高速GMAW驼峰焊道形成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速GMAW作为一种高效电弧焊焊接工艺,因其设备成本低、操作简单、适应性强、焊接生产率高,具有广泛的应用前景。但大幅度提高焊接速度时,会产生咬边、驼峰等焊道成形缺陷,严重制约着该工艺在实际生产中的应用。为抑制驼峰焊道,近年来针对驼峰缺陷形成机理开展了一些研究,取得了一定进展。但是,仍存在很多问题需要进一步深入研究和解决,主要表现在:(1)对驼峰焊道形成机理的研究大部分仍处于定性描述阶段,缺乏系统的、理论的解释和定量描述;(2)有关驼峰焊道的数学模型还不能反映高速焊接过程的实质;(3)缺乏对高速焊熔池三维形貌及温度场动态变化情况的定量分析。因此,建立反映高速GMAW焊接工艺特点的数学模型,定量描述和分析驼峰焊道的形成机理及其主要影响因素,对于抑制驼峰焊道的产生、研发高速GMAW焊接工艺与设备、并推广和应用高速GMAW焊接工艺,都具有重要的理论意义和工程实用价值。
     本文建立了高速GMAW焊接熔池瞬时热物理行为的数值分析模型。根据高速GMAW焊接熔池细长和表面变形严重的实际情况,采用贴体坐标系来处理复杂的物理边界,推导相应的离散化控制方程组,利用附加热源法处理能量边界条件。为减小数值传递造成的误差、提高计算速度,采用二次抛物线插值法传递非均匀动态网格中前后时刻的表面变形值和温度值。采用模块化结构设计,增强程序的可读性和可维护性。
     针对高速GMAW焊接过程的主要特点之一,考虑熔池后向液体流对熔池表面变形的影响,推导出含有后向液体流动能项的熔池表面变形方程。在估算出熔池最大流速的基础上,对熔池内流体速度分布做适当的简化描述,构造恰当的流速分布函数。计算结果表明,动能较大的后向液体流极大地改变了熔池受力情况,导致熔池尾部出现液体堆积和熔池中部出现液态薄层,而这两者又是导致驼峰焊道形成的关键因素。
     基于高速GMAW焊接过程的另一主要特点,考察不同熔滴热焓分布模式对驼峰焊道形成的影响程度。提出了较为符合高速GMAW焊接过程特点的熔滴热焓分布模式,即,在熔池前部凹陷区,熔滴热焓分布在熔池底部液体薄层内;在熔池尾部,熔滴热焓平均分布在整个液体堆积层内。计算结果表明,该分布模式能够反映驼峰焊道形成过程中熔池动态变化的特点及其规律。
     利用所建立的模型,对高速GMAW驼峰焊道形成的完整过程(包括形成表面变形严重的熔池、熔池长大(伴随驼峰隆起)、熔池中部液态薄层提前凝固、尾部液态金属逐渐凝固四个过程)进行数值模拟。通过数值计算发现,熔池中部液态薄层得不到足够的热能(包括熔滴热焓和电弧热)是其先于尾部液态金属凝固的主要原因;而此处液态薄层率先凝固意味着一个驼峰即将形成、同时另一驼峰开始孕育的周期过程。得出了不同焊接工艺参数下的工件上表面、纵截面(y=0)温度场以及焊道三维形状的瞬时演变过程,定量分析了驼峰焊道的形成过程以及焊接工艺参数的影响。
     开展了高速GMAW焊接工艺实验,数值计算结果与实验值基本吻合,所建模型能够反映高速GMAW焊接过程的主要特点及规律。基于数值分析结果,提出了抑制驼峰焊道的工艺措施,经实验证明效果明显。
The high-speed gas metal arc welding (GMAW) has great potential in application because of its low cost, easiness to use and high productivity. However, high welding speed usually brings some unusual problems, such as undercutting, humping, which seriously restrict its application in practical manufacture. In order to prevent the humping defects, many efforts have been done to investigate the mechanism of humping formation in recent years, and great progresses have been made. But many problems still exist, for example: (1) Humping formation mechanism is still analyzed qualitatively, lack of quantitative explanation. (2) Many mathematical models can not reflect the essential process of high-speed welding quantificationally because they are based on the oversimplification of the weld pool shape. (3) The study of three-dimensional geometry of weld pool and dynamic temperature fileds for humping bead is rare. Thus, based on characters of high-speed GMAW process, mathematical models are needed to be further developed to describe the humping formation mechanism quantificationally. This is of great theoretical and practical significances for optimizing welding parameters and popularizing high-speed GMAW.
