稀土有机—无机杂化纳米发光材料的制备与发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于稀土离子具有相当丰富的能级和4f电子的跃迁特性,使稀土基发光材料成为一类非常重要的功能材料。稀土离子的f-f跃迁是Laporte禁阻的,故其摩尔吸光系数很小,直接吸收光的能力很弱,一般采用具有生色团的有机分子与稀土离子螫合,生成稀土配合物,通过生色团的“天线效应”把吸收的能量传递给稀土离子,敏化稀土离子发光。稀土配合物的这种f-f跃迁发射大多属于能量转移型荧光,稀土配合物具有发光单色性能好、发光效率高、寿命长等优点,是优良的发光材料,在荧光体、显示、细胞成像、闪烁体、激光和光纤放大等领域有着广泛的应用。单一的稀土发光配合物还是有相当的局限性(热稳定性、光稳定性和不易加工性等),而稀土基有机—无机杂化发光材料在一定程度上能摆脱这些缺点。设计和合成具有良好性能的稀土杂化发光材料在近十多年来一直引起相关化学工作者的关注,并且随着晶体工程学、纳米化学和超分子化学的飞速发展,为稀土有机—无机杂化发光材料提出了更高的要求。目前稀土有机—无机杂化发光材料的普遍研究是基于硅基化合物(包括硅酸盐、二氧化硅、介孔二氧化硅和介孔有机硅等)形成的无机或有机—无机框(骨)架上构筑(引入)稀土配合物发光中心,另外,也有一些不同构筑方式的新型杂化发光材料和新颖的无机基质得到不同程度的开发,包括微孔分子筛基质、层状化合物基质、纳米粒子基质(磁性纳米粒子、金纳米粒子、稀土纳米粒子、介孔纳米粒子等),碳纳米管等。除此之外,稀土有机—无机杂化发光多孔晶体材料(稀土金属—有机骨架发光配合物)作为一类新型的稀土杂化发光材料最近也有蓬勃发展的趋势。
     众所周知,纳米材料有着区别于传统块体材料和粉末材料的性质和优点。纳米杂化发光材料也不例外。鉴于这些原因,本论文集中于稀土有机—无机杂化纳米发光材料的制备与发光性能研究。本论文采用了不同的设计思路和合成方法合成或组装出不同体系的稀土有机—无机杂化纳米发光材料,并对其性质进行了表征。选用的无机基底主要有介孔二氧化硅纳米粒子,稀土杂化胶体粒子,稀土纳米粒子和具有纳米空穴的类分子筛金属—有机骨架化合物等,主要研究了下转换发光,上转换发光,近红外发光,白光,颜色可调发光材料以及荧光探针等性质。本论文主要研究内容如下:
     1.基于二氧化硅介孔纳米粒子稀土配合物复合发光材料合成研究
     介孔SiO2纳米粒子集中了纳米材料和多孔材料于一体的特点,并且SiO2具有毒副作用小,生物相容性好,易于修饰等优点。本论文以介孔SiO2纳米粒子为基底,通过开发合适的稀土敏化配体,控制稀土中心(Tb, Eu)的饱和(9配位环境)配位,以减少水或其它溶剂对稀土发光的非辐射猝灭作用等方面进行了相关研究,并取得了一些成果。
     (1)以4,5-咪唑二羧酸和苯并咪唑-5,6-二羧酸为配体构筑的稀土金属—有机配位聚合物有着良好的发光性能,可见这两种配体对稀土有着好的敏化效果。基于此通过适当的有机硅烷偶联剂连接敏化配体,通过后嫁接方法将其共价键连接到介孔纳米粒子上,合成多功能复合材料Eu-idc-Si-MSNs和Tb-bidc-Si-MSNs,这两种杂化材料分别呈现出良好的红光和绿光。研究表明这两种配体能够很好的敏化稀土发光,这种纳米体系的介孔发光材料在药物释放和生物标记方面有着潜在的应用价值。
     (2)2,6-吡啶二甲酸能够很好的敏化稀土Eu和Tb,通过对其4位上进行适当修饰,共价键连接到介孔纳米粒子表面,控制稀土中心与配体的9配位环境,得到杂化Eu-dpa-Si-MSNs和Tb-dpa-Si-MSNs,减少了配位水对稀土发光的非辐射猝灭作用,因此其在水中有着良好的发光效果。该杂化纳米材料在500℃反应3 h,冷却至室温后,用紫外光激发得到的光谱,仍然能示出Eu3+和Tb3+的红光和绿光特征锐线光谱,并且在400~750 nm有一个宽阔的谱带,这可能归结于主体介孔SiO2骨架体系中的杂质和生成的缺陷引起的发光。热处理后材料的CIE色坐标显示了全紫外光(240-380nm)激发下,荧光颜色始终保持近纯白色。这为制备白光纳米材料提供了有益的思路。
     2.有机配体复合敏化无机稀土胶体粒子的合成与光学性质表征
     (1)快速简单的方法制备Tb(OH)CO3@X杂化胶体发光粒子(X代表水杨酸类敏化剂)。稀土有机—无机杂化胶体粒子的研究有限,合成方法也比较复杂。因此亟需寻求快捷的方法制备发光性能良好的杂化胶体粒子。铽(Tb)配合物由于具有窄的发射谱带、高的发光强度和长的荧光寿命,可以应用在显示器、生物识别和荧光探针等方面。另外,中心稀土离子的特征发射必须通过有机配体的三重态能级将能量传递到稀土离子。由于Tb3+离子的共振能级约为20500 cm-1,与芳香羧酸类配体(如磺基水杨酸)的三重态能级相匹配完好,因此水杨酸类配体的铽配合物展现出优良的荧光性能。以硝酸铽为反应物,尿素为均相沉淀剂,采用尿素均相沉淀法合成Tb(OH)CO3胶体粒子,考虑到得到的Tb(OH)CO3一般为无定形粒子,在原位合成胶体粒子的同时加入少许的Tb的敏化剂(水杨酸,氨基水杨酸和磺基水杨酸),这样敏化剂就会包裹于无定形Tb(OH)CO3胶体粒子的内部或者配位吸附于粒子的外表面,Tb(OH)CO3起到两个作用,其一是作为主体骨架结构,其二是提供稀土发光中心Tb3+。制备得到的Tb(OH)CO3@X胶体粒子在紫外灯照射下都显示出肉眼可见的明亮的绿光,研究表明包覆水杨酸敏化配体得到的杂化材料发光性能最好,添加不同的敏化剂能够影响胶体粒子的形貌和结晶状态,并且研究了Tb(OH)CO3@X,rhB体系的荧光共振能量转移现象。
     (2)以介孔SiO2纳米粒子为模板合成核壳发光材料,并且研究了有机敏化剂对核壳发光材料光增强效果。单分散的介孔SiO2纳米粒子可以作为其它纳米材料的硬模板,与单分散的SiO2相比,其优点是内部孔道和外部表面都可以作为模板反应的场所,是制备核壳材料的优良载体。以介孔SiO2为模板,采用均匀沉淀方法在介孔表面沉积一薄层RE(OH)CO3,高温处理后得到MSNs@RE203。其中,得到的MSNs@ Y2O3:Eu,Er同时显示出可见区红光和近红外区发光。利用敏化配体构筑的稀土发光配合物一直是一个研究热点,然而这种策略也有其内在的局限性,稀土发光中心容易被其周围配体的高能振子(如-OH、-NH和-CH等)猝灭。运用MSNs做模板合成MSNs@Gd2O3:Eu,为了增强红光强度,在粒子表面配位一层敏化配体dpa,得到MSNs@Gd2O3:Eu-dpa杂化材料。研究表明发光强度增强了5.2倍,并且谱线的半峰宽变窄,光谱色度变纯,这种特殊的有机—无机杂化发光材料可能兼备有机敏化和无机基质保护两方面的优点,为制备杂化纳米发光材料提供了新思路。
     3.颜色可调类分子筛金属—有机骨架主客体发光材料的设计合成
     近年来,有机—无机杂化配位聚合物作为一种新型的多孔材料引起了人们的广泛关注。人们将这种配合物定义为金属—有机类分子筛,其孔穴处在纳米的数量级,又称纳米微孔配位聚合物。目前,设计和组装Ln-MOFs显得很重要,Ln-MOFs发光材料也得到一些开发,但是到目前为止具有颜色可调的稀土发光材料还没得到多少注意。
     我们展示一个新颖的方法构建颜色可调的类分子筛金属—有机骨架材料,策略是运用离子交换的方法在ZMOFs骨架中引入稀土离子,主体骨架的激发态能量能够有效的转移给客体稀土离子。选用具有阴离子骨架[In48(HImDC)96]48-的rho-ZMOFs,骨架中存在48个质子化的DMA+,具有良好的离子交换能力。我们最近的研究表明,rho-ZMOFs展示出良好的蓝光发射,另一方面H3ImDC能够好的敏化稀土Eu3+和Tb2+,大约纳米大小的空穴,这样一个距离理论上也能够使主体的能量较好的转移给客体离子。控制交换的稀土发光中心Eu3+(红光)和Tb3+(绿光)的比例,主体骨架能够很好的敏化客体稀土发光(主体骨架到客体离子的有效的能量转移),根据三基色原理展示了一个颜色可调的ZMOFs。我们可以在宽范围内调变材料的颜色(blue, green, white和red),通过稀土阳离子的量和调变激发波长甚至能调制出白光。
Lanthanide complexes are a class of useful luminophores because they exhibit high quantum efficiency, sharp and intense emission lines, long life-times and high color purity under ultraviolet excitation, through protecting metal ions from vibrational quenching and increasing light absorption cross section by the well-known "antenna effect". However, they have not so far been used extensively in practical applications as phosphor devices mainly due to their poor thermal stabilities and low mechanical strength. Many lanthanide complexes have been incorporated into solid matrices, such as sol-gel-derived hybrid materials and mesoporous silica materials. Incorporation of lanthanide complexes into these matrices has not only improved the photo and thermal stabilities of the complexes, but also avoided the self-quenching resulting from the concentration effect. In this thesis, our research is focused on the synthesis of lanthanide-based organic-inorganic hybrid nano-phosphors, and the hybrid solid matrices include mesoporous silica nanoparticles, organic-inorganic hybrid colloidal particles, rare earth oxide nanoparticles and nanoporous zeolite-like metal-organic frameworks (ZMOFs).
