微波辅助双水相提取发酵液中的皂苷及薯蓣皂苷元,总皂苷提取率为96.8%,薯蓣皂苷元提取率为97.1%。在双水相体系中加入石油醚,形成三液相。由30%(w/w)乙醇、17%(w/w)硫酸铵、40%石油醚组成的三液相体系实现了发酵液中薯蓣皂苷元、皂苷与葡萄糖、微生物细胞和药渣的有效分离。上相(石油醚相)中薯蓣皂苷元的回收率为97.2%,回收上相石油醚后,薯蓣皂苷元甲醇结晶样品色谱检测纯度大于98%;中相(醇相)中盾叶新苷、三角叶薯蓣皂昔、葡萄糖二糖苷的回收率接近100%,葡萄糖三糖苷和延龄草次苷的回收率分别为98.8%和96.0%;72.0%的葡萄糖分配在下相(盐相);微生物细胞和药渣形成沉淀层悬浮于中相与下相之间。
     生物转化结合三液相萃取后的酸水解,获得的薯蓣皂苷元产量比传统酸水解增加38.5%,而产生的COD、还原糖仅为酸水解的3.3%和0.3%。
Diosgenin is an important precursor in the synthesis of steroidal hormones and steroidal contraceptives, and about 60% steroidal hormone medicines are produced from it. Dioscorea zingiberensis C. H. Wright (DZW) is one of the important resources for diosgenin production. Diosgenin exists as a form of glycosidal steroidal saponin in DZW. In industry, acids are usually used to hydrolyze DZW tubers to produce diosgenin. However, the structure of diosgenin is easily damaged and numerous byproducts are then generated in the traditional acid hydrolysis, which results in lower diosgenin yield and serious pollution. It is well known that biological hydrolysis for natural product has many advantages, such as high specificity, mild reaction conditions and clean production as well as low cost. In this paper, a microbial transformation method was developed to convert the saponins in DZW to diosgenin, and the transformation kinetics and the extraction and separation of biotransformed products were studied.
     Firstly, a specific strain was selected from a wide range of strains offered according to its recognized ability to produce diosgenin. Morphological characters indicated the strain belongs to Trichoderma. GenBank BLAST showed that its ITS sequence shared 100% homology with that of Trichoderma harzianum. Comparing the post-biotransformed sample with the pre-biotransformed one, no other new saponins and no byproducts were found. Biotransformation of DZW by T. harzianum with a high yield of diosgenin was deserved to be studied further.
     Secondly, fermentation of DZW by T. harzianum was investigated based on the above results. The transformation conditions were optimized for maximum diosgenin production. The optimum fermentation temperature was 30℃, the optimum concentration of DZW in the medium was 33.33 g/L and the optimum inoculation amount was 6%. Diosgenin yield was increased by 50.28% in phosphate buffer at pH 6.0 over that of control sample. The yield of diosgenin was enhanced by 22.07% and 33.35%, respectively, if adding 2 mmol/L Fe2+ or 0.03% (w/v) Tween-85 into medium. The optimum medium obtained by response surface methodology was composed of 0.06 mol/L phosphate buffer,0.07% (w/v) Tween-85 and 0.93 mmol/L Fe2+. Under these conditions, the maximum diosgenin yield of 30.05±0.59 mg/g was achieved, which was slightly higher than that obtained from traditional acid hydrolysis, and the conversion percentage was 73.63±0.54%.
     Thirdly, the main biotransformation pathway and kinetic feature were determined by kinetics modelling and analysis. The results showed that the coefficients of determination of total steroid, diosgenin, zingibernsis newsaponin, diosgenin-triglucoside, deltonin, trillin, diosgenin.-diglucoside and prosapogenin were 0.97,0.99,0.98,0.94,0.85,0.82,0.79 and 0.66, respectively. During the biotransformation the hydrolysis of rhamnosyl residue and glucosyl residue occurred simultaneously. The hydrolysis of glucosyl residue included the hydrolysis of mono-glucosyl residue and diglucosyl residue. The hydrolysis of glycoside bond linked with glucosyl and aglycone was different from that of glycoside bond linked with two glucosyls. For mono-glucosyl, the hydrolysis rate of glycoside bond linked with glucosyl and aglycone was higher than that of other glycoside bond in sugar chain. On the contrary, for diglucosyl, the hydrolysis rate of glycoside bond linked with glucosyl and aglycone was lower than that of other glycoside bond. Kinetic modelling suggested that the main pathway to produce diosgenin was as follows:the terminal rhamnosyl residue of zingibernsis newsaponin was firstly hydrolyzed to produce diosgenin-triglucoside, the terminal diglucosyl residue of diosgenin-triglucoside was then hydrolyzed to produce trillin, and the terminal glucosyl residue of trillin was eventually hydrolyzed to yield diosgenin.
     Fourthly, saponins and diosgenin were extracted and separated by aqueous two-phase and three-liqud-phase extraction. An improved microwave-assisted aqueous two-phase extraction with 30% ethanol and 15% (NH4)2SO4 could thoroughly extract the steroids from the fermentation broth of DZW by T. harzianum, and the total saponin yield and diosgenin yield were 96.8% and 97.1%, respectively. Subsequent application of three-liquid-phase system composed of 30% ethanol,17% (NH4)2SO4 and 40% petroleum ether resulted in the separation of diosgenin, untransformed saponins from other impurities such as raw herb residuals, microbial cells and glucose. In the three-liquid-phase extraction, the recovery of diosgenin was 97.2% in the top phase (petroleum ether phase) and after the recovery of petroleum ether high purity (> 98%) diosgenin crystals was obtained by crystallization separation with methanol, the recoveries of zingibernsis newsaponin, deltonin and diosgenin-diglucoside in the middle phase (ethanol phase) were almost 100%, the recoveries of diosgenin-triglucoside and trillin in the middle phase (ethanol phase) were 98.8% and 96.0%, respectively, and 72.0% of glucose was extracted into the bottom phase (salt phase). Moreover, the microbial cells and residuals of the raw herb were concentrated at the interface between the middle phase and bottom phase.
     Lastly, an integrated process of biotransformation and acid hydrolysis following the three-liquid-phase extraction was applied to produce diosgenin. Diosgenin yield increased by 38.5% compared to traditional acid hydrolysis. Moreover, COD and reduced sugar in wastewater produced by this integrated process were only 3.3% and 0.3% of that from the traditional method, respectively.