     The mathematical models are developed to investigate the dynamic physical behaviors during high-speed GMAW. Considering the serious surface deformation and long shape of weld pool, body-fitted coordinate is used to deal with complex physical boundaries, and the governing equations are discretized by this method. The additional source term method is employed to solve energy boundary conditions. To reduce error evoked by data transfer and improve calculation efficiency, parabola interpolation method is adopted to inherit former data in non-uniform dynamic grids. Modular structure is adopted to improve the readability and maintainability of programs.
     A new surface deformation equation is deduced by considering influence of backward flowing liquid which is one of the major characters during high-speed GMAW. After simply calculating the maximum liquid velocity, an appropriate distribution of liquid speed is proposed based on experimental observation to simplify simulation process. The results show that this backward liquid obviously changes the force acting on weld pool, which causes metal accumulated at rear of weld pool and the thinner liquid layer occurred in the middle of weld pool. Moreover, this metal accumulation and thinner liquid layer are the key factors contributing to humping bead.
     Based on another major character of high-speed GMAW, different modes for droplet heat content distribution are compared and studied. Finally, an appropriate mode is proposed as follows, droplet heat content is distributed in bottom layer of gouging region, and is averagely distributed in the whole layer at rear of weld pool. The results show that this mode can reflect the forming and evolving of weld pool in high-speed GMAW.
     By using the developed models, the whole process of humping bead formation(including forming serious deformed weld pool, weld pool and humping growth, thinner layer early solidification, accumulated metal solidification) is numerical simulated. It is found that lack of droplet heat and arc heat in the middle of pool is the major reason for early solidification for thinner layer. And early solidification also means that a humping will be formed and a new humping will be gestated. It is a periodic process. The temperatures fileds on top surface and in longitudinal section of workpiece, transient growth of 3-D shape of weld bead are obtained under different welding parameters to quantificationally analyses humping bead formation process and the influence of welding parameters.
     Experiments are carried out, and the predicted results are in good agreement with measured data. It means that those models developed above can reflect major characters of high-speed GMAW. Based on numerical analysis, the methods of restraining humping bead are proposed, and the experimental results show they work well.
引文
[1]Rehfeldt D,Polte T,Franzbecker H,etc.Application potential of high efficiency welding with flat wire[J].IIW Doc.XII-1723-02(2002) 63.
    [2]陈裕川.高效MAG焊的新发展(上)[J].机械工人(热加工),2001,(11):3-5.
    [3]陈裕川.高效MAG焊的新发展(下)[J].机械工人(热加工),2001,(12):5-6.
    [4]程宁.船舶行业高效焊接材料的推广与应用[J].电焊机,2004,32(4):31-32.
    [5]庄建清.高效MAG焊的应用[J].工艺与应用,1999,128(5):29-32.
    [6]殷树言,卢振洋,黄鹏飞等.高效化焊接原理与特征[A].高效化焊接国际论坛论文集.2002:2237-2243.
    [7]Michie K,Backman S and Ogunibiyi T.Twin-wire GMAW process,characteristics and applications[J].Welding Journal,1999,78(5):31s-34s.
    [8]关桥,林尚扬.我国制造业焊接生产现状的分析与发展建议[A].熔焊新技术及应用论文集,2003,11:1-15.
    [9]Harwig D and Gordon R.Welding research trends in the United States[C].Proc.of the 6~(th) International Conference on Trends in Welding Research,ASM International,2003:995-1005.
