含氮杂环配体、配合物和超分子化合物的合成、结构及量子化学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用双硫腙分别在最佳反应条件下合成了四唑-5-硫酮的2,3-二取代物及[1,3,4]-噻二唑-2-硫酮的3,5-二取代物。这两种新的合成方法无需高温高压,产率高,重现性好,产物后处理简单,从而使得它们有了非常好的工业化应用前景。
     对合成的4种四唑-5-硫酮-2,3-二取代物进行了元素分析、红外光谱和紫外光谱等表征,得到了其中两种化合物的晶体结构。运用密度泛函方法,研究了上述一系列四唑-5-硫酮-2,3-二取代物的优化几何构型、原子电荷分布、振动频率、电子光谱、自然键轨道分析及热力学性质,比较了不同取代基对物质性质的影响,并与相应的实验结果进行了对比;对部分化合物还计算了二阶非线性光学系数。这为四唑-5-硫酮-2,3-二取代物的进一步研究提供了大量详实可靠的基础数据。
     使用Hartree-Fock、密度泛函B3LYP及MP2三种方法,在多种基组水平下,进一步研究了2,3-二苯基-四唑-5硫酮的原子电荷分布,提出了新型的2,3-二苯基-四唑-5硫酮共轭杂化结构,即四唑环及环外硫原子均带有负电荷,正电荷分布于两个苯环上。此种新结构不同于Ogilvie等人提出的关于2,3-二苯基.四唑-5硫酮的旧结构。用新结构解释了2,3-二苯基-四唑-5-硫酮的物理和化学性质,指出2,3-二苯基-四唑-5硫酮发生质子化反应的新点位,即质子化反应不仅可以发生在环外硫原子上,还可以发生在四唑环中具有负电荷的氮原子上。
     对合成的3种[1,3,4]-噻二唑-2-硫酮-3,5-二取代物,用元素分析、红外光谱和紫外光谱等方法进行了表征,同时得到了其中两种化合物的晶体结构。用密度泛函B3LYP方法研究了上述3种化合物的优化几何构型、原子电荷分布、振动频率、电子光谱及热力学性质,并与相应的实验结果进行了对比,为此类化合物的研究提供了有益的参考。
     合成了3个含氮配体的过渡金属配合物,得到了其中两种化合物的晶体结构。在B3LYP/LANL2DZ水平上研究了四水合二异烟酸锌(Ⅱ)的几何构型、电荷转移、热分解过程中键的断裂顺序及其热力学函数信息,这不仅丰富了配位化学的研究方法,也丰富了配合物的研究内容。
     采用密度泛函B3LYP方法,首先对所设计的超分子化合物进行计算,得到它们的热力学函数值,判断出该超分子化合物形成的可能性,然后在此基础上采用动力学方法,通过控制反应物的浓度、反应时的温度、寻找催化剂等方法,实验合成出相应的的超分子。这种方法提高了实验成功的可能性,节省物力,财力和人力,是一种合成新型超分子材料的有效方法。
     使用量子化学方法探讨了通过氢键形成的超分子二聚体和三聚体中相互作用的本质,推算了氢键键能值,特别是推算出由单体形成二聚体及三聚体过程的转折温度,拓展了氢键形成超分子化合物的研究空间和范围。
A series of 2,3-disubstituted-tetrazole-5-thiones and 3,5-disubstituted-[1,3,4]-thiadiazole-2-thiones were synthesized by using dithizone under the best suitable reaction conditions. These two new synthetic methods feature high yield, good repeatability and easy work-up,which make them promising in industry applications.Four synthesized 2,3-disubstituted-tetrazole-5-thiones were characterized by elemental analysis, IR spectra and UV-spectra and crystal structures for the two compounds of them were also obtained. Density Functional Theory (DFT) method calculations of the optimized structure, atomic charge distributions, vibrational frequencies, electronic spectra, natural bond orbital and thermodynamic functions for the four compounds were performed and compared with their corresponding experimental results. The calculations of the second order optical nonlinearity were also carried out. All the theoretical data provid helpful information for the further studies on 2,3-disubstituted-tetrazole-5-thiones.For 2,3-diphenyl-tetrazole-5-thione, the further investigations about Mulliken and Natural populations analysis (NPA) atomic charge distributions were carried on by Hartree-Fock, DFT-B3LYP and MP2 methods using 6-31G~* 6-311G~(**) and 6-31+G~* basis sets, respectively. According to the calculated results, a new atomic charge distributions of 2,3-diphenyl-tetrazole-5-thione was proposed with the sulfur atom and tetrazole ring having negative charges and the two phenyl-rings havingpositive charges. This new resonance hybrid structure was different from the one proposed by Ogilvie et al. in 1937. Based on the new structure, physical and chemical properties of 2,3-diphenyp-tetrazole-5-thione was explained logically and protonation of 2,3-diphenyp-tetrazole-5-thione should take place not only on the S atom, but also on the N atoms having negative charges.Three synthesized 3,5-disubstituted-[1,3,4]-thiadizole-2-thiones were characterized by elemental analysis, IR spectra and UV-spectra and crystal structures for the two compounds of them were also obtained. Density Functional Theory (DFT) method calculations of the optimized structure, atomic charge distributions, vibrational frequencies, electronic spectra, natural bond orbital and thermodynamic functions for the three compounds were studied and compared with their corresponding experimental results, which were halpful for the furhter study on 3,5-disubstituted-[1,3,4]-thiadizole-2-thiones.Three metal coordination complexes with lignads containing N atom were
引文
1. Lieber E., Pillai C. N., Hitrs R. D., Diazotization of thiosemicarbazide and 4-alkyl and 4-aryl thiosemicarbazides. Can. J Chem. 1975, 35: 832-838.
