棉花冠层温度分异现象及其生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是我国重要的经济作物,在栽培过程中,棉花蕾铃脱落、早衰现象严重,产量和品质都受到了极大的影响。冠层温度低的棉花品种是否和冷型小麦一样具有植株活力较强、代谢水平较高、后劲较足的特点,引起了作者较大的兴趣。
     本试验在气候和土壤背景相同且栽培条件完全一致的一个小尺度范围内,自花期开始,对中棉41、炮台1号、豫422和中棉5629这四个棉花品种的冠层温度以及一系列生理代谢参数进行了研究,试验结果表明:
     1.不同基因型棉花的冠层温度存在分异现象
     自花期至吐絮期间,不同基因型棉花品种群体冠层温度出现了分异现象,有的偏低,有的偏暖,中棉41和炮台1号温度大多位于基准线之下,温度明显偏低,而豫422和中棉5629温度则大多位于基准线之上,温度明显偏高。对冠层温度的日序变化的显著性分析结果表明,不同温度类型棉花之间的差异都达到了极显著水平;在冠层温度日变化的显著性分析中,在各时间点不同温度类型之间的差异也几乎都达到了显著甚至极显著水平。
     2.不同基因型棉花的生理特性存在着差异
     (1)低温棉花的叶绿素含量在盛花期后一直保持在一个较高的水平,其叶绿素含量随生育期的推移降解速度较暖温棉花平缓,这说明了低温棉花有较高的光能利用效率,具备抗早衰的潜力。显著性分析结果表明,不同温度类型棉花之间,中棉41号与豫422和中棉5629之间存在着差异显著,但炮台1号与豫422和中棉5629之间未达到显著性水平。
     (2)低温棉花在各个时期的可溶性蛋白质含量几乎都高于暖温棉花,在生育后期,可溶性蛋白质含量下降速度较快,但是低温棉花的下降幅度略低于暖温棉花,再次证实了其代谢功能优于暖温棉花。显著性分析结果表明,不同温度类型棉花之间都存在着显著性差异,炮台1号与中棉5629之间的差异更是达到了极显著水平。
     (3)低温棉花较高温型棉花在多数时期保持着较高的SOD活性,下降幅度也较为缓慢,说明低温棉花具有较强的减轻活性氧或其它过氧化物自由基对细胞膜系统伤害的能力,代谢功能较好。显著性分析结果表明,不同温度类型棉花之间,中棉41号与豫422和中棉5629之间都存在着显著性差异,炮台1号与中棉5629之间存在着显著性差异,但炮台1号与豫422之间未达到显著性水平。
     (4)低温棉花的硝酸还原酶活性在各个时期基本保持了较高的活性,在生育后期的下降幅度也较为缓慢,说明了低温棉花比暖温棉花具有较高的氮肥利用能力,具备高产的基础。显著性分析结果表明,不同温度类型棉花之间,中棉41号与豫422和中棉5629之间存在着显著性差异,但是炮台1号与豫422和中棉5629之间均未达到显著性水平。
     (5)不同基因型棉花叶片的MDA含量随生育期的推移呈明显上升趋势,低温棉花增加速度缓慢,积累量较少,暖温棉花增加速度较快,积累量大,表明低温棉花膜脂过氧化程度较轻,再次证实了其代谢功能优于暖温棉花。显著性分析结果表明,不同温度类型棉花之间,中棉41号与豫422和中棉5629之间存在着显著性差异,炮台1号与豫422之间也达到了显著性水平,但炮台1号与中棉5629之间却未达到显著性水平。
     (6)在吐絮后,低温棉花和暖温棉花的可溶性糖含量差异增大,低温棉花保持了较高的可溶性糖含量,证明了低温棉花比暖温棉花在后期具有更强的渗透调节能力,具备更好的抵抗逆境的能力。显著性分析结果表明,不同温度类型棉花之间,中棉41号与中棉5629之间存在着显著性差异,其它的均未达到显著性水平。
     3.不同基因型棉花的气孔交换特性存在着差异
     (1)低温棉花在各个时期的蒸腾速率都高于暖温棉花。高的蒸腾速率不仅有利于植株体温的降低,还为植株的生长发育提供了较多的矿质养分,并为光合作用的顺利进行提供了较充足的水分,并且有利于CO2反向进入植株体内显著性分析结果表明,不同温度类型棉花之间,中棉41号与豫422和中棉5629之间存在着显著性差异,炮台1号与中棉5629之间也达到了显著性水平,但炮台1号与豫422之间却未达到显著性水平。
     (2)随着生育期的推进,低温棉花和暖温棉花的叶片净光合速率差异增大,低温棉花的叶片净光合速率明显高于暖温棉花,这对产量的提高创造了非常有利的条件。显著性分析结果表明,不同温度类型棉花之间,中棉41号与豫422和中棉5629之间存在着显著性差异,炮台1号与中棉5629之间也达到了显著性水平,但炮台1号与豫422之间却未达到显著性水平。
     (3)低温棉花较暖温棉花在各个时期的都具备较高的气孔导度,气孔传导能力强,代谢功能旺盛。显著性分析结果表明,不同温度类型棉花之间都存在着显著性差异。
     4.不同基因型棉花的产量构成存在差异
     低温棉花比暖温棉花具有较低的蕾铃脱落率和较高的产量,两种温度类型棉花的皮棉产量和蕾铃脱落率均达到了显著性差异。
The crop canopy temperature and its related physiological characteristics of cotton are not only varied with the genotypes but also influenced with the climate and soil, and related with the high burliness and the productivity. In order to clarify the differences of the crop canopy temperature and its related physiological characteristics of the different genotypes, this paper focus on the study of the characters of the functional leaf senescence and the activated oxygen metabolism through the comparative study of the Liaomian 1 hao (served as reference), Zhongmian 41 hao, Paotai 1 hao,Yu422, Zhongmian 5629. We measured the co㎜ unity canopy temperature, the content of the chlorophyll and the Soluble protein, the activity of the SOD and MDA at the florescence under the same conditions. The results showed that the content of the chlorophyll and the Soluble protein of the cold type cotton