     1. Lanthanide(Ⅲ) (Eu and Tb)-imidazoledicarboxylic acid complexes were immobilized on colloidal mesoporous silica with diameter smaller than 100nm by covalent bond grafting technique and uniform and monodisperse luminescent Eu-idc-Si and Tb-bidc-Si functionalized mesoporous silica hybrid nano-materials (MSNs) were obtained. The lanthanide(Ⅲ) complexes-functionalized MSNs were characterized by fluorescence spectra, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption, and powder X-ray diffraction. The hybrid nano-materials Eu-idc-Si and Tb-bidc-Si functionalized MSNs show strong red and green photoluminescence upon irradiation with ultraviolet light, respectively. Both hybrid nano-materials exhibit long life-times. The mesoporous silica nanoparticles are stable colloid and may have some advantages for potential applications in drug delivery or optical imaging.
     2. We chose dipicolinic acid as a tridentate chelating units featuring ONO donors reacting with lanthanide(Ⅲ) ions to yield tight and protective N3O6 environments around the lanthanide(Ⅲ) ions, and immobilized lanthanide(Ⅲ)-dipicolinic acid complexes on colloidal mesoporous silica with diameter smaller than 100 nm by covalent bond grafting technique and obtained nearly monodisperse luminescent Eu-dpa-Si and Tb-dpa-Si functionalized hybrid mesoporous silica nanomaterials. The hybrid mesoporous silica nanoparticles exhibit intense emission lines upon UV-light irradiation, owing to the effective intramolecular energy transfer from the chromophore to the central lanthanidc Eu3+ and Tb3+ ions. The photoluminescence of colloidal mesoporous silica nanoparticles in water and ethanol is stable and may have some advantages for the potential applications of MSN-based luminescent nanomaterials in multifunctional optical imaging. Furthermore, the functionalized nano-materials MSNs after heat treatment exhibited a nearly white emission under UV irradiation, which might present a new way to create white emission materials.
     3. A general one-step route has been developed for the synthesis of rare-earth inorganic-organic hybrid colloidal (submicro-and nanospheres) particles. This kind of organic-inorganic hybrid colloidal particles can be prepared with a wide diversity of metal ions and organic ligands. The results show that organic-inorganic hybrid colloidal particles can be used as functional matrices for the encapsulation of a large variety of substances. Therefore, it is expected that this encapsulation approach will be extended to obtain amorphous/crystalline organic-inorganic hybrid particles that have novel functionalities. The combination of these capabilities with the encapsulated species open up new avenues in various fields, such as cell biology, drug delivery, diagnostics, and so on. Furthermore, the size of the colloidal particles can be controlled precisely and self-assembled into a photonic crystal.
     4. We present a new way to create color kinetic zeolite-like metal-organic frameworks by efficient energy transfer between host frameworks and guest lanthanide ions via ionic exchange. The tunable color emission is excited via energy transfer from H3ImDC ligands that upon filling the zeolite nanochannels act as light harvesting antenna. Furthermore, we can tune the luminescence color over a wide range (blue, green, white and red) by varying the amounts of the rare-earth cations and tailoring the excitation wavelength.
引文
[1]倪嘉缵,洪广言.中国科学院稀土研究五十年[M].北京:科学出版社,2005.
    [2]倪嘉缵.稀土生物无机化学(第二版)[M].北京:科学出版社,2002.
    [3]RUIZ-HITZKY E, ARANDA P, DARDER M, et al. Hybrid and biohybrid silicate based materials:molecular vs. block-assembling bottom-up processes [J]. Chemical Society Reviews,2011,40:801-828.
    [4]ROGEZ G, MASSOBRIO C, RABU P, et al. Layered hydroxide hybrid nanostructures:a route to multifunctionality [J]. Chemical Society Reviews, 2011,40:1031-1058.
    [5]ROCHA J, CARLOS L D, PAZ F A A, et al. Luminescent multifunctional lanthanides-based metal-organic frameworks[J]. Chemical Society Reviews, 2011,40:926-940.
    [6]SANCHEZ C, BELLEVILLE P, POPALL M, et al. Applications of advanced hybrid organic-inorganic nanomaterials:from laboratory to market [J]. Chemical Society Reviews,2011,40:696-753.