    2. Pandey R. N., Choudhary L. M. R., Sharma P., Synthesis and Charactrization of V(Ⅳ), Zr(Ⅳ), V(Ⅴ), Nb(Ⅴ), Ta(Ⅴ), Mo(Ⅵ), and W(Ⅵ) Coplexes with 1-substituted tetrazoline-5-thione. Indian Journal of chemistry, 1993, 32A: 450-453.
    3. Cowper A. J., Astik R. R., Thaker K. A., Preparation of Some 1,2,3,4-Tetrzolles. J. Indian Chem.Soc, 1981, LⅧ: 1087-1088.
    4. Osono T., Watanabe S., Susaki K., Oganomycins, new 7-methoxyc ephalosporins produced by precursor fermentation with hetroeyclic thiols. J. Antibiot. 1980, 33(9): 1074-1078.
    5. Psull O., Arnold M. B., Darryle D. S., Structure-activity studies of 6-substituted decahydroisoquinoline-3-carborylic acid AMPA receptor antagonists. 2. Effects of distal acid bioisosteric substitution, absolute stereochemical preferences, and in vivo activity. J. Med. Chem., 1996, 39: 2232-2244.
    6. Assy M. G., New synthesis of 1-aroyl-5-mercaptotetrazoles and condensed tetrazoles. Pol. J. Chem., 1995, 69(7): 1022-1026.
    7. Pandey R. N., Choudhary L. M. R., Sharma R. N., Synthesis and Charactrization of V(Ⅳ), Zr(Ⅳ), V(Ⅴ), Nb(Ⅴ), Ta(Ⅴ), Mo(Ⅵ), and W(Ⅵ) Complexes with 1-substituted tetrazoline-5-thione. Indian Journal of Chemistry, 1993, 32A: 450-453.
    8. Takeda K., Torii K., Ogura H., Silver Triflate-promoted coupling rections of benzylic and allylic sulfides with O-silylated enolates of ketones and esters, a synthesis of (+)-AR-turerone. Tetrahedron Lett, 1990, 31 (2): 265-266.
    9. Gerrit L., Suanne T., Gabriel V., et. al, Reaction Pathwys in Nucleophilic Displcements With 1-benzyl-△2-tetrazoline-5-thione and 1,2,3,4-thitrizoline-5-thione. J. Org. Chem., 1974, 39(25): 3770-3771.
    10. Misra V. S., Dhar S., Synthesis of some newer formzans and Tetrzolium salts and their effect on Ranikhet disease virus and the vaccini virus. Pharmazie, 1980, 35(10): 585-586.
    11. Stajer G., Pintye J., Livenyi E, et. al, Aromtic sulfenyl chlorides, Ⅷ, Reaction of p-toluenesulfenyl chloride with 1-substituted tetrzole-5-thiones and oxidation of the disulfides obtained. Acta Chem., 1974, 80(1): 89-99.
    12. Kang H. Y., Cho Y. S., Lee W., et. al, N-substitution reactions of 1-substituted tetrazoline 5-thiones. Bull. Korean Chem. Soc., 1990, 11 (6): 543-546.