decreased more slowly than that of the warm type cotton, with quite high activity of the SOD and NR but decrease to a quite small extent. The accumulation speed of the MDA of the cold type cotton is also more slowly than that of the warm type cotton. These results indicated that the canopy temperature can be a external signature of the metabolic function of the cotton, and can provide the theory basis for the cotton breeding in the field practice.
     1. Different genotypes of cotton canopy temperature differentiation phenomenon exists since the flowering period to the opening of a boll, different genotypes of cotton varieties Canopy temperature of a differentiation, some low, some 1982-98. CCRI 41 on the 1st and Fort temperature mostly in the baseline, the temperature is low. and Henan 422 and the 5629 Cotton temperature mostly in the base line, a higher temperature. Canopy temperature of the sequence changes in the significant results indicate that temperature-the difference between cotton have reached a significant level; the canopy temperature variation of the significant analysis, in the time-temperature difference between the differential has almost reached a significant or very significant level.
     2. Different genotypes of cotton physiological characteristics there is a difference of
     (1) Hypothermia cotton chlorophyll content in full bloom after consistently holders at a high level, its chlorophyll content with the growth period of degradation goes faster than cotton gently warm, This shows that the low-temperature cotton higher energy use efficiency, with the potential anti premature senility. Significant results show that the different temperatures between the type of cotton, CCRI 41, and Yu 422 and cotton between 5629 there were significant, But on the 1st and Fort yu 422 and cotton between 5629 has not reached a significant level.
     (2) Hypothermia cotton in various periods of soluble protein content higher than that of almost all warm cotton, in the late childbearing, soluble protein content decreased faster, but the low-temperature decrease in cotton slightly lower than warm cotton, again confirmed its metabolic function better than warm cotton. Significant results show that the different temperatures between the cotton-exist significant differences, Fort on the 1st and cotton difference between the 5629 is now at a very significant level.
     (3)Hypothermia cotton-cotton than at most times in maintaining high SOD activity, decline rates are relatively slow, Note hypothermia cotton has strong reduce reactive oxygen peroxide or other free radical damage to the membrane system, metabolic function better. Significant results show that the different temperatures between the type of cotton, CCRI 41, and Yu 422 and cotton between 5629 there were significant differences Fort on the 1st and cotton between 5629 there were significant differences But on the 1st Battery 422 between Henan and has not reached a significant level.