    [7]TRAN-TIH T H, DAGNELIE R, CRUNAIREZ S, ct al. Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors [J]. Chemical Society Reviews,2011,40:621-639.
    [8]PARDO R, ZAYAT M,LEVY D. Photochromic organic-inorganic hybrid materials [J]. Chemical Society Reviews,2011,40:672-687.
    [9]王素娜,江国庆,白俊峰,等.无机分子纳米材料的研究进展[J].无机化学学报,2005,1-12.
    [10]孙丽宁.稀土(Er, Nd, Yb, Pr, Ho, Sm)有机—无机杂化材料的制备及发光性能研究[D].长春:长春应用化学研究所,2008.
    [11]BINNEMANS K. Lanthanide-Based Luminescent Hybrid Materials [J]. Chemical Reviews,2009,109:4283-4374.
    [12]郭献敏.基于Si02基质稀土可见及近红外杂化材料的制备与发光性能[D]. 长春:长春应用化学研究所,2009.
    [13]王海平.新型喹啉-酰胺型配体稀土配合物及其杂化发光材料的研究[D].兰州:兰州大学,2010.
    [14]胡鹤.稀土上转换发光纳米材料的制备及其在生物医学成像中的应用[D].上海:复旦大学,2009.
    [15]吴庆银.现代无机合成与制备化学[M].北京:化学工业出版社,2010.
    [16]倪克钒,单国荣,翁志学.制备有机-无机杂化纳米材料的研究进展[J].高分子通报,2006,58-62.
    [17]刘镇,吴庆银,钟芳锐.无机-有机杂化材料的研究进展[J].石汕化工,2008,649-655.
    [18]孙丽宁,符连社,刘丰祎,等.无机/有机稀土配合物杂化发光材料研究进展[J].发光学报,2005,17-28.
    [19]刘政,孙丽宁,施利毅,等.近红外稀土荧光在功能材料领域的研究进展[J].化学进展,2011,153-164.
    [20]SANCHEZ C, JULIAN B, BELLEVILLE P, et al. Applications of hybrid organic-inorganic nanocomposites [J]. Journal of Materials Chemistry,2005,15: 3559-3592.
    |21] HLISEEVA S V,BUNZLI J-C G. Rare earths:jewels for functional materials of the future [J]. New Journal of Chemistry,2011, ASAP
    [22]BUNZLI J C G, PIGUET C. Taking advantage of luminescent lanthanide ions [J]. Chemical Society Reviews,2005,34:1048-1077.
    [23]ELISEEVA S V,BUNZLI J C G. Lanthanide luminescence for functional materials and bio-sciences [J]. Chemical Society Reviews,2010,39:189-227.
    [24]BUNZLI J C G. Lanthanide Luminescence for Biomedical Analyses and Imaging [J]. Chemical Reviews,2010,110:2729-2755.
    [25]张思远.稀土离子的光谱学-光谱性质和光谱理论[M].北京:科学出版社,2008.
    [26]张其锦.聚合物多层次结构中稀土络合物的光谱性质[M].合肥:中国科学技术大学出版社,2009.
    [27]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004.
    [28]黄春辉.稀土配位化学[M].北京:科学出版社,1997.
    [29]BUNZLI J C G, CHAUVIN A S, KIM H K, et al. Lanthanide luminescence efficiency in eight-and nine-coordinate complexes:Role of the radiative lifetime [J]. Coordination Chemistry Reviews,2010,254:2623-2633.
    [30]MOORE E G, SAMUEL A P S,RAYMOND K N. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence [J]. Accounts of Chemical Research,2009,42:542-552.
    [31]WEISSMAN S I. Intramolecular Energy Transfer:The Fluorescence of Complexes of Europium [J]. J. Chem. Phys.,1942,10:214-217.
    [32]CROSBY G A, WHAN R E, FREEMAN J J. Spectroscopic Studies of Rare Earth Chelates [J]. J. Chem. Phys.,1962,66:2493-2499.
    [33]SATO S,WADA M. Relations between Intromolecular Energy Transfer Efficiencies and Triplet State Energies in Rare Earth (3-Diketone Chelates [J]. Bull. Chem. Soc. Jpn.,1970,43:1955-1962.
    [34]WERTS M H V, WOUDENBERG R H, EMMERINK P G, et al. A near-infrared luminescent label based on YbⅢ ions and its application in a fluoroimmunoassay [J]. Angewandte Chemie-International Edition,2000,39: 4542-4544.
    [35]BISCHOF C, WAHSNER J, SCHOLTEN J, et al. Quantification of C-H Quenching in Near-IR Luminescent Ytterbium and Neodymium Cryptates [J]. Journal of the American Chemical Society,2010,132:14334-14335.
    [36]陈大志,孟建新,冯德雄,等.镧系离子(Ln3+)配合物近红外发光研究进展[J].化学通报,2002,65:1-5.
    [37]HORROCKS W D, JR, BOLENDER J P, et al. Photosensitized Near Infrared Luminescence of Ytterbium(III) in Proteins and Complexes Occurs via an Internal Redox Process [J]. Journal of the American Chemical Society,1997, 119:5972-5973.
    [38]MANCINO G, FERGUSON A J, BEEBY A, et al. Dramatic increases in the lifetime of the Er3+ ion in a molecular complex using a perfluorinated imidodiphosphinate sensitizing ligand [J]. Journal of the American Chemical Society,2005,127:524-525.
    [39]VANDEVYVER C D B, CHAUVIN A S, COMBY S, et al. Luminescent lanthanide bimetallic triple-stranded helicates as potential cellular imaging probes [J]. Chemical Communications,2007,1716-1718.
    [40]BUNZLI J C G. Lanthanide Luminescent Bioprobes (LLBs) [J]. Chemistry Letters,2009,38:104-109.
    [41]SONG B, SIVAGNANAM V, VANDEVYVER C D B, et al. Time-resolved lanthanide luminescence for lab-on-a-chip detection of biomarkers on cancerous tissues [J]. Analyst,2009,134:1991-1993.
    [42]FERNANDEZ-MOREIRA V, SONG B, SIVAGNANAM V, et al. Bioconjugated lanthanide luminescent helicates as multilabels for lab-on-a-chip detection of cancer biomarkers [J]. Analyst,2010,135:42-52.
    [43]WERNER E J, DATTA A, JOCHER C J, et al. High-Relaxivity MRI Contrast Agents:Where Coordination Chemistry Meets Medical Imaging [J]. Angewandte Chemie-International Edition,2008,47:8568-8580.
    [44]JIANG I. N, WU J, WANG G L, et al. Development of a Visible-Light-Sensitized Europium Complex for Time-Resolved Fluorometrie Application [J]. Analytical Chemistry,2010,82:2529-2535.
    [45]YE Z Q, WANG G L, CHEN J X, et al. Development of a novel terbium chelate-based luminescent chemosensor for time-resolved luminescence detection of intracellular Zn2+ ions [J]. Biosensors & Bioelectronics,2010,26: 1043-1048.
    [46]SONG C H, YE Z Q, WANG G L, et al. A Lanthanide-Complex-Based Ratiometric Luminescent Probe Specific for Peroxynitrite [J]. Chemistry-a European Journal,2010,16:6464-6472.