    [10]Lancaster J F.The physics of welding(First edition)[M].Oxford:Pergamon Press,1984:268-280.
    [11]Metcalfe J C,Quigley M B C.Keyhole stability in plasma arc welding[J].Welding Journal,1975,54(11):401-404.
    [12]董春林,吴林,邵亦陈.穿孔等离子弧焊发展历史与现状[J].中国机械工程,2000,11(5):577-581.
    [13]Zhang Y M,Zhang S B and Jiang M.Keyhole double-sided arc welding process[J].Welding Journal.2002,81(11):248s-255s.
    [14]Stefan Trube.LINFAST~(?)概念的高速MAG焊[J].国外机车车辆工艺,2001,(4):1-5.
    [15]Gratzke U,Kapadia P D,Dowden J,etc.Theoretical approach to the humping phenomenon in welding processes[J].Journal of Physics D:Applied Physcis. 1992,25(11):1640-1647.
    [16]殷树言.高速CO_2焊成形机理与成形稳定性研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1999:20-41.
    [17]Sabage F,Nipples E F and Agusa K.Effect of arc force on defects formation in GTA welding[J].Welding Journal,1979,58(7):212s-224s.
    [18]Nguyen T C,Weckman D C,Johnson D A.The humping phenomenon during high speed gas metal arc welding[J].Science and Technology of Welding and joining,2005,10(4):447-459.
    [19]Olsson R.High-speed Welding Gives a Competitive Edge[J].Welding Review International,1995,14(8):128-131.
    [20]Tusek J.Raising Arc Welding Productivity[J].Welding Review International,1996,15(8):102-105.
    [21]殷树言,徐鲁宁.熔化极气体保护焊的高效化研究[J].焊接技术,2000,29(12):4-7.
    [22]徐鲁宁,殷树言,卢振洋.Time焊工艺与高效MAG焊的发展[J].电焊机,2005,30(5):3-7.
    [23]Matthews J R,Porter J F,Church J,et al.A evaluation of T.I.M.E.welding of HY80 plate[J].Welding Journal.1991,70(2):35s-41s.
    [24]徐鲁宁,殷树言,卢振洋,等.T.I.M.E.焊工艺特点及发展现状[J].焊接,1998,(9):2-7.
    [25]徐鲁宁,殷树言,卢振宁,等.提高焊丝熔敷率的实验研究[J].焊接,2001,(3):16-18.
    [26]罗键.新型厚板钢结构大电流高效T.I.M.E.焊接技术的研究与应用[R].上海交通大学博士后研究工作报告,2001.
    [27]薛小怀.T.I.M.E.焊工艺、接头组织与性能研究[R].上海交通大学博士后研究工作报告,2003.
    [28]汪忠,徐绪炯.高速焊---富有前景的高效高性能MAG焊接[A].高效化焊接方法、设备、材料的理论与应用研讨会论文集[C],珠海,2002:40-48.
    [29]张毅,董俊慧.高效化焊接方法[J].内蒙古石油化工.2006,(1):28-36.
    [30]殷树言,黄鹏飞,王军.高效熔化极气体保护焊的发展概况[J].机械工人 (热加工).2001,(9):2-3.
    [31]卢振洋,黄鹏飞,蒋观军等.高速熔化极气体保护焊机理及工艺研究现状[J].焊接,2006,(3):16-20.
    [32]史耀武主编.中国材料工程大典,第22卷[M].北京:化学工业出版社,2005.8.
    [33]魏占静.先进的TANDEM高速高效MIGMAG双丝焊技术[J].机械工人(热加工),2002,(5):22-37.
    [34]Hinkel J E,Forsthoefel F W.High current density submerged arc welding with Twin electrodes[J].Welding Journal,1976,55(3):175-180.
    [35]冯标,李春润,刘连增.热丝填充埋弧焊最佳工艺参数确定[J].焊接,1994,(7):9-12.
    [36]张绍庆.双丝埋弧焊在螺旋焊管中的应用[J].焊管,1998,21(6):12-15.