引文
[1]谢春锋,娄红祥.天然产物的生物转化[J].天然产物研究与开发,2005,17(5):658-664.
    [2]Yu H S. Enzyme hydrolysis of saponin-sugarside and its reaction[D]. Guangzhou:South China University of Technology,1999.
    [3]全波,马百平,冯冰,等.米曲霉(Aspergillus oryzae)对原薯蓣皂苷的生物转化[J].中国天然药物,2006,4(5):377-381.
    [4]董阿玲,崔亚君,郭洪祝,等.人参皂苷Rg1的微生物转化研究[J].中国药学英文版,2001,10(3):115-118
    [5]吴秀丽,王艳,赵文倩,等.一种真菌人参皂苷Rg3的转化[J].微生物学报,2008,48(9):1181-1185.
    [6]Bae E A, Park S Y, Kim D H. Constitutive β-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria [J]. Biological & Pharmaceutical Bulletin, 2000,23(12):1481-1485.
    [7]Hsieh T C, Wu J M. Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines [J]. Experimental Cell Research,1999,249 (1):109-115.
    [8]Wang H, Liu L, Guo. Y X, et al. Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae [J]. Applied Microbiology and Biotechnology, 2007,75 (4):763-768.
    [9]王旭.白藜芦醇苷的生物转化及其产物稳定性的研究[D].沈阳:沈阳药科大学,2007.
    [10]Zhang C Z, Li D, Yu H S, et al. Purification and characterization of piceid-β-D-glucosidase from Aspergillus oryzae [J]. Process Biochemistry,2007,42 (1):83-88.
    [11]Kim D H, Lee S W, Han M J. Biotransformation of glycyrrhizin to 18-β-glycyrrhetinic acid-3-O-β-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium [J]. Biological & Pharmaceutical Bulletin,1999,22(3):320-322.
    [12]Zeng Y C, Elbein A D. Purification to homogeneity and properties of plant glucosid-ase [J]. Archives of Biochemistry and Biophysics,1998,35(5):26-29.
    [13]Teus J C L, Alexander N, Rob V. Strictosidine glucosidase from suspension cultured cells of Tabernaemontana divaricata [J]. Phytochemistry,1996,41(6):1451-1456.
    [14]Yokoyama M. In plant cell culture-secondary metabolism:Toward industrial application[M]//Frank Dicosmo and Masanaru misawa, Eds. Industrial application of biotransformation using plant cell cultrues. Florida:CRC press,1996:79-121.
    [15]Archana G, Vikas D, A jay S, et al. Biotransformation using plant cells, organ cultures and enzyme systems: current trends and future prospects [J]. Biotechnology Advances,2001,19(3):175-199.
    [16]Kawaguchi K, Koike S, Hirotani M, et al. Biotransformation of digitoxigenin by cultured strophanthus hybrid cell [J]. Phytochemistry,1998,47(7):1261-1265.
    [17]He X J, Qiao A M, Liu B, et al. Bioconversion of methyl protodioscin by Penicillium melinii cells [J]. Enzyme and Microbial Technology,2006,38 (3-4):400-406.
    [18]Hirata T, Shimoda K, Fujino T, et al. Biotransformation of hydroxycoumarins by the cultured cells of Nicotiana tabacum [J]. Journal of Molecular Catalysis B: Enzymatic,2000,10(5):477-481.
    [19]朱关平.用生物转化生产10-羟基喜树碱的方法:中国,CN85100520[P].1986.
    [20]Chen Y G, Yu B Y. Optimization studies of fermentation condition for bioconverting artemisinin to 9 α-hydroxyartemisinin [J]. Pharmaceutical Biotechnology,2001, 8(2):90-93.
    [21]胡海峰,李晓敦,朱宝良.微生物甾体羟化技术及其应用[J].国外医药(抗生素分册),2006,27(2):76-95.
    [22]Hogg J A. Steroids, the steroid community, and upjohn in perspective:a profile of innovation [J]. Steroids,1992,57(12):593-616.
    [23]Manosroi J, Abe M, Manosroi A. Biotransformation of steroidal drugs using microorganisms screened from various sites in Chiang Mai, Thailand [J]. Bioresource Technology,1999,69(1):67-73.
    [24]Krenn L, Kopp B. Bufadienolides from animal and plant sources [J]. Phytochemistry,1998, 48(1):1-29.
    [25]Steyn P S, Heerden F R. Bufadienolides of plant and animal origin [J]. Natural Product Reports,1998,15(4):397-413.
    [26]Hong Z, Chan K, Yeung H W. Simultaneous determination of bufadienolides in the Traditional Chinese Medicine preparation, Liu-Shen-Wan, by liquid chromatography [J]. Journal of Pharmacy and Pharmacology,1992,44(12):1023-1026.
    [27]叶敏,宁黎丽,占纪勋,等.雷公藤内酯及蟾毒配基类化合物的生物转化研究进展[J].北京大学学报(医学版),2004,36(1):82-89.
    [28]He X J, Tang J S, Qiao A M, et al. Cytotoxic biotransformed products from cinobufagin by Mucor spinosus and Aspergillus Niger [J]. Steroids,2006,71(5):392-402.
    [29]Herbert R. B:The biosynthesis of secondary metabolitas [M]. Chapman and Hall Ltd. London:Mew York,1981,96-148.
    [30]John P. Rosszza:Microbial transformation of bioactive compound, Volume II [M].CRC Press Jnc., Boca Raton, Florida,1982,67-90.
    [31]Su J H, Xu J H, Lu W Y, et al. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarium proliferatum ECU2042 [J]. Journal of Molecular Catalysis B: Enzymatic,2006,38(2):113-118.
    [32]Jin D S, Cui Z, Yu H S, et al. Ginsenoside Rh2 prepared from enzyme reaction [J]. Journal of Dalian Institute Light Industry,2001,20(2):99-104.
    [33]赵立亚,鱼红闪,金凤燮.酶法生产稀有人参皂甙及其产物成分的分析[J].大连轻工业学院学报,2002,21(2):112-115.
    [34]Feng S J, Li C, Xu X L, et al. Screening strains for directed biosynthesis of β-D-mono-glucuronide-glycyrrhizin and kinetics of enzyme production [J]. Journal of Molecular Catalysis B: Enzymatic,2006,43(1-4):63-67.