    [47]SHEN J, SUN L D,YAN C H. Luminescent rare earth nanomaterials for bioprobe applications [J]. Dalton Transactions,2008,5687-5697.
    [48]WANG F,LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chemical Society Reviews,2009,38:976-989.
    [49]UH H,PETOUD S. Novel antennae for the sensitization of near infrared luminescent lanthanide cations [J]. Comptes Rendus Chimie,2010,13:668-680.
    [50]LIU Y, DONG H T, ZHANG W Z, et al. Preparation of a novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid [J]. Biosensors & Bioelectronics,2010,25:2375-2378.
    [51]MATTHEWS L R,KNOBBE E T. Luminescenc Behavior of Europium Complexes in Sol-Gel Derived Host Materials [J]. Chem. Mater.,1993,5: 1697-1700.
    [52]FRANVILLE A C, ZAMBON D, MAHIOU R, et al. Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes [J]. Chemistry of Materials,2000,12:428-435.
    [53]LUNSTROOT K, DRIESEN K, NOCKEMANN P, et al. Luminescent ionogels based on europium-doped ionic liquids confined within silica-derived networks [J]. Chemistry of Materials,2006,18:5711-5715.
    [54]BINNEMANS K, LENAERTS P, DRIESEN K, et al. A luminescent tris(2-thenoyitrifluoroacetonato) curopium(Ⅲ) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass[J]. Journal of Materials Chemistry,2004,14:191-195.
    [55]FENG J, ZHOU L, SONG S Y, et al. A study on the near-infrared luminescent properties of xerogel materials doped with dysprosium complexes [J]. Dalton Transactions,2009,6593-6598.
    [56]LI H R, LIN J, ZHANG H J, et al. Novel, covalently bonded hybrid materials of europium (terbium) complexes with silica [J]. Chemical Communications,2001, 1212-1213.
    [57]LI H R, FU L S, LIU F Y, et al. Mesostructured thin film with covalently grafted europium complex [J]. New Journal of Chemistry,2002,26:674-676.
    [58]LIU F Y, FU L S, WANG J, et al. Luminescent film with terbium-complex-bridged polysilsesquioxanes [J]. New Journal of Chemistry, 2003,27:233-235.
    [59]LI H R, YU J B, LIU F Y, et al. Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica network [J]. New Journal of Chemistry,2004,28:1137-1141.
    [60]GUO X M, FU L S, ZHANG H J, et al. Incorporation of luminescent lanthanide complex inside the channels of organically modified mesoporous silica via template-ion exchange method [J]. New Journal of Chemistry,2005,29: 1351-1358.
    [61]GUO X M, WANG X M, ZHANG H J, et al. Preparation and luminescence properties of covalent linking of luminescent ternary europium complexes on periodic mesoporous organosilica [J]. Microporous and Mesoporous Materials, 2008,116:28-35.
    [62]SUN L N, ZHANG H J, YU J B, et al. Near-infrared emission from novel tris(8-hydroxyquinolinate)lanthanide(Ⅲ)complexes-functionalized mesoporous SBA-15 [J]. Langmuir,2008,24:5500-5507.
    [63]GUO X M, GUO H D, FU L S, et al. Novel hybrid periodic mesoporous organosilica material grafting with Tb complex:Synthesis, characterization and photoluminescencc property [J]. Microporous and Mesoporous Materials.2009, 119:252-258.
    [64]DANG S, SUN L N, ZHANG H J, et al. Near-infrared luminescence from sol-gel materials doped with holmium(III) and thulium(Ⅲ) complexes [J]. Journal of Physical Chemistry C,2008,112:13240-13247.
    [65]GUO X M, GUO H D, FU L S, et al. Synthesis, Spectroscopic Properties, and Stabilities of Ternary Europium Complex in SBA-15 and Periodic Mesoporous Organosilica:A Comparative Study [J]. Journal of Physical Chemistry C,2009, 113:2603-2610.
    [66]GUO X M, GUO H D, FU L S, et al. Novel Near-Infrared Luminescent Hybrid Materials Covalently Linking with Lanthanide [Nd(Ⅲ), Er(Ⅲ), Yb(Ⅲ), and Sm(III)] Complexes via a Primary beta-Diketone Ligand:Synthesis and Photophysical Studies [J]. Journal of Physical Chemistry C,2009,113: 12538-12545.
    [67]FENG J, YU J B, SONG S Y, et al. Near-infrared luminescent xerogel materials covalently bonded with ternary lanthanide [Er(Ⅲ), Nd(Ⅲ), Yb(Ⅲ), Sm(Ⅲ)] complexes [J]. Dalton Transactions,2009,2406-2414.
    [68]SUN L N, DANG S, YU J B, et al. Near-Infrared Luminescence from Visible-Light-Sensitized Hybrid Materials Covalently Linked with Tris(8-hydroxyquinolinate)-lanthanide [Er(Ⅲ), Nd(Ⅲ), and Yb(Ⅲ)] Derivatives [J]. Journal of Physical Chemistry B,2010,114:16393-16397.
    [69]WANG Q M,YAN B. A novel way to prepare luminescent terbium molecular-scale hybrid materials:Modified heterocyclic ligands covalently bonded with silica [J]. Crystal Growth & Design,2005,5:497-503.
    [70]YAN B,WANG Q M. Two luminescent molecular hybrids composed of bridged Eu(III)-beta-diketone chelates covalently trapped in silica and titanate gels [J]. Crystal Growth & Design,2008,8:1484-1489.
    [71]LIU J L,YAN B. Lanthanide (Eu3+, Tb3+) centered hybrid materials using modified functional bridge chemical bonded with silica:Molecular design, physical characterization, and photophysical properties [J]. Journal of Physical Chemistry B,2008,112:10898-10907.
    [72]LI Y J,YAN B. Lanthanide (Eu3+, Tb3+)/beta-Diketone Modified Mesoporous SBA-15/Organic Polymer Hybrids:Chemically Bonded Construction, Physical Characterization, and Photophysical Properties [J]. Inorganic Chemistry,2009, 48:8276-8285.
    [73]YAN B,LI Y. Luminescent ternary inorganic-organic mesoporous hybrids Eu(TTASi-SBA-15)phen:covalent linkage in TTA directly functionalized SBA-15 [J]. Dalton Transactions,2010,39:1480-1487.
    [74]SHENG K, YAN B, LU H F, et al. Ternary Rare Earth Inorganic-Organic Hybrids with a Mercapto-Functionalized Si-O Linkage and a Polymer Chain: Coordination Bonding Assembly and Luminescence [J]. European Journal of Inorganic Chemistry,2010,3498-3505.
    [75]LIU J L,YAN B. Lanthanide-centered organic-inorganic hybrids through a functionalized aza-crown ether bridge:coordination bonding assembly, microstructure and multicolor luminescence [J]. Dalton Transactions,2011,40: 1961-1968.
    [76]GUO L, YAN B, LIU J L, et al. Coordination bonding construction, characterization and photoluminescence of ternary lanthanide (Eu3+, Tb3+) hybrids with phenylphenacyl-sulfoxide modified bridge and polymer units [J]. Dalton Transactions,2011,40:632-638.
    [77]ARMELAO L, BOTTARO G, QUICI S, et al. Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(Ⅲ) complexes [J]. Chemical Communications,2007,2911-2913.
    [78]CT K, ME L, WJ R, et al. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature,1992,359:710-712.