    13. Lieber E., Rmchandrn J., Isomeric 5-(Substituted)Aminothiatrizole and 1-Subst ituted-Tetrzolinethions. Can. J. Chem., 1959, 37: 101-109.
    14. Gerrit L., Gabriel V., Suzanne T., Synthesis of Heterocycles from Aryl Isothiocynates and Alkyl Azides. J. Org. Chem., 1977, 42(7): 1159-1163.
    15. Lieber E., Enkoji T., Synthesis and Properties of 5-(Substituted) Mercptottrazoles. Can. J. Chem., 1961, 26(1): 4472-4479.
    16. Atland H. W., Smiles Rearrangement of 2-Tetrzolylthio-3-Aminpyridines. J. Org. Chem., 1976, 41(21): 3395-3398.
    17. Robert N., Hanley W., David O., Cyclic Meso-ionic Compounds, Part 16. Synthesis, Spectrocopic Propertids and Chemistry of 1,2,3,4-Thitrizolium-5-Thiolates, 1,2,3,4-Thiat riazolium-5-Olates and 1,2,3,4-Thiatriazolium-5-Thiolates. J. C. S. Perkin Ⅰ, 1979, 732-735.
    18. Gerrit L., Vermeulen G., Fle'mal J., et. al, Synthesis of 1,4-Disutituted Tetrzoline-5-Thiones. J. Org. Chem., 1976, 41 (10): 1875-1876.
    19. Robert N. H., Oilis W. D., Christopher A. R., et. al, Cyclic Meso-ionic Compounds, Part18. The Synthesis and Spectroscopic Properties of 1,2,3,4-Thiatriazo lium-5-Aminides and 1,2,3,4-Tetrazolium-5-Thiolates. J. C. S. Perkin Ⅰ,1979, (3): 741-743.
    20. Gerrit L., Suanne T., Gabriel V., et. al, Reaction Pathwys in Nucleophilic Displcements With 1-benzyl-△~2-tetrazoline-5-thione and 1,2,3,4-thitrizoline-5-thione. J. Org. Chem., 1974, 39(25): 3770-3771.
    21. Demko Z. P., Sharpless K. B., A Click Chemistry Approach to Tetrazoles by Huisgen 1,3-Dipolar Cycloaddition: Synthesis of 5-Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides. Angew. Chem. Int. Ed. 2002, 41: 2110-2113.
    22. Demko Z. P., Sharpless K. B., A Click Chemistry Approach to Tetrazoles by Huisgen 1, 3-Dipolar Cycloaddition: Synthesis of 5-Acyltetrazoles from Azides and Acyl Cyanides. Angew. Chem. Int. Ed. 2002, 41: 2113-2117.
    23. Kiman A. M., Kassim A. Y., Studies on Mesoionic Compounds, Ⅱ. The Solvent Effect on the Electronic Absorption Spectra of Mesoionic 2,3-Diaryl-2-H-tetrazolium-5-thiolate Derivatives. J. Heterocyclic Chem. 1978, 15: 133-135.
    24. James W. O., Alsoph H. C., The Structure of Dehydrodithizone: A Novel Synthesis of Tetrazoliurn Salts. J. Am. Chem. Soc. 1961, 83: 5023-5027.
    25. Yoshihiki K., Quintus E, The Crystal and Molecular Structure of the meso-Ionic Sydnone, Anhydro-5-mercapto-2,3-diphenyltetrazolium Hydroxide. J. Am. Chem. Soc. 1970, 92: 1965-1968.
    26. Sato J., Fukuda K., Ito K. JP 03 287 585[P], 1991.
    27. Sawhney S. N., Gupta A., Sharma R K., Synthesis of some 2-heterocyclyl-5 nitrothiazoles as potential anthelmintics. Indian J Chem.(B), 1991, 30(6): 589-594.
    28. Moormann A. E., Becker D. R, Flynn D. L., et al, PCT Int Appl WO 9 529 897[P], 1994.
    29. Seidel R, Influence of inoculation with microdochium nivale samuels et hallett var. nivale on nitrogen metabolism of wheat. Arch phytopathol plant prot, 1995, 29(6): 507-521.
    30. Kiwan A. M., Marafie H. M., The effect of solvents on the electronic aborsortion spetra of mesoionic 1, 3, 4-thiadiazolium-2-thiolate derivatives. J Heterocyclic Chem, 1976, 13, 1273-1278.
    31. Gupta A. S., Ghosh M., Ghosh D., Low temperature magnetic studies on rare earth chelate compounds. Indian J. Cryog., 1994, 19(2): 10-11.