    [37]林文彬,葛玉宏,吕世俊等.X70直缝钢管4丝埋弧焊接工艺试验[J].焊接技术,2002,31(2):24-25.
    [38]李桓,张宝红,孙国夫等.热丝填充埋弧焊原理及应用[J].焊接学报,1998,19(1):25-28.
    [39]李立英.双芯单弧电弧焊工艺研究[D].济南:山东大学硕士学位论文,2002.
    [40]Michie K,Blackman S.Twin-wire GMAW:process characteristics and applications[J].Welding Journal,1999,78(5):31-34.
    [41]Stefan Trube,etc.MAG-HP welding with the LINFAST~(?) concept[R].Reports on Science and Technology,1998,(60):15-21.
    [42]郝福江,王玉松,李亚群.弧焊机器人高速焊接工艺改进[J].电焊机,2003,133(11):52-53.
    [43]曹彪,黄增好,曾敏等.波控短路过渡高速焊弧长模糊控制[J].焊接学报,2005,(6):17-20.
    [44]郑启光,秦应雄,朱蕴策等.汽车剪裁板的激光高速拼焊实验研究[J].光学技术,2002,25(5):422-426.
    [45]Bradstreet B J.Effect of Surface Tension and Metal Flow on Weld Bead Formation[J].Welding Journal,1968,47(7):314s-322s
    [46]Savage W F,Nippes E F,Agusa K.Effect of arc force on defect formation in GTA welding[J].Welding Journal,1979,58(7):212s-224s.
    [47]Mills K C,Keene B J.Factors affecting variable weld penetration[J].International Materials Review,1990,35(1):185-216.
    [48]Yamamoto T,Shimada W.A study on bead formation in high speed TIG arc welding[A].Proc.2~(nd) Int.Symposium on Advanced welding technology[C],Osaka,1975,Japan Welding Society,Paper 2-2-(10).
    [49]Mendez P F,Eager T W.Penetration and Defect Formation in High-Current Arc Welding[J].Welding Journal,2003,82(10):296s-306s.
    [50]Nguyen T C,Weckman D C,Johnson D A,et al.High speed fusion weld bead defects[J].Science and Technology of Welding and Joining,2006,11(6):618-632.
    [51]#12
    [52]Choi H W,Farson D F,Cho M H.Using a Hybrid Laser Plus GMAW Process for Controlling the Bead Humping Defect[J].Welding Journal,2005,85(8):174s-179s.
    [53]胡志坤,武传松.高速MAG电弧焊驼峰焊道产生过程的实验研究[J].金属学报,2008,44(12):1445-1449.
    [54]Hu Zhikun,Wu Chuansong.Experimental determination of the critical welding speed in high speed MAG welding[J].China Welding,2008,17(2):15-19.
    [55]胡志坤.高速电弧焊工艺的研究现状[J].电焊机,2008,38(7):32-35.
    [56]胡美娟.12mm厚TC4钛合金板电子束焊接温度场应力场三维有限元数值模拟[D].西安:西北工业大学硕士学位论文,2005.
    [57]武传松,孙俊生,高进强.焊接过程计算机模拟的新进展[A].计算机在焊接中的应用技术交流会论文集[C].2000,11:20-29.
    [58]宋天虎.先进制造技术的发展与焊接技术的未来[A].第八次全国焊接会议论文集(第一册)[C].北京:机械工业出版社,1997:1-17.
    [59]Rosenthal D.Mathematical theory of heat distribution during welding and cutting[J].Welding Journal,1941,20(5):-220-234.
    [60]H.H雷卡林.焊接热过程计算[M].北京:中国工业出版社,1958:52-120.
    [61]Plaey Z,Hibbert H D.Computation of temperature in actual weld design[J].Welding Journal,1975,54(11):385s-392s.
    [62]Krutz G.W,Segerlind L J.Finite element analysis of welded structures[J].Welding Journal,57(7):211s-216s.