    [79]JS B, JC V, WJ R, et al. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates [J]. Journal of the American Chemical Society,1992,114:10834-10843.
    [80]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:徐如人,庞文琴,2004.
    [81]徐如人,庞文琴,霍启升.无机合成与制备化学(第二版)[M].北京:高等教育出版社,2009.
    [82]BIAN L J, XI H A, QIAN X F, et al. Synthesis and luminescence property of rare earth complex nanoparticles dispersed within pores of modified mesoporous silica[J]. Materials Research Bulletin,2002,37:2293-2301.
    [83]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007.
    [84]张玉清.插层复合材料[M].北京:科学出版社,2008.
    [85]段雪,张法智.无机超分子材料的插层组装化学[M].北京:科学出版社,2009.
    [86]LI C, WANG L Y, EVANS D G, et al. Thermal Evolution and Luminescence Properties of Zn-Al-Layered Double Hydroxides Containing Europium(Ⅲ) Complexes of Ethylenediaminetetraacetate and Nitrilotriacetate [J]. Industrial & Engineering Chemistry Research,2009,48:2162-2171.
    [87]GAGO S, PILLINGER M, FERREIRA R A S, et al. Immobilization of lanthanide ions in a pillared layered double hydroxide [J]. Chemistry of Materials,2005,17:5803-5809.
    [88]GUNAWAN P, XU R. Lanthanide-Doped Layered Double Hydroxides Intercalated with Sensitizing Anions:Efficient Energy Transfer between Host and Guest Layers [J]. Journal of Physical Chemistry C,2009,113: 17206-17214.
    [89]GAO X R, HU M, LEI L X, et al. Enhanced luminescence of europium-doped layered double hydroxides intercalated by sensitiser anions [J]. Chemical Communications,2011,47:2104-2106.
    [90]SANCHEZ A, ECHEVERRIA Y, TORRES C M S, et al. Intercalation of Europium (III) species into bentonite [J]. Materials Research Bulletin,2006,41: 1185-1191.
    [91]MA Y F, WANG H P, LIU W S, et al. Microstructure, Luminescence, and Stability of a Europium Complex Covalently Bonded to an Attapulgite Clay [J]. Journal of Physical Chemistry B,2009,113:14139-14145.
    [92]蒋维,唐瑜,刘伟生,等.新型超分子复合发光材料四足配体铕配合物-蒙脱土的插层组装及发光性性[J].高等学校化学学报,2006,2243-2247.
    [93]蒋维,唐瑜,刘伟生,等.新型超分子复合发光材料—联吡啶氮氧化物铕配合物-蒙脱土的室温固相插层组装及发光性能[J].无机化学学报,2006,2235-2238.
    [94]蒋维,唐瑜,徐丽,等.四足配体铽配合物-蒙脱土超分子复合发光材料的插层组装、表征和性质研究[J].中国稀土学报,2006,534-539.
    [95]XU Q H, FU L S, LI L S, et al. Preparation, characterization and photophysical properties of layered zirconium bis(monohydrogenphosphate) intercalated with rare earth complexes [J]. Journal of Materials Chemistry,2000,10:2532-2536.
    [96]BRUNET E, ALHENDAWI H M H, JUANES O, et al. Luminescence of lanthanides in covalently pillared zirconium phosphate [J]. Journal of Materials Chemistry,2009,19:2494-2502.
    [97]SENDOR D,KYNAST U. Efficient red-emitting hybrid materials based on zeolites [J]. Advanced Materials,2002,14:1570-1574.
    [98]WADA Y, SATO M,TSUKAHARA Y. Fine control of red-green-blue photoluminescence in zeolites incorporated with rare-earth ions and a photosensitizer [J]. Angewandte Chemie-International Edition,2006,45: 1925-1928.
    [99]TSUKAHARA Y, SATO M, KATAGIRI S, et al. Multi-color photoluminescence from multi-components in zeolite cavity [J]. Journal of Alloys and Compounds,2008,451:194-197.
    [100]WADA Y, OKUBO T, RYO M, et al. High efficiency near-LR emission of Nd(III) based on low-vibrational environment in cages of nanosized zeolites [J]. Journal of the American Chemical Society,2000,122:8583-8584.
    [101]MECH A, MONGUZZI A, MEINARDI F, et al. Sensitized NIR Erbium(III) Emission in Confined Geometries:A New Strategy for Light Emitters in Telecom Applications [J]. Journal of the American Chemical Society,2010,132: 4574-4576.
    [102]TAN M Q, YE Z Q, WANG G L, et al. Preparation and time-resolved fluorometric application of luminescent europium nanoparticles [J]. Chemistry of Materials,2004,16:2494-2498.
    [103]WU J, YE Z Q, WANG G L, et al. Visible-light-sensitizcd highly luminescent europium nanoparticles:preparation and application for lime-gated luminescence bioimaging [J]. Journal of Materials Chemistry,2009,19: 1258-1264.
    [104]ZHANG H, XU Y, YANG W, et al. Dual-lanthanide-chelated silica nanoparticles as labels for highly sensitive time-resolved fluorometry [J]. Chemistry of Materials,2007,19:5875-5881.
    [105]FRANCIS B, RAJ D B A,REDDY M L P. Highly efficient luminescent hybrid materials covalently linking with europium(Ⅲ) complexes via a novel fluorinated beta-diketonate ligand:synthesis, characterization and photophysical properties [J]. Dalton Transactions,2010,39:8084-8092.
    [106]YU S Y, ZHANG H J, YU J B, et al. Bifunctional magnetic-optical nanocomposites:Grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture [J]. Langmuir,2007,23:7836-7840.
    [107]MAGGINI L, TRABOULSI H, YOOSAF K, et al. Electrostatically-driven assembly of MWCNTs with a europium complex [J]. Chemical Communications,2011,47:1626-1628.
    [108]CHOI J, KIM J C, LEE Y B, et al. Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes [J]. Chemical Communications,2007,1644-1646.
    [109]王恩波,胡长文,许林著.多酸化学导论[M].北京:化学工业出版社,1998.
    [110]LEWIS D J, DAY T M, MACPHERSON J V, et al. Luminescent nanobeads: attachment of surface reactive Eu(III) complexes to gold nanoparticles [J]. Chemical Communications,2006,1433-1435.
    [111]IPE B I, YOOSAF K,THOMAS K G. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors [J]. Journal of the American Chemical Society,2006,128:1907-1913.
    [112]LI Z Q, ZHANG Y. Facile synthesis of lanthanide nanoparticles with paramagnetic, down-and up-conversion properties [J]. Nanoscale,2010,2: 1240-1243.
    [113]AI K L, ZHANG B H,LU L H. Europium-Based Fluorescence Nanoparticle Sensor for Rapid and Ultrasensitive Detection of an Anthrax Biomarker[J]. Angewandte Chemie-International Edition,2009,48:304-308.
    [114]RIETER W J, TAYLOR K M L,LIN W B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing [J]. Journal of the American Chemical Society,2007, 129:9852-.
    [115]ACCORSI G, ARMAROLI N, PARISINI A, et al. Wet adsorption of a luminescent EuIII complex on carbon nanotubes sidewalls [J]. Advanced Functional Materials,2007,17:2975-2982.