     (4)Hypothermia cotton nitrate reductase activity in each period remained relatively high activity, in the latter part of the decline in fertility rates are relatively slow, Note the low-temperature cotton than warm cotton with high nitrogen use capacity, high-yield basis. Significant results show that the different temperatures between the type of cotton, CCRI 41, and Yu 422 and cotton between 5629 there were significant differences But on the 1st and Fort yu 422 and cotton between 5629 did not reach significant levels.
     (5) Different genotypes of cotton leaves MDA with the passage of reproductive age have been showing a rising trend, Cotton low temperature increase is slow, less accumulation, warm cotton increased faster accumulation, Cotton showed low temperature membrane lipid peroxidation lesser extent, again confirmed its metabolic function better than warm cotton. Significant results show that the different temperatures between the type of cotton, CCRI 41, and Yu 422 and cotton between 5629 there were significant differences Fort on the 1st and Henan between 422 also reached a significant level, But Fort on the 1st and cotton between 5629 failed to reach a significant level.
     (6) In the opening of a boll, the temperature was mild hypothermia cotton cotton difference soluble sugar content increases, Cotton hypothermia maintain a higher soluble sugar content, Cotton proved that the low temperature than warm cotton in the late stronger with the osmotic adjustment capacity, better ability to resist adversity. Significant results show that the different temperatures between the type of cotton, CCRI 41 with cotton between 5629 there were significant differences, the other did not reach the significant level.
     3. Different genotypes of cotton stomatal characteristics of the existence of exchange differences
     (1) Hypothermia cotton in various periods of the transpiration rate is high in warm cotton. High transpiration rate is not only beneficial to the plant to lower the temperature, but also for the growth and development of plants provide more mineral nutrients, and for the smooth conduct photosynthesis provide a more adequate moisture, It will facilitate access to reverse CO2 significantly in vivo analysis of the results showed that the different temperatures between the type of cotton, CCRI 41, and Yu 422 and cotton between 5629 there were significant differences Fort on the 1st and cotton between 5629 up to a significant level, But on the 1st Battery 422 between Henan and not statistically significant level.
     (2) With the advance of reproductive age, low cotton WARM_TEMPERATE cotton leaf net photosynthetic rate and the difference increased, hypothermia cotton leaf net photosynthetic rate significantly higher than that of warm cotton, which increase the yield created very favorable conditions. Significant results show that the different temperatures between the type of cotton, CCRI 41, and Yu 422 and cotton between 5629 there were significant differences Fort on the 1st and cotton between 5629 up to a significant level, But on the 1st Battery 422 between Henan and not statistically significant level.
     (3) Hypothermia cotton than warm cotton in different periods of time have a higher stomatal conductance, stomatal conduction ability, Metabolic Function exuberant. Significant results show that the different temperatures between the cotton-exist significant differences.
     4. Different genotypes of cotton yield differences hypothermia cotton than warm cotton buds with a lower rate and higher exfoliated The yield, two temperature-cotton lint yield and Leiling expulsion rate reached a significant difference.