    [63]Andrews J G,Craine R E.Fluid flow in a hemisphere induced by a distributed source of current[J].Journal of Fluid Mechanics,1978,84(2):550-521.
    [64]Sozou C,Picketing W M.Magnetohydrodynamic flow due to the discharge of an electric current in a hemispherical container[J].Journal of Fluid Mechanics,1976,73(4):641-650.
    [65]Attthey D R.A mathematical model for fuid flow in a weld pool at high currents[J].Journal of Fluid Mechanics,1980,98(4):787-801.
    [66]Oreper G M,Eagar T W,Szekely J.Convection in arc weld pool[J].Welding Journal,1983,62(11),307s-312s.
    [67]Oreper G M,Szekely J,Eager T W.The role of transient convection in the melting and solidification in arc weldpools[J].Metallurgical Transactions B,1986,17(12):735-744.
    [68]Oreper G M,Szekely J.A comprehensive representation of transient weld pool development in spot welding operations[J].Metallurgical Transactions A,1987,18(6):1325-1332.
    [69]Oreper G M,Szekely J.Heat-and fluid flow phenomena in weld pools[J].Journal of Fluid Mechanics,1984,147(10):53-79.
    [70]Kou S,Wang Y H.Weld pool convection and its effect[J].Welding Journal,1986,65(3):63s-70s.
    [71]Kou S,Wang Y H.Computer simulation of convection in moving arc weld pools[J].Metallurgical Transactions A,1986,17(12):2271-2277.
    [72]Kou S,Sun D K.Fluid flow and weld penetration in stationary arc welds[J].Metallurgical Transactions A,1985,16(2):203-213.
    [73]Pardo E,Weckman D C.Prediction of weld pool and reinforcement dimensions of GMA welds using a Finite-Element Model[J].Metallurgical Transactions B,1989,20(10):937-947.
    [74]Goldak J,Bibby M,Chakravarti A.A new finite element model for welding heat sources[J].Metallurgical Transactions B,1984,15(6):299-305.
    [75]Goldak J,Bibby M,Moore J,est.Computer modeling of heat flow in welds[J].Metallurgical Transactions B,1986,17(9):587-600.
    [76]Tekriwal P,Mazumder J.Finite element analysis of three-dimensional transient heat transfer in GMA welding[J].Welding Journal,1988,67(7):150s-156s.
    [77]Zacharia T,Eraslan A H,Aidun D K.,Modeling of Non-Autogenous Welding[J].Welding Journal,1988,67(1),18s-27s.
    [78]Zacharia T,Eraslan A H,Aidun D K.,Modeling of Autogenous Welding[J].Welding Journal,1988,67(3),53s-62s.
    [79]Zacharia T,David S A,Vitek J M.Effect of evaporation and temperature-dependent material prosperities on weld pool development[J].Metallurgical Transactions B,1991,22(4):243-257.
    [80]Zacharia T,David S A,Vitek J M,et al.Surface temperature distribution of GTA weld pools on Thin-Plate 304 stainless steel[J].Welding Journal,1995,74(11):353s-362s.
    [81]Kraus H G.Surface temperature measurements of GTA meld pools on thin-plate 304 Stainless steel[J].Welding Journal,1989,68(3):84s-91s.
    [82]Kraus H G.Experimental Measurement of Stationary SS 304 SS316L and 8630GTA Weld Pool Surface Temperatures[J].Welding Journal,1989,68(7):269s-279s.
    [83]Tsao K C,Wu C S.Fluid flow and heat transfer in GMA weld pools[J].Welding Journal.1988,67(3):70s-75s.
    [84]Wu C S.Computer simulated of three-dimensional convection in traveling MIG weld pools[J].Engineering Computation,1992,9(5):529-537.
    [85]武传松,L.Dorn.熔滴冲击力对MIG焊接熔池表面形状的影响[J].金属学报,1977,33(7):774-780.
    [86]曹振宁.TIG/MIG焊接熔透熔池流场与热场的数值分析[D].哈尔滨:哈尔滨工业大学工学博士学位论文,1993.