    [116]FENG J, SONG S Y, DENG R P, et al. Novel Multifunctional Nanocomposites: Magnetic Mesoporous Silica Nanospheres Covalently Bonded with Near-Infrared Luminescent Lanthanide Complexes [J]. Langmuir,2010,26: 3596-3600.
    [117]ZAWOROTKO M J, PERRY J J,PERMAN J A. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks [J]. Chemical Society Reviews,2009,38:1400-1417.
    [118]CHEN B L, XIANG S C,QIAN G D. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules [J]. Accounts of Chemical Research,2010,43:1115-1124.
    [119]CHEN B L, YANG Y, ZAP ATA F, et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules [J]. Advanced Materials, 2007,19:1693-1696.
    [120]HARBUZARU B V, CORMA A, REY F, et al. Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors [J]. Angcwandte Chemie-International Edition,2008,47: 1080-1083.
    [121]CHEN B L, WANG L B, XIAO Y Q, et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions [J]. Angewandte Chemie-International Edition,2009,48:500-503.
    [122]WHITE K A, CHENGELIS D A. GOGICK K A, et al. Near-Infrared Luminescent Lanthanide MOF Barcodes [J]. Journal of the American Chemical Society,2009,131:18069-18071.
    [123]WANG P, MA J P, DONG Y B, et al. Tunable luminescent lanthanide coordination polymers based on reversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra [J]. Journal of the American Chemical Society,2007,129:10620-10621.
    [124]XIAO Y Q, CUI Y J, ZHENG Q A, et al. A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution [J]. Chemical Communications,2010,46:5503-5505.
    [125]王恩波.多酸化学概论[M].长春:东北师范大学出版社,2009.
    [126]LI H L, QI W, LI W, et al. A highly transparent and luminescent hybrid based on the copolymerization of surfactant-encapsulated polyoxometalate and methyl methacrylate [J]. Advanced Materials,2005,17:2688-2692.
    [127]ZHANG H, LIN X K, YAN Y, et al. Luminescent logic function of a surfactant-encapsulated polyoxometalate complex [J]. Chemical Communications,2006,4575-4577.
    [128]QI W, LI H L,WU L X. A novel, luminescent, silica-sol-gel hybrid based on surfactant-encapsulated polyoxometalates [J]. Advanced Materials,2007,19: 1983-1987.
    [129]ZHAO Y Y, LI Y, LI W, et al. Preparation, Structure, and Imaging of Luminescent SiO2 Nanoparticles by Covalently Grafting Surfactant-Encapsulated Europium-Substituted Polyoxometalates [J]. Langmuir, 2010,26:18430-18436.
    [130]ZHAO Y Y, QI W, LI W, et al. Covalent Dispersion of Surfactant-Encapsulated Polyoxometalates and In Situ Incorporation of Metal Nanoparticles in Silica Spheres [J]. Langmuir,2010,26:4437-4442.
    [131]RITCHIE C, MOORE E G, SPELDRICH M, et al. Terbium Polyoxometalate Organic Complexes:Correlation of Structure with Luminescence Properties [J]. Angewandte Chemie-International Edition,2010,49:7702-7705.
    [132]SUZUKI K, IKARI K,IMAI H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system[J]. Journal of the American Chemical Society,2004,126:462-463.
    [133]SLOWING I I, TREWYN B G, GIRI S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Advanced Functional Materials,2007,17:1225-1236.
    [134]MOLLER K, KOBLER J, BEIN T. Colloidal suspensions of mercapto-functionalized nanosized mesoporous silica [J]. Journal of Materials Chemistry,2007,17:624-631.
    [135]MOLLER K, KOBLER J,BEIN T. Colloidal suspensions of nanometer-sized mesoporous silica [J]. Advanced Functional Materials,2007,17:605-612.
    [136]KOBLER J, MOLLER K,BEIN T. Colloidal suspensions of functionalized mesoporous silica nanoparticles [J]. Acs Nano,2008,2:791-799.
    [137]QIAO Z A, ZHANG L, GUO M Y, et al. Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide [J]. Chemistry of Materials,2009,21:3823-3829.
    [138]SUN Y Q, ZHANG J, CHEN Y M, et al. Porous lanthanide-organic open frameworks with helical tubes constructed from interweaving triple-helical and double-helical chains [J]. Angewandte Chemie-International Edition,2005,44: 5814-5817.
    [139]SUN Y Q, ZHANG J,YANG G Y. Two novel luminescent lanthanide sulfate-carboxylates with an unusual 2-D bamboo-raft-like structure based on the linkages of left-and right-handed helical tubes involving in situ decarboxylation [J]. Chemical Communications,2006,1947-1949.
    [140]YAO Y L, CHE Y X.ZHENG J M. The coordination chemistry of benzimidazole-5,6-dicarboxylic acid with Mn(Ⅱ), Ni(Ⅱ), and Ln(Ⅲ) complexes (Ln=Tb, Ho, Er, Lu) [J]. Crystal Growth & Design,2008,8:2299-2306.
    [141]YAN B,LU H F. Novel leaf-shaped hybrid micro-particles:Chemically bonded self-assembly, microstructure and photoluminesccnce [J]. Journal of Photochemistry and Photobiology a-Chemistry,2009,205:122-128.
    [142]YAN B,LU H F. Lanthanide-centered inorganic/organic hybrids from functionalized 2-pyrrolidinone-5-carboxylic acid bridge:Covalcntly bonded assembly and luminescence [J]. Journal of Organometallic Chemistry,2009,694: 2597-2603.
    [143]GAGO S, FERNANDES J A, RAINHO J P, et al. Highly luminescent tris(beta-diketonate)europium(Ⅲ) complexes immobilized in a functionalized mesoporous silica [J]. Chemistry of Materials,2005,17:5077-5084.
    [144]DEOLIVEIRA E, NERI C R, SERRA O A, et al. Antenna effect in highly luminescent Eu3+ anchored in hexagonal mesoporous silica [J]. Chemistry of Materials,2007,19:5437-5442.
    [145]CABLE M L, KIRBY J P, SORASAENEE K, et al. Bacterial spore detection by [Tb3+(macrocycle)(dipicolinate)] luminescence [J]. Journal of the American Chemical Society,2007,129:1474-1475.
    [146]TAYLOR K M L,LIN W B. Hybrid silica nanoparticles for luminescent spore detection [J]. Journal of Materials Chemistry,2009,19:6418-6422.
    [147]BEKIARI V, LIANOS P. Tunable photoluminescence from a material made by the interaction between (3-aminopropyl)triethoxysilane and organic acids [J]. Chemistry of Materials,1998,10:3777-3779.
    [148]BRANKOVA T, BEKIARI V,LIANOS P. Photoluminescence from sol-gel organic/inorganic hybrid gels obtained through carboxylic acid solvolysis [J]. Chemistry of Materials,2003,15:1855-1859.
    [149]BEKIARI V,IIANOS P. Characterization of Photoluminescence from a Material Made by Interaction of (3-Aminopropyl)triethoxysilane with Acetic Acid [J]. Langmuir,1998,14:3459-3461.
    [150]FU L S, FERREIRA R A S, SILVA N J O, et al. Photoluminescence and quantum yields of urea and urethane cross-linked nanohybrids derived from carboxylic acid solvolysis [J]. Chemistry of Materials,2004,16:1507-1516.