    [35]吴少杰,杨志娟,朱丽华,等.甘草皂苷生物转化的研究[J].中草药,2003,34(6):516-518.
    [36]吴定,江汉湖.发酵大豆制品中异黄酮形成及其功能[J].中国调味品,2001,6:3-6.
    [37]张焱.积雪草苷的生物转化和深绿卷柏化学成分的初步研究[D].天津:天津大学药物科学与技术学院,2007.
    [38]谢明杰,石姗姗,卢明春,等.酶法水解大豆异黄酮[J].食品与发酵工业,2004,30(3):21-24.
    [39]金凤燮,鱼红闪,张春枝,等.酶法水解黄芩甙葡萄糖醛酸基制备黄芩素的方法:中国,CN1584039A[P].2004,05,31.
    [40]金凤燮,鱼红闪,叶文才.酶法水解白头翁皂甙糖基制备低糖基白头翁皂甙的方法:中国,CN1483832A[P].2003,08,1.
    [41]Li D, Park S H, Shim J H, et al. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase [J]. Carbohydrate Research,2004,339(17):2789-2797.
    [42]Ye M, Ning L L, Zhan J X, et al. Biotransformation of cinobufagin by cell suspension cultures of Catharathus roseus and Platycodon grandiflorum [J]. Journal of Molecular Catalysis B:Enzymatic.2003,22 (1-2):89-95.
    [43]李莉欣.桔梗等植物体系对于脂蟾毒配基等四种天然产物的生物转化研究[D].北京:北京大学,2002.
    [44]Cheng K D, Chen W M, Zhu W H. Int Appl WO 9406,740(CI. C0703S137)[P].1994,03,31.
    [45]Dai J G. Guo H Z, Lu D D, et al. Biotransformation of 2 α,5 α , 10β,14 β-tetra-acetoxy-4(20), 11-taxadiene by Gingko cell suspension cultures [J]. Tetrahedron Letters,2001,42(28):4677-4679.
    [46]Hirata T, Izumi S, Ekida T, et al. Hydroxylation of acetoxy-p-menthenes in the cultrued cells of Nicotiana tabacum. Epoxidation of the carbon-carbon double bond [J]. Bulletin of Chemical Society of Japan,1987,60(1):289-293.
    [47]Suga T, Izumi S, Hirata T, et al. Oxidoreduction between cycloalkanols and cycloalkanones in the cultured cells of Nicotiana tabacum. Simulation of the time-courses in the oxidation of (+)-borneol and the reduction of (-)-caryomenthone [J]. Chemistry Letters,1987,16(2):425-428.
    [48]Moyano E, Palazon J, Bonfill M, et al. Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures [J]. Journal of Plant Physiology, 2007,164(4):521-524.
    [49]Nakamura K, Miyoshi H, Sugiyama T, et al. Diastero-and enantio-selective reduction of ethyl 2-methyl-3-oxobutanoate by plant cell cultures [J]. Phytochemistry,1995, 40(5):1419-1420.
    [50]Chadha A, Manohar M, Soundararajan T, et al. Asymmetric reduction of 2-oxo-4-phe-nylbutanoic acid ethyl ester by Daucus carota cell cultures [J]. Tetrahedron:Asymmetr-y,1996,7 (6):1571-1572.
    [51]Aviv D, Krochmal E, Dantes A, et al. Biotransformation of monoterpense by mentha cell lines:conversion of menthone to neomenthol [J].Planta Medica,1981,42(7):236-243.
    [52]宁黎丽.雷公藤甲素和雷公藤内酯酮的生物转化研究[D].沈阳:沈阳药科大学,2003.
    [53]Furuya T, Ushiyama M, Ashida Y, et al. Biotransformation of 2-phenylpropionic acid in root culture of Panax ginseng [J]. Phytochemistry,1989,28(2):483-487.
    [54]Furuya T, Ushiyama M, Ashida Y, et al. Glycosylaton of 2-phenylpropionic acid and its ethyl ester in suspension cultures of Nicotiana tabacum, Dioscoreophyllum cuminsii and Aconitum japonicum [J]. Phytochemistry,1987,26(11):2983-2989.
    [55]Furuya T, Ushiyama M, Ashida Y, et al. Biotransformation of phenylacetic acid and 2-phenyl-propionic acid in suspension culture of offea arabica [J]. Phytochemistry, 1988,27(3):803-807.
    [56]Ushiyama M, Asada T, Yoshikawa T, et al. Biotransformation of aromatic carboxylic acids by root culture of Panax ginseng [J]: Phytochemistry,1989,28(7):1859-1869.
    [57]Moyer B G, Gustine D L. Esterif ication of 3-nitropropanoic acid to glucose by suspension cultures of Coronilla varia [J]. Phytochemistry,1986,26(1):139-140.
    [58]Shimoda K, Kondo Y, Nishida T, et al. Biotransformation of thymol, carvacrol and eugenol by.cultured cells of Eucalyptus perriniana [J]. Phytochemistry,2006,67:2256-2261.
    [59]Suga T, Hirata T, Izumi S. Enantioselectivity in the hydrolysis of bicyclic monoterpene acetates with the cultured cells of Nicitiana tabacum [J]. Phytochemistry,1986, 25(12):2791-2792.
    [60]Pawlowicz P, Piatkowski, Siewinski A. Enantiospecific hydrolysis of acetates of racemic monoterpenic alcohols by Sporodela oligorrhiza [J]. Phytochemistry,1988, 27(7):2089-2093.
    [61]Suga T, Hirata T, Futatsugji M. The biotransformation of carvoxime and dihydricarvoxime with cell suspension cultures of Nicotiana tabacum [J]. Phytochemistry,1984,23 (6): 1327-1328.
    [62]Tan W H J, Kurz W G W, Constabel F, et al. 8-hydroxydihydrochelerythrine and arnottianamide from roots of Toddalia asiatica [J]. Phytochemistry,1982,21(1): 252-253.
    [63]Moody J D, Freeman J P, Cerniglia C E. Biotransformations of doxepin by Cunninghamella elegans[J]. Drug Metabolism and Disposition,1999,27(10):1157-1164.
    [64]Rao G P, Davis P J. Microbial models of mammalian metabolism:Biotransformation of HP 749 (besipirdine) using Cunninghamella elegans [J]. Drug Metabolism and Disposition,1997,25(6):709-715.