    [87]Kumar S,Bhaduri S C.Three-dimensional finite element modeling of gas metal arc welding[J].Metallurgical Transactions B,1994,25(6):435-441.
    [88]Kim J W,Na S J.A study on the three-dimensional analysis of heat and fluid flow in gas metal arc welding using boundary-fitted coordinates[J].Transactions of ASME,1994,116(2):78-85.
    [89]Heiple C R.Mechanism for minor element effect on GTA fusion zone geometry[J].Welding Journal,1982,61(4):97s-102s.
    [90]孙俊生.电弧热流与熔滴热焓量分布模式对熔池行为的影响[D].济南:山东工业大学博士论文,1998.
    [91]Choo R T C,Szekly J.The possible role of turbulence in GTA weld pool behavior[J].Welding Journal.1994,73(2):25s-31s.
    [92]Choo R T C.Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool[J].Welding Journal,1990,69(6):346s-361s.
    [93]Schiaffino S,Sonin A A.Formation and stability of liquid and molten beads on a solid surface[J].Journal of Fluid Mechanics,1997,343(1):95-110.
    [94]Mendez P F,Eagar T W.Estimation of the characteristic properties of the weld pool during high productivity arc welding[C].Mathematical Modeling of weld phenomena 5,London,UK,2001:67-94.
    [95]Soderstrom E,Mendez P F.Humping mechianisms present in high speed welding[J].Science and Technology of Welding and Joining,2006,11(5):572-579.
    [96]Nakata.Dynamic Characteristics of the Molten Pool Shape in TIG Arc Welding Process of Thin Sheet[C].IIW-DOC.212-654-86.
    [97]Kumar A,Debroy T.Toward a unified model to prevent humping defects in gas tungsten arc welding[J].Welding Journal,2006,85(12):292s-304s.
    [98]Cho M H.Numerical simulation of arc welding process and its application[D].Ohio State:PhD thesis of the Ohio State University.
    [99]Nguyen T C,Weckman D C,Johnson D A.Prediction onset of high speed gas metal arc weld bead defects using dimensional analysis techniques[J].Science and Technology of Welding and Joining,2007,12(7):634-648.
    [100]Cho M H,Farson D F.Simulation study of a hybrid process for the prevention of weld bead hump formation[J].Welding Journal,2007,86(9):253s-262s.
    [101]Cho M H,Lim Y C,Farson D F.Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape[J].Welding Journal,2006,85(12):271s-283s.
    [102]Choi H W,Farson D F,Cho M H.A hybrid laser+GMAW process for control of the bead humping defect[J].Welding Journal,2006,85(8):174s-179s.
    [103]Cho M H,Farson D F.Understand bead hump formation in gas metal arc welding using a numerical simulation[J].Metallurgical and Materials transactions B,2007,38(2):305-319.
    [104]冯雷.高速CO_2气体保护焊研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1999.
    [105]冯雷,陈树君,殷树言.高速焊接时焊缝咬边的形成机理[J].焊接学报,1999,20(2):16-21.
    [106]Newbery A P,Grant P S,Neiser R A.The velocity and temperature of steel droplets during electric arc spraying[J].Surface and Coating Technology,2005,195(1):91-101.
    [107]Tusek J.Mathematical modeling of melting rate in twin-wire welding[1].Journal of Materials Processing Technology,2005 100(1):250-256.
    [108]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.8.
    [109]Nguyen T C.Weld defects in high-speed gas metal arc welding[D].Waterloo:PhD thesis of the University of Waterloo,2005.
    [110]武传松,曹振宁,吴林.TIG焊接熔池表面变形对流场与热场的影响[J].金属科学与工艺,1992,11(3&4),108-113.
    [111]武传松.焊接热数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [112]赵朋成.全熔透TIG焊接熔池形态瞬时行为的数值模拟[D].济南:山东工业大学博士学位论文,2003.