    [151]LIN J,BAERNER K. Tunable photoluminescence in sol-gel derived silica xcrogels [J]. Materials Letters,2000,46:86-92.
    [152]] IAN Y H, LIN J.ZHANG H J. Photoluminescence of organic-inorganic hybrid SiO2 xerogels [J]. Materials Letters,2002,54:389-396.
    [153]ZHANG J,LIN J. Comparative study on the photoluminescent properties of siliceous MCM-41 with silica particles and xerogels [J]. Microporous and Mesoporous Materials,2004,75:115-120.
    [154]LIN C K, LUO Y, YOU H, et al. Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material [J]. Chemistry of Materials,2006,18:458-464.
    [155]唐瑞仁,郑由浒,赵强,等.4-羟基吡啶-2,6-二甲酸二甲酯合成工艺研究[J].化学反应工程与工艺,2006,83-87.
    [156]GU G L, TANG R R, ZHENG Y H, et al. Synthesis, characterization and fluorescence properties of novel pyridine dicarboxylic acid derivatives and corresponding Tb(III) complexes [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2008,71:209-214.
    [157]ZHANG L M, LI B, SU Z M, et al. Novel rare-earth(III)-based water soluble emitters for Fe(Ⅲ) detection [J]. Sensors and Actuators B-Chemical,2010,143: 595-599.
    [158]JAKOB A M,SCHMEDAKE T A. A novel approach to monodisperse, luminescent silica spheres [J]. Chemistry of Materials,2006,18:3173-3175.
    [159]LIN C K, YU M, CHENG Z Y, et al. Bluish-white emission from radical carbonyl impurities in amorphous Al2O3 prepared via the Pechini-type sol-gel process [J]. Inorganic Chemistry,2008,47:49-55.
    [160]WANG L, ESTEVEZ M C, O'DONOGHUE M, et al. Fluorophore-free luminescent organosilica nanoparticles [J]. Langmuir,2008,24:1635-1639.
    [161]KONG D Y, ZHANG C M, XU Z H, et al. Tunable photoluminescence in monodisperse silica spheres [J]. Journal of Colloid and Interface Science,2010, 352:278-284.
    [162]HOU Z Y, ZHANG C M, LI C X, et al. Luminescent Porous Silica Fibers as Drug Carriers [J]. Chemistry-a European Journal,2010,16:14513-14519.
    [163]OH M,MIRKIN C A. Chemically tailorablc colloidal particles from infinite coordination polymers [J]. Nature,2005,438:651-654.
    [164]MIRKIN C A,OH M. Ion exchange as a way of controlling the chemical compositions of nano and microparticles made fiom infinite coordination polymers [J]. Angewandte Chemie-International Edition,2006,45:5492-5494.
    [165]CORONADO E, GALAN-MASCAROS J R, MONRABAL-CAPILLA M, et al. Bistable spin-crossover nanoparticles showing magnetic thermal hysteresis near room temperature [J]. Advanced Materials,2007,19:1359-1361.
    [166]GASPAR A B, BOLDOG I, MARTINEZ V, et al. Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature [J]. Angewandte Chemie-International Edition,2008.47:6433-6437.
    [167]KIMIZUKA N, AIME C, NISHIYABU R, et al. Controlled self-assembly of nucleotide-lanthanide complexes:specific formation of nanofibers from dimeric guanine nucleotides [J]. Chemical Communications,2008,6534-6536.
    [168]MIRKIN C A, JEON Y M, ARMATAS G S, et al. Amorphous infinite coordination polymer microparticles:A new class of selective hydrogen storage materials [J]. Advanced Materials,2008,20:2105-2110.
    [169]OH M, JUNG S. Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles [J]. Angewandte Chemie-International Edition,2008,47:2049-2051.
    [170]RUIZ-MOLINA D, IMAZ I, MASPOCH D, et al. Valence-tautomeric metal-organic nanoparticles [J]. Angewandte Chemie-International Edition, 2008,47:1857-1860.
    [171]LIN W B, RIETER W J,TAYLOR K M L. Modular Synthesis of Functional Nanoscale Coordination Polymers [J]. Angewandte Chemie-International Edition,2009,48:650-658.
    [172]MIRKIN C A, SPOKOYNY A M, KIM D, et al. Infinite coordination polymer nano-and microparticle structures [J]. Chemical Society Reviews,2009,38: 1218-1227.
    [173]NIU W, WU S, ZHANG S, et al. Synthesis of colour tunable lanthanide-ion doped NaYF4 upconversion nanoparticles by controlling temperature [J]. Chemical Communications,46:3908-3910.
    [174]BOYER J C, VETRONE F, CUCCIA L A, et al. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J]. Journal of the American Chemical Society,2006,128:7444-7445.
    [175]LIU X G,WANG F. Upconversion multicolor fine-tuning:Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles [J]. Journal of the American Chemical Society,2008,130:5642-5643.
    [176]CAPOBIANCO J A, MAHALINGAM V, VETRONE F, et al. Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals:Multiple Luminescence Spanning the UV to NiR Regions via Low-Energy Excitation [J]. Advanced Materials,2009, 21:4025-4028.
    [177]LIU X G, WANG F, WANG J A. Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles [J]. Angewandte Chemie-International Edition,2010,49:7456-7460.
    [178]WOLFBEIS O S, ACHATZ D E, MEIER R J, et al. Luminescent Sensing of Oxygen Using a Quenchable Probe and Upconverting Nanoparticles [J]. Angewandte Chemie-International Edition,2011,50:260-263.
    [179]ZHANG S-Z, SUN L-D, TIAN H, et al. Reversible luminescence switching of NaYF4:Yb,Er nanoparticles with controlled assembly of gold nanoparticles [J]. Chemical Communications,2009,2547-2549.
    [180]LIU X G,WANG F. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chemical Society Reviews,2009,38:976-989.
    [181]NISHIYABU R, AIME C, GONDO R, et al. Selective inclusion of anionic quantum dots in coordination network shells of nucleotides and lanthanide ions [J]. Chemical Communications,46:4333-4335.
    [182]KIMIZUKA N, AIME C, NISHIYAHU R, et al. Switching On Luminescence in Nucleotide/Lanthanide Coordination Nanoparticles via Synergistic Interactions with a Cofactor Ligand [J]. Chemistry-a European Journal,2010,16: 3604-3607.
    [183]STUCKY G D, ZHANG F, SHI Y F, et al. Formation of Hollow Upconversion Rare-Earth Fluoride Nanospheres:Nanoscale Kirkendall Effect During Ion Exchange [J]. Chemistry of Materials,2009,21:5237-5243.
    [184]JIA G, YOU H, SONG Y, et al. Facile Synthesis and Luminescence of Uniform Y2O3 Hollow Spheres by a Sacrificial Template Route [J]. Inorganic Chemistry, 49:7721-7725.
    [185]VETRONE F, BOYER J C, CAPOBIANCO J A, et al. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+[J]. Chemistry of Materials,2003,15:2737-2743.
    [186]LI Q, LI X, XIA Z G, et al. Growth and characterization of single-crystal Y2O3: Eu nanobelts prepared with a simple technique [J]. Crystal Growth & Design, 2006,6:2193-2196.
    [187]LIN J, YANG J, QUAN Z W, et al. Y2O3:Eu3+ microspheres:Solvothermal synthesis and luminescence properties [J]. Crystal Growth & Design,2007,7: 730-735.