引文
[1] 喻树迅.我国棉花科技现状及发展趋势[J].中国棉花,2004,31(9):5-6
    [2] 喻树迅,魏晓文.中国棉花生产与科技发展[J]. 中国农业科技导报,2000,2(2):39-42
    [3] 喻树迅,魏晓文,赵新华.中国棉花生产与科技发展 2[J]. 棉花学报,2000,12(6):327-329
    [4] 黄滋康,崔读昌.中国棉花生态区划[J].棉花学报,2002,14(3):185-190
    [5] 马淑萍,蔡派,熊宗伟,项时康.中国棉花品质现状及其国际地位[J].中国棉花,2002,29(11):24-28
    [6] 黎鸿慧,李俊兰,崔淑芳,等.中国棉花科技进展现状及展望[J].农艺科学,2004,20(1):54-56
    [7] 杜珉.中国棉花产业现状的实证分析[J].中国农垦经济,2003,14(3):20-24
    [8] 汪若海.科技对发展我国棉花生产的重大作用[J].中国棉花,1997,24(4):2-4
    [9] 毛树春. WTO 与中国棉花生产技术进步研究[J].中国棉花,2002,29(1):2-9
    [10] 张取仁,施六林.棉花产量构成因素的相关和通径分析及其优质高产栽培途径[J].安徽农业科学,1997,25(3):225-226
    [11] 纪从亮,俞敬忠,刘友良,等.棉花高产品种的产量构成特点[J].江苏农业学报,2000,16(1):25-30
    [12] 王国玉.棉花渗透调节与蒸腾速度的口变化关系[J].棉花学报,1997,9(5):236-238
    [13] 李秉柏.棉花叶片蒸腾作用的研究.棉花学报[J].1995, 7(1):33-35
    [14] 赵有利.花铃期缺水对棉株体内碳氮含量的影响([J].植物生理学通讯, 1991, 27( 3) : 194- 196
    [15] Hons P'. M.et al. Applied phosphorus and potassium effects on the emergence, yield and planting seed quality of cotton. J-prod-agric, 1990, 3(3):337-340
    [16] 李蒙春.新疆棉花高产生理机理研究[J].新疆农业大学学报,1999,22(1):1-8
    [17] 徐邦发.高产棉花光合特性的初步研究[J].塔里木农垦大学学报,1997,9(1):5-9
    [18] 李人庆.麦后自播棉生物学产量,群体叶面积对皮棉产量的影响[J].江苏农业学报,1993, 9( 4):16-21
    [19] 李少昆等.北疆棉花光合、蒸腾作用基本特性与测试技术的探讨[J].石河子大学学报,1997, 1(2):91-96
    [20] 段留生,何钟佩. DPC 对棉花叶片发育及活性氧代谢的影响[J].中国棉花学报,1996, 8(6): 312-315
    [21] 李少昆,陈大茹,肖璐.不同时期干旱胁迫对棉花生长和产量的影响[J].石河子大学学报自然科学版,1999, 3(3):178-182
    [22] Crafts-B randner SJ, Egli D B. Sink removal and leaf senescence in Soybean[J].Plans Physio, 1987, 85:662-666
    [23] 喻树迅,黄祯茂,姜瑞云.几个短季棉品种叶片衰老特征的研究[J].棉花学报,1994, 6(增刊):31-35
    [24] 喻树迅,范术丽,原日红.清除活性氧物类对棉花早熟不早衰特性的遗传影响[J] .棉花学报,1999, 11(2): 100-105
    [25] 沈法富,喻树迅,范术丽.棉花叶片衰老过程中激索和膜脂过氧化的关系[J].植物生理与分子生物学学报,2003, 29(6):589-592
    [26] FellerU K , e1ai Leaf proleolylic actvities and senescence during grain developmend of field-grown[J].Plans Physio, 1997, 59:290-294
    [27] 沈法富,喻树迅,范术丽.不同短季棉品种生育进程中主茎叶内源激素的变化动态[J].中国农业科学,2003,36(l9):1014-1019
    [28] 董志强,舒文华,翟学军.棉株不同器官中几种内源激素的变化及相关关系[J].核农学报,2005,19(1):62-67
    [29] Tanner C. B. Plant temperature. Agron J.1963,55:210-211
    [30] 蔡焕杰,康绍忠.用冠层温度计算作物缺水指标的一种简化模式[J].水利学报,1996,(5):44-49
    [31] 董振国.农田作物冠层温度初步研究一以冬小麦、夏玉米为例[J].生态学报,1984, 4(2):21-25
    [32] 董振国.作物层温度作为植物缺水指标的初步分析[J].生态科学,1985,(2):30-32
    [33] 董振国.作物层温度与土壤水分的关系[J].科学通报,1986,(8):18-20
    [34] 刘增进,柴红敏,蔡焕杰.用冠层温度定量诊断作物根系活动层[J].中国农村水利水电,2003,(4):3-5
    [35] 刘瑞文,董振国.冠层温度和气温的差与冬小麦生长的关系[J].生态学报.1993,13(4):377-379
    [36] 石培华,冷石林等.冠层一气温差监测和诊断冬小麦农田水分[J].中国农业气象,1995,16 (2):13-15
    [37] 石培华,梅旭荣等.冠层温度与冬小麦农田生态系统水分状况的关系[J].应用生态学报,1997, 8(3):332-334
    [38] Bhosale A M; Jadhav A S; Bote N L; Varshneya M C. Canopy temperature as an indicator for scheduling irrigation for wheat.Journal of Maharashtra Agricultural Universities[J]. 1996 , 21(1):106-109
    [39] Fouche PS. Low altitude aerial infrared surveillance for estimating water stress in soybeans and wheat.Applied-Plant-Science[J]. 1995, 9(1):1-6
    [40] 董振国,于沪宁.农田作物层环境生态[M].北京:中国农业出版社,1995
    [41] Clawson KL and Blad,BL,Infrared thermometry for scheduling irrigation of corn.Agron. [J]. No.74, pp. 311-316,1982.