    [113]Tsai N S,Eager T W.Distribution of the heat and current fluxes in gas tungsten arcs[J].Metallurgical transactions B,1985,16(4):841-846.
    [114]Wu C S,Yan F J.Numerical simulation of transient development and diminution of weld pool in gas tungsten arc welding[J].Modeling and Simulation in Materials Science and Engineering, 2004, 12(1):13-20.
    [115] Zacharia T, Eraslan A H, Aidun D K, et al. Three-dimensional transient model for arc welding process[J]. Metallurgical Transactions B, 1989, 20(10): 645-659.
    [116] Wu C S, Sun J S. Modelling the arc heat flux distribution in GMAW welding[J]. Computational Materials Science, 1998, 9(3): 397-402.
    [117] Heiple C R, Roper J R. Mechanism for minor element effect on GTA fusion zone geometry[J]. Welding Journal, 1982, 61(4): 97s-102s.
    [118] Heiple C R, Roper J R. Effect of selenium on GTAW fusion zone geometry[J]. Welding Journal, 1982,61(8): 143s-145s.
    [119] Heiple C R, Burgardt P. Effect of SO_2 shielding gas assitions on GTA weld shape[J]. Welding Journal, 1985, 64(6): 159s-162s.
    [120] Wang Y, Shi Q, Tsai H L. Modeling of the effects of surface-active elements on flow patterns and weld penetration[J]. Metallurgical and Materials Transaction B, 2001, 32(1): 145-161.
    [121] Toit M D, Pistorius P C. The influence of oxygen on the Nitrogen content of autogenous stainless steel arc welds[J]. Welding Journal, 2007, 86(8): 222s-230s.
    [122] Lu S P, Hidetoshi F J, Kiyoshi N. Influence of welding parameters and shielding gas composition on GTA weld shape[J]. ISIJ International, 2005, 45(1): 66-70.
    [123] Zacharia T, David S A, Vitek J M, etc. Modeling of interfacial phenomena in welding[J]. Metallurgical Transactions B, 1990, 21(3): 600-603.
    [124] David S A, Debroy T, Vitek J M. Phenomenological modeling of fusion welding processes [J]. Materials Research Society, 1994, 19(1):29-35.
    [125] Xiao Y H, Quden G D. Measurement of surface tension of liquid metals and alloys under arc welding conditions [J]. Material Science and Technology, 1997, 13(9): 791-794.
    [126] Sahoo P, Debroy T, Mcnallan M J. Surface tension on binary metal surface active solute systems under conduction relevant to welding metallurgy [J]. Metallurgical Transaction B, 1988, 19(2):483-491.
    [127] Kim C H, Zhang W, DebRoy T. Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding[J].Journal of Applied physics,2003,94(4):2667-2679.
    [128]Xu Guoxiang,Wu Chuansong.Numerical analysis of weld poor geometry in globular-transfer gas metal arc welding[J].Frontiers of Materials Science in China,2007,1(1):24-29.
    [129]Choi M,Greif R,Salcudean M.A study of the heat transfer during arc welding with applications to pure metals or alloys and low or high boiling temperature materials[J].Numerical Heat Transfer,1987,11(4):477-489.
    [130]克罗夫特D R.传热的有限差分方程计算[M].北京:冶金工业出版社,1982,180-182.
    [131]陶文铨.数值传热学(M).西安:西安交通大学出版社,1987.
    [132]Zhang W,Kim C H,DebRoy T.Heat and fluid in complex joints during gas metal arc welding - Prat Ⅱ:Application to fillet welding of mild steel[J].Journal of Applied Physics,2004,95(9):5520-5229.
    [133]胡志坤.高速GMAW焊接驼峰焊道的产生过程及抑制[D].济南:山东大学硕士学位论文,2009.
    [134]闫志鸿.脉冲熔化极气体保护焊焊接熔池图像的检测与处理[J].焊接学报,2005,26(2):37-40.
    [135]Li K H,Zhang Y M.Double-electrode GMAW process an control[J].Welding Journal,2007,86(8):231s-237s.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700