    [65]Moody J D, Zhang D L, Heinze T M, et al. Transformation of amoxapine by Cunninghamella elegans [J]. Applied and Environmental Microbiology,2000,66(8):3646-3649.
    [66]黄海华,崔宏霞,钟大放,等.利用微生物转化模型研究苯丙哌林的代谢产物[J].中国药理学与毒理学杂志(Chin J Pharmacol Taxicol),2001,15(4):297-301.
    [67]Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature,2006,440(7086):940-943.
    [68]Giri A, Dhingra V, Giri C C, et al. Biotransformations using plant cells, organ cultures and. enzyme systems:current trends and future prospects [J]. Biotechnology Advances,2001,19(3):175-199.
    [69]Urlacher V, Schnid R D. Biotransformations using prokaryotic P450 monooxy-genases [J]. Current Opinion in Biotechnology,2002,13(6):557-564.
    [70]Cirino P C, Arnold F H.Protein engineering of oxygenases for biocatalysis [J]. Current Opinion in Chemical Biology,2002,6(2):130-135.
    [71]韩丽.实用中药制剂新技术[M].北京:化学工业出版社,2002.
    [72]Pare, Jocelyn J R, Sigouin, et al. Microwave-assisted natural products extraction:US, 5002784A[P].1991,03,26.
    [73]张代佳,刘传斌,修志龙,等.微波技术在植物胞内有效成分提取中的应用[J].中草药,2000,31(9):附5-附6.
    [74]Craveiro A A, Matos F J A,. Alenca J W, et al. Microwave oven extraction of an essential oil [J]. Flavour and Fragraance Journal,2006,4(1):43-44.
    [75]郝金玉,韩伟,邓修.新鲜银杏叶经微波辅助提取后微观结构的变化[J].中草药,2002,33(8):739-741.
    [76]范华均,林广欣,肖小华.微波辅助提取石蒜和虎杖中有效成分的热力学机理研究[J].高等学校化学学报,2006,27(12):2271-2276.
    [77]朱晓薇,郭俊华,陈志娟,等.中药微波提取的初步研究[J].天津中医药,2003,20(4):65-66.
    [78]Magnus E, Ander C. Dynamic microwave-assisted extraction coupled on-line with solid-phase extraction:determination of polycyclic aromatic hydrocarbons in sediment and soil [J]..Chromatogr A,2002,964(1-2):11-20.
    [79]Shu Y Y, Lai T L. Effect of moisture on the extraction efficiency of polycyclic aromatic hydrocarbons from soils under atmospheric pressure by focused microwave-assisted extraction [J]. Chromatogr A,2001,927(1-2):131-141.
    [80]孙萍,李艳,杨秀菊.肉苁蓉总黄酮的微波提取及含量测定[J].现代中药研究与实践,2003,17(2):28-29.
    [81]张梦军,金建锋,李伯玉.微波辅助提取甘草黄酮的研究[J].中成药,2002,24(5):334-336.
    [82]李敏晶,游景艳,刘忠英,等.微波辅助流动萃取槐花中的黄酮类[J].高等学校化学学报,2004,25(5):850-852.
    [83]李敏晶,孙卉,刘忠英.微波辅助萃取中药黄芩中的有效成分[C].第四届中国微波化学研讨会,成都:2002,80.
    [84]吴雪辉,江南,梁颖诗.微波提取板栗花中黄酮类物质的工艺研究[J].食品工业科技,2006,27(8):106-109.
    [85]朱晓韵,何超文.微波技术在鲜罗汉果甜苷提取中的应用[J].广西轻工业,2002,11(2):11-13.
    [86]郭振库,金钦汉,范国强.黄芩中黄芩苷微波提取的实验研究[J].中草药,2001,32(11):985-987.
    [87]王威,刘传斌,修志龙.高山红景天苷提取新工艺[J].中草药,1999,30(11):824-826.
    [88]陈金娥,李成义,张海荣.微波法与传统工艺提取枸杞多糖的比较研究[J].中成药,2006,28(4):573-576.
    [89]王莉,鲁建江,顾承志.微波技术在板蓝根多糖提取及含量测定中的应用[J].中药材,2001,24(3):180-181.
    [90]鲁建江,王莉,顾承志.商陆多糖的微波提取及含量测定[J].首都医药,2002,14(1):55-56.
    [91]李艳,孙萍,顾承志.新疆党参多糖的微波提取及含量测定[J].江西中医学院学报,2002,14(1):40-41.
    [92]王莉,鲁建江,顾承志.天花粉多糖的微波提取及含量测定[J].药学实践,2001,19(3):168-170.
    [93]刘传斌,李宁,白凤武.酵母胞内海藻糖微波破细胞提取与传统提取比较[J].大连理工大学报,2001,41(2):169-172.
    [94]陈雷,杨屹,张新祥.密闭微波辅助萃取丹参中有效成分的研究[J].高等学校化学学报,2004,12(1):312-315.
    [95]Mattina M J I, Berger W A I, Denson C L. Microave-assisted extraction of taxanes from Taxus Biomass [J]. Journal of Agricultural and Food Chemistry,2005,45(12):4691-4696.
    [96]Carro N, Garcia C M, Cela R. Microwave-assisted extraction of monoterpenols in must samples [J]. The Analyst,2002,122(4):325-329.
    [97]刘宜锋.应用微波技术提取玫瑰茄色素[J].福建轻纺,2008,5(1):41-43.
    [98]姚中铭,吕晓玲,褚树成.栀子黄色素提取工艺的研究[J].天津轻工业学院学报,2001,39(4):423-428.
    [99]郝守祝,张虹,刘丽.微波技术在大黄游离蒽醌浸提中的应用[J].中草药,2002,33(1):23-25.
    [100]沈岚,冯年平,韩朝阳.微波萃取对不同形态结构中药及不同极性成分中药的选择性研究[J].中草药,2002,33(7):604-607.
    [101]胡秀丽,刘忠英,荣会.微波萃取与常规提取方法对大黄总蒽醌提取率的影响[J].吉林农业大学学报,2005,27(2):194-196.
    [102]冯颖,王建国,孟宪军,等.微波法提取无梗五加果挥发油工艺研究[J].食品工业科技,2008,7(1):112-115.