    [42] Berliner, P., Oosterhaus DM and Green GC.Evaluation of the infrared thermometer as a crop water detector. Agric. For. Meteoro[J]l,No.31, pp.219-230,1984.
    [43] Idso, SB,Jackson, RD and Reginato, RJ., Remote sensing of crop yields. Science[J], No. 196, pp. 19-25,1977.
    [44] Jackson. R D Reginato, RJ. and Idso, SB., Wheat canopy temperature: a practical tool for evaluating water requirments.water Resour. Res., No. 13, pp[J]. 651-656,1977.
    [45] Idso, SB, Jackson, RD, etal, Normalizing the stress-degree-day parameter for enviromental variability. Agric. Meteorol., No. 24, pp[J]. 45-55,1981.
    [46] Jackson, RD, Idso SB etal. Canopy temperature as a crop water stress indicator. Water Resour Res., No.17,pp.1133-1138,1981.
    [47] Singh N, Singh P, Narang R S, et al. Water relations of wheat under different soil water conditions.Journal of Research. Punjab Agri.Uni.1992, 29(4): 438-442
    [48] 刘学著.冬小麦冠气温差及其与叶水势的相关性研究[J].作物学报,1995,21(5):528-532
    [49] 刘学著,张连根.不同水分胁迫条件下冬小麦冠层温度日变化差异性研究[J].北京农业大学学报,1994.20(2):229-232
    [50] Bishnoi O P; Mohan Singh; Surender Singh; Singh M; Singh S Behaviour of observed agro-meteorological stress indices with soil-water availability in wheat (Triticum aestivum). Indian Journal of Agronomy. 1994, 39(3): 406-409
    [51] Blum A; Shpiler L; Golan G; Mayer J. Yeld stability and canopy temperature of wheat genotypesunder drought-stress[J].Field Crops Research. 1989,22 (4):289-296
    [52] Reynolds M P, Fischer R A,Balota M, Delgado M I B. Amani I.Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions.[Workshop paper]. Australian Journal of Plant Physiology (Australia).1994, 21(6):717-730.
    [53] Reynolds M P; Nagarajan S; Razzaque M A; Ageeb OAA.Using canopy temperature depression to select for yield potential of wheat in heat stressed environments. Mexico, DF (Mexico). CI ㎜ YT. 1997,51:35-36
    [54] Golestani A S; Assad M T.Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica. 1998,103 (3):293-299
    [55] Rashid A; Stark J C; Tanveer A; Mustafa T. Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat.Journal of Agronomy and Crop Science. 1999. 182 (4): 231-237.