    [188]LI J G, LI X D, SUN X D, et al. Monodispersed colloidal spheres for uniform Y2O3:Eu3+red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping [J]. Journal of Physical Chemistry C,2008,112: 11707-11716.
    [189]DEVARAJU M K, YIN S,SATO T. A Fast and Template Free Synthesis of Tb:Y2O3 Hollow Microspheres Via Supercritical Solvothermal Method [J]. Crystal Growth & Design,2009,9:2944-2949.
    [190]HUO Q S, QIAO Z A, ZHANG L, et al. Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide [J]. Chemistry of Materials,2009,21:3823-3829.
    [191]JADHAV A P, KIM C W, CHA H G, et al. Effect of Different Surfactants on the Size Control and Optical Properties of Y2O3:Eu3+ Nanoparticles Prepared by Coprecipitation Method [J]. The Journal of Physical Chemistry C,2009,113: 13600-13604.
    [192]JADHAV A P, PA WAR A, KIM C W, et al. Effect of Different Additives on the Size Control and Emission Properties of Y2O3:Eu3+ Nanoparticles Prepared through the Coprecipitation Method [J]. The Journal of Physical Chemistry C, 2009,113:16652-16657.
    [193]YOU H P, JIA G, YANG M, et al. General and Facile Method To Prepare Uniform Y2O3:Eu Hollow Microspheres [J]. Crystal Growth & Design,2009,9: 301-307.
    [194]孟庆裕,陈宝玖,赵晓霞,等.Eu3+或Tb3+掺杂Y2O3纳米材料紫外激发光谱[J].发光学报,2008,29:107-113.
    [195]司伟,姜妲,高宏,等.Ca2+、La3+掺杂纳米Y2O3:Eu3+的超声波制备及光致发光性能[J].稀土,2008,29:24-29.
    [196]PETOUD S, ZHANG J, SHADE C M, et al. A strategy to protect and sensitize near-infrared luminescent Nd3+ and Yb3+:Organic tropolonate ligands for the sensitization of Ln3+-doped NaYF4 nanocrystals [J]. Journal of the American Chemical Society,2007,129:14834-14835.
    [197]LIU G X, HONG G Y,SUN D X. Synthesis and characterization of SiO2/Gd2O3: Eu core-shell luminescent materials [J]. Journal of Colloid and Interface Science, 2004,278:133-138.
    [198]GOLDYS E M, DROZDOWICZ-TOMSIA K, JINJUN S, et al. Optical Characterization of Eu-Doped and Undoped Gd2O3 Nanoparticles Synthesized by the Hydrogen Flame Pyrolysis Method [J]. Journal of the American Chemical Society,2006,128:14498-14505.
    [199]MAKIURA R, MOTOYAMA S, UMEMURA Y, et al. Surface nano-architecture of a metal-organic framework [J]. Nature Materials,2010,9: 565-571.
    [200]MATSUDA R, KITAURA R, KITAGAWA S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material [J]. Nature,2005,436: 238-241.
    [201]ROSSEINSKY M J, BRADSHAW D,WARREN J E. Reversible concerted ligand substitution at alternating metal sites in an extended solid [J]. Science, 2007,315:977-980.
    [202]YAGHI O M, EL-KADERI H M, HUNT J R, ct al. Designed synthesis of 3D covalent organic frameworks [J]. Science.2007,316:268-272.
    [203]LI Q W, ZHANG W Y, MILJANIC O S, et al. Docking in Metal-Organic Frameworks [J]. Science,2009,325:855-859.
    [204]YAGHI O M, PHAN A, DOONAN C J, et al. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks [J]. Accounts of Chemical Research,2010,43:58-67.
    [205]TIAN Y Q, CAI C X, REN X M, et al. The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks:X-ray single-crystal structures and magnetic properties [J]. Chemistry-a European Journal,2003,9: 5673-5685.
    [206]HUANG X C, ZHANG J P,CHEN X M. A new route to supramolecular isomers via molecular templating:Nanosized molecular polygons of copper(Ⅰ) 2-methylimidazolates [J]. Journal of the American Chemical Society,2004,126: 13218-13219.
    [207]YAGHI O M, PARK K S, NI Z, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103:10186-10191.
    [208]HAYASHI H, COTE A P, FURUKAWA H, et al. Zeolite A imidazolate frameworks [J]. Nature Materials,2007,6:501-506.
    [209]LIU Y L, KRAVTSOV V C, LARSEN R, et al. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities [J]. Chemical Communications,2006,1488-1490.
    [210]EDDAOUDI M, ALKORDI M H, LIU Y L, et al. Zeolite-like metal-organic frameworks as platforms for applications:On metalloporphyrin-based catalysts [J]. Journal of the American Chemical Society,2008,130:12639-12641.
    [211]EDDAOUDI M, LIU Y L,KRAVTSOV V C. Template-Directed Assembly of Zeolite-like Metal-Organic Frameworks (ZMOFs):A usf-ZMOF with an Unprecedented Zeolite Topology [J]. Angewandte Chemie-International Edition, 2008,47:8446-8449.
    [212]EDDAOUDI M, SAVA D F, KRAVTSOV V C, et al. Quest for zeolite-like metal-organic frameworks:On pyrimidinecarboxylate bis-chclating bridging ligands [J]. Journal of the American Chemical Society,2008,130:3768-3770.
    [213]EDDAOUDI M, NOUAR F, ECKERT J, et al. Zeolite-like Metal-Organic Frameworks (ZMOFs) as Hydrogen Storage Platform:Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF) Interaction Studies [J]. Journal of the American Chemical Society,2009,131:2864-2870.
    [214]EDDAOUDI M, SAVA D F, KRAVTSOV V C, et al. Exceptional Stability and High Hydrogen Uptake in Hydrogen-Bonded Metal-Organic Cubes Possessing ACO and AST Zeolite-like Topologies [J]. Journal of the American Chemical Society,2009,131:10394-10396.
    [215]YANG J, YUE Q, LI G-D, et al. Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages [J]. Inorganic Chemistry,2006,45:2857-2865.
    [216]ZHENG X J, WENG D F, CHEN X B, et al. Synthesis, upconversion luminescence and magnetic properties of new lanthanide-organic frameworks with (43)2(46,66,83) topology [J]. European Journal of Inorganic Chemistry,2007, 3410-3415.
    [217]PETOUD S, WHITE K A, CHENGELIS D A, et al. Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties [J]. Chemical Communications,2009,4506-4508.
    [218]SUN C Y, ZHENG X J, CHEN X B, et al. Assembly and upconversion luminescence of lanthanide-organic frameworks with mixed acid ligands [J]. Inorganica Chimica Acta,2009,362:325-330.
    [219]BALLATO J, KOKUOZ B, DIMAIO J R, et al. Color kinetic nanoparticles [J]. Journal of the American Chemical Society,2008,130:12222-12223.
    [220]YOU H P, LIU K, ZHENG Y H, et al. Room-Temperature Synthesis of Multi-Morphological Coordination Polymer and Tunable White-Light Emission [J]. Crystal Growth & Design,2010,10:16-19.
    [221]Given WH, Le K P, GREY J, et al. White phosphors from a silicate-carboxylate sol-gel precursor that lack metal activator ions [J]. Science 1997,276:1826-1828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700