    [103]鲁建江,王莉,陈宏伟.微波提取藿香中的挥发油[J].中医药信息,2001,18(5):40-43.
    [104]鲁建江,王莉,成玉怀.微波提取魁蒿叶中的总挥发油[J].药物生物技术,2001,8(4):221-225.
    [105]鲁建江,王莉,、陈宏伟.微波提取红花中的挥发油[J].新疆中医药,2002,20(3):13-15.
    [106]鲁建江,主莉,陈宏伟.佩兰挥发油的微波提取法[J].时珍国医国药,2001,12(9):774-776.
    [107]刘志勇,崔林,鲁建江.微波提取新疆孜然果实中的挥发油[J].时珍国医国药,2002,13(1):3-4.
    [108]李艳,鲁建江,王莉.微波提取新疆党参根茎叶中的挥发油[J].药学实践,2001,19(3);190-193.
    [109]闫豫君,鲁建江,成玉怀.微波提取红景天根茎叶挥发油的工艺研究[J].河南中医药学刊,2002,20(1):123-125.
    [110]张宏康.微波萃取技术在食品工业中的应用[J].粮油食品科技,2006,7(5):30-33.
    [111]刘茉娥,陈欢林.新型分离技术基础[M].第2版.浙江:浙江大学出版社,1999.
    [112]张宏康.双水相萃取技术及其在食品与发酵工业中的应用[J].粮油食品科技,2001,9(2):17-19.
    [113]Jorge B, Mareo R P. Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products [J]. Journal of Chemical Technology-and Biotechnology,2008,83(2):133-142.
    [114]Oscar A, Marco R P. Processing of soybean (Glycine max) extracts in aqueous two-phase systems as a first step for the potential recovery of recombinant proteins [J]. Journal of Chemical Technology and Biotechnology,2008,83(3):286-293.
    [115]林东强,朱自强,姚善泾.生物分离过程的新探索-双水相分配与相关技术的集成化[J].化工学报,2000,51(1):1-6.
    [116]刘波,王英锋,郭雪清.新型萃取分离技术在生物技术中的应用[J].首都师范大学学报,2005,26(2):49-53.
    [117]杨善升,陆文聪,包伯荣.双水相萃取技术及其应用[J].化学工程师,2004,103(4):37-38.
    [118]李伟,朱自强,梅乐和..双水相萃取技术在药物分离提纯中的应用[J].化工进展,1998,1:26-29.
    [119]董军芳,林金清,黄晓东.异丙醇-水-硫酸铵的溶解度和液-液相平衡[J].吉首大学学报,2003,24(1):83-85.
    [120]霍清,林强,赵玉娥.利用双水相乙醇-磷酸氢二钾体系萃取甘草有效成分的研究[J].精细化工,2002,19(2):65-67.
    [121]林金清,金春英,谭平华,等.亲水有机相-含盐水两相体系的形成机理与分相能力[J].应用化学,2005,22(11):1203-1207.
    [122]陆强,邓修.提取与分离天然产物中有效成分的新方法-双水相萃取技术[J].中成药,2000,22(9):653-655.
    [123]王志华,马会民,马泉莉,等.双水相萃取体系的研究[J].应用化学,2001,18(3):173-175.
    [124]Hasmann F A, Santos V C, Gurpilhares D B, et al. Aqueous two-phase extraction using thermoseparating copolymer:a new system for phenolic compounds removal from hemicellulosic hydrolysate [J]. Journal of Chemical Technology and Biotechnology, 2008,83(2):167-173.
    [125]谭平华,林金清,肖春妹,等.双水相萃取技术研究进展及应用[J].化工生产与技术,2003,10(1):19-23.
    [126]成坚.双水相体系萃取分离技术及其在生物技术中的应用[J].仲恺农业技术学院学报,2000,13(2):52-58.
    [127]林金清,董军芳,李夏兰.乙醇/硫酸铵双水相体系萃取甘草酸钾的研究[J].精细化工,2004,21(3):165-168.
    [128]Tan T W, Huo Q,. Ling Q. Purification of glycyrrhizin.from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system [J]. Biotechnology Letters,2002,24 (17):1417-1420.
    [129]林强,霍清.双水相体系萃取甘草酸盐的研究[J].中草药,2002,33(8):702-704.
    [130]霍清,林强.利用双水相体系的温度诱导效应萃取甘草酸[J].化学通报,2002(5):349-352.
    [131]赵晓莉,岳红,张颖,等.柿叶黄酮在双水相体系中的分配行为[J].林产化学与工业,2006,26(1):83-86.
    [132]李梦青,耿艳辉,刘桂敏,等.双水相萃取技术在白藜芦醇提纯工艺中的应用[J].天然产物研究与开发,2006,18(4):647-649.
    [133]Zhi W B, Deng Q Y. Purification of salvianolic acid B from the crude extract of Salvia miltiorrhiza with hydrophilic organic/salt-containing aqueous two-phase system by counter-current chromatography [J]. Journal of Chromatography A,2006,1116(1-2): 149-152.
    [134]周加祥,刘铮.生物分离技术与过程研究进展[J].化工进展,2000,19(6):38-41.
    [135]谭显东,常志东,梁向峰,等.液-液-液三相萃取研究就进展及在生化分离中的应用[J].化工进展,2003,22(3):244-249.
    [136]Mojski M, Gluch I. Characteristic and applications of three-phase extraction systems [J]. Journal of Analytical Chmeistry,1996,51(4):329-342.
    [137]Pyatnitsky I V, Kolomiets L L, Frankovsky V A. On new effective techniques for extraction separation and determination of substances in two-and three-phase liquid Systems [C]. Proceedings of the International Solvent Extraction Conference, Moscow,1988,34-37.
    [138]Chen J, Liu H Z, Wang B, et al. Study on the three-phase extraction of penicillin G with a single-step method [C]. Proceedings of The International Solvent Extraction Conference, Johannesburg,2002,602-606.
    [139]张颖.青霉素萃取体系溶剂流失机理研究[D].北京:中国科学院化工冶金研究所,1999.
    [140]Hartl J, Marr R. Extraction processes for bioproduct separation [J]. Separation Science and Technology,1993,28(1-3):805-819.
    [141]Ales Heyberger, Jaroslav Prochazka, Eva Volaufova. Extraction of citric acid with tertiary amine-third-phase formation [J]. Chemical Engineering Science,1998,53(3): .515-521.