    [56] Saadalla M M, Alderfasi A A. Infrared-thermal sensing as a screening criterion for drought tolerance in wheat.Annals of Agricultural Science .Cairo. 2000, 45(2):421-437;
    [57] Alderfasi A A. Evaluation of certain traits associated with drought resistance in wheat under field conditions.Annals of Agricultural Science. Cairo. 2001, 46(1):71-83
    [58] 程旺大,赵国平,姚海根,张国平.冠层温度在水稻抗旱性基因型筛选中的应用及其测定技术[J].植物学通报,2001, 18(1):70-75
    [59] Balota M.; Amani l.; Reynolds M P; Acevedo E. Evaluation of membrane thermostability and canopy temperature depression as screening traits for heat tolerance in wheat. Mexico, DF (Mexico). CI ㎜YT 1993,26:15-18
    [60] Reynolds M P. Su ㎜ ary of data from the 1 st and 2nd international heat stress genotype experiments.Centro Internacional de Mejoramiento de Maiz y Trigo (CI ㎜ YT), Mexico, DF (Mexico). CI ㎜ YT. 1994; 184-192
    [61] Hede A R; Skovmand B; Reynolds M P; Crossa J; Vilhelmsen A L; Stolen O. Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces.Genetic Resources and Crop Evolution. 1999,46(1):37-45
    [62] Reynolds M P; Singh R P; Ibrahim A; Ageeb O A A; Larque Saavedra A; Quick J S; Braun H J; Altay F; Kronstad W E ,Beniwal S P, McNab A. Evaluating physiological traits to complement empirical selection for wheat in warm environments,Wheat: prospects for global improvement. Proceedings of the 5th International Wheat Conference, Ankara, Turkey, 10-14 June 1996. 1997,143-152; Developments in Plant Breeding Volume 6
    [63] Rees D; Sayre K D; Acevedo E; Nava Sanchez T; Lu Z; Zeiger E; Limon A Canopy temperatures of wheat; Relationship with yield and potential as a technique for early generation selection. Mexico, DF (Mexico). CI ㎜ YT. 1993,
    [64] Amani I; Fischer R A; Reynolds M P Canopy temperature depression associated with yield of irrigated spring wheat cultivars in a hot climate.Journal of Agronomy and Crop Science. 1996,176(2):119-129
    [65] Fischer R A;Rees D; Sayre K D;Lu Z M; Condon A G; Saavedra A L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop-science(USA). 1998,38(6):1467-1475.
    [66] Reynolds M P; Pfeiffer W H, Royo C, Nachit M M, Fonzo N D, Araus J L. Applyingphysiological strategies to improve yield potential.Durum wheat improvement in the Mediterranean region. new challenges.Proceedings of a seminar. Zaragoza, Spain. 2000, (40):95-103
    [67] Eyal Z, Blum A. Canopy tempertrue as a correlative measure for assessing host response to Septoria tritici blotch of wheat. Plant Disease.1989, 73 (6):468-471
    [68] Choudhary O P; Bajwa M S; Josan A S. Tolerance of wheat and triticale to sodicity. Crop-Improvement.1996,23 (2):238-246
    [69] 张嵩午.小麦温型现象[J].应用生态学报,1997,8(5):471-474.
    [70] Garrity D.P.,O.toole J.C. Selection for reproductive stage drought avoidance in rice using infrared thermoetry.Agronomy Journal,1995,87:773-779.
    [71] Kirkham M.D.,Suksayretrup K.,WassomC.E.,etal.Canopy temperature of drought-resistance and drought sensitive genotypes of maize. Maydica, 1984,24:287-303.
    [72] Ranalli P.,Candilo M.Di.,Bagatta M.,etal.Drought tolerance screening for potato improvement.Plant Breeding,1997,116(3):290-292.
    [73] 张嵩午,张宾,王长发.不同基因型小麦与绿豆冠层低温现象研究[J]. 中国生态农业学报.2006,14(1):45-48.
    [74] 王长发,张嵩午.冷型小麦表观性状研究[J],西北农业学报,2001,10(1) :15-19.
    [75] 张嵩午.小麦冷域问题[J].中国农业气象,1991,12(2):1-6.
    [76] 张嵩午.冷型小麦的概念特性未来[J]. 中国科学基金,2006,4:210-214.
    [77] 张嵩午.小麦温型现象研究[J].应用生态学报,1997,(8):471-474.
    [78] 张嵩午,宋哲民,曹翠兰.小麦冷温群体研究[J].中国农业气象,1995,16(4):1-5.
    [79] 张嵩午,王长发.K 型杂交小麦 901 的低温特征[J].中国农业科学,1999,32(2):47-52.
    [80] 张嵩午,王长发.低型小麦及其生物学特性[J].作物学报,1999,25(5):608-615.
    [81] 王长发,张嵩午. 低型小麦表观性状研究[J].西北农业学报,2001,10(1):79-83.
    [82] 刘党校,王长发,冯佰利.低温型小麦研究进展[J]. 西北农业学报,2004,13(1):109-113.