    [142]Sharma A, Gupta M N. Purification of pectinases by three-phase partitioning [J]. Biotechnology letters,2001,23(19):1625-1627.
    [143]Sharma.A, Gupta M N. Three phase partitioning as a.large-scale separation method for purification of a wheat germ bifunctional protease/amylase inhibitor [J]. Process Biochemistry,2001,37 (2):193-196.
    [144]Dhananjay S K, Mulimani V H. Three-phase partitioning of α-galactosidase from fermented media of Aspergillus oryzae and comparison with conventional purification techniques [J]. Journal of Industrial Microbiology and Biotechnology,2009,36(1): 123-128.
    [145]Dhananjay S K, Mulimani V H. Purification of q-galactosidase and invertase by three-phase partitioning from crude extract of Aspergillus oryzae [J]. Biotechnol Lett,2008,30(9):1565-1569.
    [146]Dogan N, Tari C. Characterization of three-phase partitioned exo-polygalacturonase from Aspergillus sojae with unique properties [J]. Biochemical Engineering Journal, 2008,39(1):43-50.
    [147]Knasal S, Sharma A, Gupta M N. An integrated process for obtaining oil, protease inhibitors and lectin from soybean flour [J]..Food Research International,2006, 39(4):499-502.
    [148]Gaur R, Sharma.A, Khare S'K, et al. A novel process for extraction of edible oils Enzyme assisted three phase partitioning (EATPP) [J]. Bioresource Technology, 2007,98(3)-696-699.
    [149]Roy I, Sharma A, Gupta M N. Three-phase partitioning for simultaneous renaturation and partial purification of Aspergillus niger xylanase [J]. Biochimica et Biophysica Acta,2004,1698(1):107-110.
    [150]Roy I, Sharma A, Gupta M N.. Recovery of biological activity in reversibly inactivated proteins by three phase partitioning [J]. Enzyme and Mivrobial Technology,2005, 37(1):113-120.
    [151]Mondal K, Sharma A, Gupta M N. Three phase partitioning of starch and its structural consequences [J].Carbohydrate Polymers,2004,56(3):355-359.
    [152]Sharma A, Gupta M N. Three phase partitioning of carbohydrate polymers:separation and purification of alginates [J]. Carbonhydrate Polymers,2002,48(4):391-395.
    [153]Sharma A, Mondal K, Gupta M N. Some studies on characterization of three phase partitioned chitosan [J]. Carbonhydrate Polymers,2003,52(4):433-438.
    [154]Go Y, Shukuro I. A pH-dependent three-phase separation phenomenon with a perfluorooctanoic Acid/Dimethylsulfoxide/Water System [J]. Journal of Colloid and Interface Science,1995,173(1):251-253.
    [155]Igarashi S,Kyuwa T, Matsuura M, et al. A novel homogeneous liquid-liquid extraction based on three-phase formation with perfluorosurfactant and amine compounds [J]. Chemistry Letters,1994,23(7):1189-1190.
    [156]Albertsson P A.细胞颗粒和大分子的分配[M].朱自强,郁士贵,梅乐,等译.杭州:浙江大学出版社,1995,281-294.
    [157]Johansson G, Hartman A. A quantitative model fro partition in aqueous multiphase systems [J].European Journal of Biochemistry,1976,63(1):1-8.
    [158]Liu Y, Garcia A A. Three phase countercurrent extraction [J]. Chemical Engineering Communications,2000,182(1):239-259.
    [159]Nyiredy S Z, Botz L, Sricher 0. HPLC fingerproin analysis of plant extracts using the retension index system [J]. Journal of Chromatography,1990,56(6):592-593.
    [160]Shen S F,'Chang Z D, Liu J, et al. Separation of glycyrrhizic acid and liquiritin from Glyryrrhiza uralensis Fisch extract by three-liquid-phase extraction systems [J]. Separation and Purification Technology,2007,53(3):216-223.
    [161]Shen S F, Chang Z D, Liu H Z. Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater [J]. Separation and Purification Technology,2006,49(3):217-222.
    [162]唐世蓉,张涵庆,董云发,等.薯蓣科植物甾体皂甙元的含量和鉴定[J].植物学报(英文版),1979,21(2):171-176.
    [163]唐世蓉,姜志东.盾叶薯蓣地上部分的三个新甾体皂甙[J].云南植物研究,1987,9(2):233-238.
    [164]刘承来,陈延镛,唐易芳,等.盾叶薯蓣中甾体皂甙的分离和鉴定[J].植物学报,1984,26(3):283-289.
    [165]刘承来,陈延镛.鲜盾叶薯蓣中原始皂甙的分离与鉴定[J].植物学报,1985,27(1):68-74.
    [166]昝丽霞.盾叶薯蓣及楸树果实中的化学成分研究[D].西安:西北大学,2005.
    [167]钱士辉,袁丽红,杨念云,等.盾叶薯蓣中甾体类化合物的分离和结构鉴定[J].中药材,2006,29(11):1174-1176.
    [168]徐德平,胡长鹰,唐世蓉,等.盾叶薯蓣水溶性成分的研究[J].中草药,2007,38(1):6-8.
    [169]杨如同,徐德平,唐世蓉,等.盾叶薯蓣鲜根茎中甾体皂苷成分的分离鉴定[J].中草药,2008,39(4):493-496.
    [170]程娟,胡长鹰,庞自洁,等.盾叶薯蓣中甾体皂苷的分离与结构鉴定[J].中草药,2008,39(2):165-167.
    [171]Qi S S, Dong Y S, Zhao Y K, et al. Qualitative and quantitative analysis of microbial transformation of steroidal saponins in Dioscorea Zingiberensis [J]. Chromatographia, 2009,69(9-10):865-870.
    [172]Ding Z Z, Tang S R, Qin HZ, et al. Resource plants of steroid hormone[M]. Beijing:Science press,1983.
    [173]宋发军.甾体药物源植物薯蓣属植物中薯蓣皂苷元的研究及生成状况[J].中成药,2003,25(3):232-234.
    [174]聂凌鸿,林淑英,宁正祥.薯蓣属植物中薯蓣皂苷元的研究进展[J].中国生化药物杂志,2004,25(5):318-320.
    [175]杨如同,唐世蓉,潘福生.药源植物盾叶薯蓣甾体皂苷及皂苷元的研究进展[J].中国野生植物资源,2007,26(4):1-5.
    [176]Moalic S, Liagre B, Corbiere C, et al. A plant steroid, diosgenin, induces apoptosis, cell cycle arrest and COX activity in osteosarcoma cells [J].FEBS Letters,2001, 506(3): 225-230.
    [177]Corbiere C, Liagre B, Bianchi A, et al. Different contribution of apoptosis to the antiproliferative effects of diosgenin and other plant steroids, hecogenin and tigogenin, on human 1547 osteosarcoma cells [J]. International Journal of Oncology, 2003,22 (4):899-905.
    [178]Raju J, Bird R P. Diosgenin, a naturally occurring steroid saponin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells [J]. Cancer Letters,2007,255(2):194-204.
    [179]李晶华,历艳志,张沐新,等.薯蓣皂苷元对HL-60细胞增殖及细胞周期的影响[J].吉林农业大学学报,2003,25(5):533-535.
    [180]苏赞妍,霍木兰.薯蓣皂甙元诱导人卵巢癌细胞系HO-8910凋亡及对Survivin基因表达的影响[J].中国医师杂志,2006.8(9):1161-1163.
    [181]宋宇,何忠梅,李晶华.薯蓣皂苷元对人胃低分化粘液腺癌细胞作用的研究[J].北京中医药大学学报,2005,28(4):42-44.
    [182]王丽娟,付勤.薯蓣皂苷元体内、外的抗肿瘤作用[J].中国中药杂志,2002,27(10):777-779.
    [183]马海英,周秋丽.黄山药总皂苷和薯蓣皂昔元抗高脂血症及体外抗血小板聚集的比较[J].中国医院药学杂志,2002,22(6):323-325.
    [184]宁可永,李贻奎,高会丽,等.薯蓣皂苷元对犬急性心肌缺血的影响[J].中药新药与临床药理,2007,18(6):417-421.
    [185]宁可永,李贻奎,高会丽,等.薯蓣皂苷元对大鼠急性心肌缺血的治疗作用[J].中药新药与临床药理,2008,19(1):1-3.
    [186]Rothrock JW, Hammes PA, Mcaleer WJ. Isolation of diosgenin by acid hydrolysis of saponin [J]. Industrial and Engineering Chemistry Research,1957,49(2):186-189.
    [187]丁志遵,唐世蓉,秦慧贞,等.甾体激素药源植物[M].北京:科学出版社,1983.
    [188]周雯.应用盐酸-丙酮混和液从穿龙薯蓣中直接提取皂素[J].中草药,1996,27(4):207-208.
    [189]韩凤梅,姚向阳,陈勇.盾叶薯蓣纤维素酶酶解工艺研究[J].化学与生物工程,2004,(6):26-27.
    [190]佟玲,张胜科,李锦,等.酶解法提取薯蓣皂素的工艺研究[J].陕西师范大学学报,2003,31(2):81-83.
    [191]张裕卿,王东青.利用生物技术协同提取薯蓣皂素[J].精细与专用化学品,2005,13(1):7-10.
    [192]周振起,封玉贤.薯蓣皂甙元分离工艺的研究及其综合利用[J].西北植物学报,1995,15(3):254-260.
    [193]刘国梁,刘峥.盾叶薯蓣提取皂甙元副产淀粉的研究[J].山西化工,2003,23(1):6-7.
    [194]Wang Y X, Liu H, Bao J G, et al. The saccharification-membrane retrieval-hydrolysis (SMRH) process:a novel approach for cleaner production of diosgenin derived from Dioscorea zingiberensis [J]. Journal of Cleaner Production,2008,16.(10):1133-1137.
    [195]Wen H, Zhao H Z, Ni J R, et al. The best utilization of D. zingiberensis C. H. Wright by an eco-friendly process [J]. Bioresource Technology,2008,99(15):7407-7411.
    [196]赵书申,柳卫莉.盾叶薯蓣的黑曲霉发酵和薯蓣皂苷配基的结构[J].武汉大学学报(自然科学版),1988,(2):93-98.
    [197]楚德强,马晓建,陈俊英.盾叶薯蓣发酵生产酒精的研究[J].酿酒科技,2007,(2):25-28.
    [198]刘国兴,王元好,孙丽慧,等.盾叶薯蓣糖化液发酵生产2,3-丁二醇[J].过程工程学报,2009,9(1):95-100.
    [199]陈俊英.薯蓣皂素提取新工艺及相关基础研究[D].郑州:郑州大学,2007.
    [200]齐珊珊.米曲霉生物转化盾叶薯蓣中的甾体皂苷的研究[D].大连:大连理工大学环境生命学院,2008.
    [201]赵玉婷,徐增莱,戴传超,等.薯蓣皂苷水解微生物的筛选[J].中药材,2007,30(8):905-909.
    [202]张传会,陈有为,郑毅,等.菌株YM32139转化黄山药生产薯蓣皂苷元的研究[J].微生物学杂志,2007,27(6):13-16.
    [203]郭锦明,肖冰梅,王朝晖,等.薯蓣皂苷元提取方法改良实验研究[J].中华中医药学刊,2007,25(12):2533-2534.
    [204]Shu X S, Gao Z H, Yang X L. Supercritical fluid extraction of sapogenins from tubers of Smilax china [J]. Fitoterapia,2004,75(7-8):656-661.
    [205]葛发欢,史庆龙.超临界CO2从黄山药中萃取薯蓣皂素的工艺研究[J].中草药,2000,31(3):181-183.
    [206]曹文豪.超临界CO2萃取黄姜中薯蓣皂素的工艺研究[D].郑州:郑州大学,2006.
    [207]White T J, Bruns T, Lee S. Analysis of phytogenetic relationships by amplification and direct sequencing of ri.bosomal RNA genes[M]//Innis M A, Gelfand D H, Sninsky J J, et al. PCR protocols:A guide to methods and applications. New York:Academic Press,1990.
    [208]Marmeisse R, Dehaud J C, Casselton L A. DNA probes for species and strain identification in the ectomycorrhizal fugus Hebeloma [J]. Mycological reasearch, 1992,96(3):161-165.
    [209]刘春来,文景芝,杨明秀,等.rDNA-ITS在植物病原真菌分子检测中的应用[J].东北农业大学学报,2007,38(1):101-106.