    [83] 张嵩午.小麦群体的第二热源及其增温效应[J].生态学杂志,1990,9(2):1-6.
    [84] 张嵩午,苗芳,王长发.小麦低温种质及其叶片的光合性能和结构特征[J].自然科学进展,2004,14(2):179-184.
    [85] 张嵩午,王长发,冯佰利,等.灾害性天气下小麦低温种质的性状表现[J].自然科学进展,2001,11(10):1068-1073.
    [86] 张嵩午,宋哲民.冷型小麦及其育种学意义[J].西北农业大学学报,1996,24(1):14-17.
    [87] 张嵩午,王长发,周春菊等.冠层温度中间型小麦及其性状特征[J].麦类作物学报, 2000,20(3):40-45.
    [88] 张嵩午,冯佰利,王长发等. 小麦冷源及其在干旱条件下的适应性[J]. 生态学报,2003,23(12):2558-2564.
    [89] 张嵩午,王长发,冯佰利.冠层温度多态性小麦的性状特征[J].生态学报,2002,22(9):1414-1419.
    [90] 王长发,张嵩午.冷型小麦叶片光合特性研究[J].西北农业学报,2000,9(6):1-5.
    [91] 冯佰利,高小丽,赵琳等.干旱条件下小麦冠层温度及其性状的关联研究[J]. 生态学杂志,2005,24(5):508-512
    [92] 张嵩午,王长发,周春菊.冷型小麦的表观特征和代谢功能的关联[J].华北农学报,1999,14(3):42-48.
    [93] 王长发.冷型小麦的冷温特征研究[D].西北农业大学.1999 届攻读博士学位研究生学位论文,陕西杨凌 1999.
    [94] 王长发,张嵩午.冷型小麦旗叶衰老和活性氧代谢特性研究[J]. 西北植物学报,2000,20(5):727-732
    [95] 冯佰利,赵琳,高小丽等.干旱条件下冷型小麦的生理特性分析[J].西北农林科技大学学报,2005,33(3):38-42
    [96] 慕小倩,张嵩午,蒋选利等.冷型小麦旗叶的形态解剖学研究,西北植物学报,1998,18(2):267-269.
    [97] 苗 芳.冷型小麦器官的显微和超显微结构特征[J]杨凌:西北农林科技大学博士毕业论文,2003.
    [98] 苗芳,张嵩午.小麦植株发育过程中顶三叶结构的变化特征[J].西北农林科技大学学报(自然科学版),2004,32(10):15-18.
    [99] 苗芳,冯佰俐,周春菊等.冷型小麦叶片显微结构的一些特征[J].作物学报,2003,29(1),155-156.
    [100] 苗 芳, 张嵩午, 王长发等. 低温小麦种质叶片结构及某些生理特性[J]. 应用生态学报,2006,17(3):408-412
    [101] 张嵩午,王长发.小麦潜在库容研究[J].西北农业学报.1999, 8(2):16-19
    [102] 张嵩午,王长发,周春菊等.冠层温度中间型小麦及其性状特征[J].麦类作物学报,2000, 20(3):40-45
    [103] 张嵩午,王长发,冯佰利等.冠层温度多态型小麦的性状特征[J].生态学报,2002, 22 (9):1414-1419
    [104] 张嵩午,王长发.麦冷源及其性状特征的研究[J].中国农业科学,2001,34(1):40-45
    [105] 王爱国,罗广华,邵从本.大豆种子超氧化物歧化酶的研究[J].植物生理学报,1983, 9(1):77
    [106] Heath R L, Packer L.Photoperoxidation in isolated chloroplasts:1.Kinetics and stoichiometry of fatty acid peroxidation. ArcH Biochem Biophys,1968,125:189
    [107] 西北农业大学.基础生物化学实验指导[M].西安:陕西科学技术出版社,1986,66
    [108] 高俊凤.植物生理学实验技术[M].世界图书出版社.2000.
    [109] 胡小平,王长发. SAS 基础及统计实例教程[M]. 西安:地图出版社,2001:149-198.
    [110] 李文才,林振武,汤玉玮.棉花不同品种的硝酸还原酶活力[J].作物学报,1986,12(2):95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700