    [210]Hernosa M R, Grondona I, Iturriaga E A, et al. Molecular characterization and identification of biocontrol isalates of Trichoderma spp [J]. Applied and Environmental Microbiology,2000,66(5):1890-1898.
    [211]Chaverri P, Castlebury L A, Samuels G J, et al. Multilocus phylogenetic structure within the Trichoderma, harzianum/Hyocrea lixii complex [J]. Molecular Phylogenetics and Evolution,2003,27(2):302-313.
    [212]Liu P G, Yang Q. Identification of Genes with Bio-control Function in Trichoderma harzianum Mycelium by Expressed Sequence Tags Approach [J]. Research in Microbiology, 2005,156(3):416-423.
    [213]Yun S I, Jeong C S, Chung D K, et al. Purification and some properties of a β-glucosidase from Trichoderma harzianum type C-4 [J]. Bioscience, Biotechnology, and Biochemistry,2001,65(9):2028-2032.
    [214]Thrane C, Tronsmo A, Jensen D F. Endo-1,3-glucanase and cellulase from Trichoderma harzianum:purification and partial characterization, induction of and biological activity against plant pathogenic Pythium spp [J]. European Journal of Plant Pathology,1997,103(4):331-344.
    [215]Agrawal P K, Jain D C, Gupta P K, et al. Carbon-13 MR spectroscopy of steroidal sapogeins and steroidal saponins [J]. Phytochemistry,1985,24(11):2479-2496.
    [216]Jain D C. Antifeedant active saponin from Balanites Roxburghii stem bark [J]. Phytochemistry,1987,26(8):2223-2225.
    [217]Seyis I, Aksoz N. Effect of carbon and nitrogen sources on xylanase production by Trichoderma harzianum 1073 D3 [J]. International Biodeterioration & Biodegradation, 2005,55 (2):115-119.
    [218]K. Theodore, T. Panda. Effect of glucose level on the-batch production of β-1,3-glucanase by Trichoderma harzianum and cell growth [J]. Bioprocess Engineering,1999, 20:309-311.
    [219]Cavalcante R S, Lima H L S, Pinto G A S, et al. Effect of moisture on Trichoderma conidia production on corn and wheat bran by solid state fermentation [J]. Food Bioprocess Technology,2008,1(1):100-104.
    [220]Oyekola O O, Ngesi N, Whiteley C G. Isolation, purification and characterization of an endoglucanase and β-gucosidase from an anaerobic sulphidogenic bioreactor [J]. Enzyme Microbial Technology,2007,40(4):637-644.
    [221]Sanwal S G G. Purification and characterisation of a cellulase from Catharanthusroseus stems [J]. Phytochemistry,1999,52(1):7-13.
    [222]Chauvaux S, Souchon H, Alzari P M, et al. Structural and functional analysis of the metal-binding sites of Clostridium thermocellum endoglucanase CelD [J]. Journal of Biological Chemistry,1995,270:9757-9762.
    [223]谢彩侠,高山林,朱丹妮,等.盾叶薯蓣中薯蓣皂甙元不同提取方法的比较[J].植物资源与环境学报,2005,14(1):23-25.
    [224]Watanabe M, Sumida N, Yanai K, et al. A novel saponin hydrolase from Neocosmospora vasinfecta var. vasinfecta [J]. Applied and Environmental Microbiology,2004,70(2): 865-872.
    [225]Vasic-Racki D, Kragl U, Liese A. Benefits of enzyme kinetics modelling [J]. Chemical and Biochemical Engineering Quarterly,2003,17(1):7-18.
    [226]Ishii N, Suga Y, Hagiya A, et al. Dynamic simulation of an in vitro multi-enzyme system [J]. FEBS Letters,2007,581(3):413-420.
    [227]Herman R A, Korjagin V A, Schafer B W. Quantitative measurement of protein digestion in simulated gastric fluid [J]. Regulatory Toxicology and Pharmacology,2005, 41(3):175-184.
    [228]Herman R A, Scherer P N. Comparison of linear and nonlinear regression for modeling the first-order degradation of pest-control substances in soil [J]. Journal of Agricultural and Food Chemistry,2003,51(16):4722-4726.
    [229]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytial Chemistry,1959,31(3):426-428.
    [230]Schnell S, Mendoza C. The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration [J].Biophysical Chemistry,2004,107(2):165-174.
    [231]Feng B, Hu W, Ma B P, et al. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata [J]. Applied Microbiology and Biotechnology,2007,76(6):1329-1338.
    [232]姚强,黄琰,陈冠军.哈茨木霉SDU3.87耐碱性纤维素酶[J].山东大学学报(理学版),2005,40(3):110-115.
    [233]Roussos S, Raimbault M, Saucedo-castaneda G, et al. Efficient leaching of cellulases produced by Trichoderma harzianum in solid state fermentation [J]. Biotechnology techniques,1992,6(5):429-432.
    [234]Riou C, Salmon J M, Vallier M J, et al. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae [J]. Applied and Environmental Microbiology,1998,64(10):3607-3614.
    [235]李羚,杨雪滢,高云涛.双水相分离与超声提取耦合法从葡萄籽中提取抗氧化活性物质研究[J].酿酒科技,2008,5:27-33.
    [236]高云涛,戴建辉,贝玉祥,等.双水相与超声耦合从灯盏花中提取分离类黄酮研究[J].中成药,2009,31(5):700-703.
    [237]Wang H, Dong Y S, Xiu Z L. Microwave-assisted aqueous two-phase extraction of piceid, reveratrol and emodin from Polygonum cuspidatum by ehtanol/ammonium sulphate systems [J]. Biotechnology Letters,2008, (30):2079-2084.
    [238]Greenberg A E, Clesceri L S, Eaton A D, et al. Standard methods for the examination of water and wastewater[M]. Washington US:American Public Health Association,1992.
    [239]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-251.
    [240]杨善升,陆文聪,包伯荣.双水相萃取技术及其应用[J].化学工程师,2004,103(4):37-38.
    [241]张猛.盾叶薯蓣中薯蓣皂昔元提取分离及检测研究[D].贵阳:贵州大学,2002.
    [242]任雁.酶解发酵盾叶薯蓣皂苷元的提取及纯化研究[D].重庆:西南大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700