    32. Weistock L. M., Pollak P. I. In: Katritzky AR, Boulton A J, Eds., Advances in heterocyclic chemistry. Japan Press, Connecticut 1968, 9: 107-161.
    33. Komin A. P., Street R. W., Carmack M., Chemistry of 1,2,5-thiadiazoles. Ⅲ. [1,2,5] thiadiazole [3,4-c][1,2,5]thiadiazole. J. Org. Chem., 1975, 40(19): 2749-2752.
    34. Labbe G, Bastin L., Vlieghe D., Meervelt L. V., Reactions of methylated 5-chloro-1,2,30thiadiazolium salts with cyclohexane-1,2-diones: X-ray crystal structure analysis of the thiapentalenic product. J. Chem. Soc., Perkin Trans. Ⅰ 1993, 3051-3053.
    35. Yamashita Y., Saito K., Suzuki T., et al, Pyrazimo[2,3-c;5,6-c']bis[1,2,5] thiadiazole. A new hetrocycle with 14 π-electrons and high electron affinity. Angew. Chem., 1988, 100(3): 428-429.
    36. Suzuki T., Fuji H., Yamashita Y., et al, Clathrate formation and molecular recogmition by novel chalcogen-cyano interactions in tetracyanoquinodimethanes fused with thiadiazole and delenadiazole rings. J. Am. Chem. Soc., 1992, 114(8): 3034-3043.
    37. Japan JP07, 338,146
    38. Kunz W., Schurter, R., Preparation of 1,2,3-benzothiadiazole derivatives and their use for protecting plants against diseases. Eur. Pat. Appl. EP, 420803 (1991).
    39.亦冰,1,3,4-噻二唑类.农药译从,1999,21(2):63-65.
    40. Flammang R., Gerbaux P., Mφrkved E H, et al, Generation of new nitrile N-sulfides (NCCNS, R_2NCNS, H_3CSCNS, and CICNS) as ions and neutrals in the gas phase: tandem mass spectrometry, flash vacuum pyrolysis, and ab initio MO study. J. Phys. Chem., 1996, 100: 17452-17459.
    41. Fuerstenwerth H., Lange, K. H., Cationic triazatrimethine dys, their preparation and use. Ger. Often, DE 4242429 (Cl. C09B56/20), 28, Oct. 1993.
    42.Hu B. F., Li Z. M.,一些2-氨基-1,3,4-噻二唑类化合物的合成及其对水稻白叶枯病菌活性的研究.Gaodeng xuexiao Huaxue Xuebao,1987,8(9):802-806.
    43. Kiwan A. M., Irving H. M. N. H., Kinetics of the decomposition of bis-1, 5-diphenylformazan-3-yl disulphide and bis-4-phenyl-△~2-1,3,4-thiadiazolin-2-yl dislphide in organic solvents. J. Chem. Soc. (B) 1971, 901-903.
    44. Schaefer W., Rosenfeld U., Zaschke H., Stettin, H., Kresse, H., Liquid crystalline 1,3,4-thiadizole. Ⅱ. 1, 3, 4-Thiadiazoles with cyclohexane fragments. J. Prakt. Chem., 1989, 331(4): 631-636.
    45. Tschierske C., Joachimi D., Zaschke H., Liquid crystalline thiadiazole derivatives. Ⅴ. New ferroelectric thiadiazole derivatives. Mol. Cryss. Liq. Cryst., 1990, 191: 231-236.
    46. Sammes, P. G.; Yahioglu, G., 1, 10-Phenanthroline: a versatile ligand, J. Chem. Soc. Rev., 1994, 327-328.
    47.敬炳文.吴韬.张曼华.沈涛.功能性多吡啶配体的合成.高等学校化学学报.2000,3:395-400.
    48. Li A., Zhu A. X., Song G. H., Qian X. H., Sun J., The Crystal Structure of N-(5-phenyl-1,3,4-oxadiazo1-2-yl)-N'-benzoyl Urea, A Novel Insect-Growth Regulator. J. Chem. Research (S). 1999, 66-69.
    49.化工百科全书.第一版.北京:化学工业出版社.1994.
    50. Craig J. M., William C., Heath S. L., Martini N. C., Stuart -Hill M. N., Lockhart J. C., Coordination of Zn(Ⅱ), Cd(Ⅱ), Hg(Ⅱ), and Ag(Ⅰ) by Bis(benzimidazole) Ligands. Inorg. Chem. 1998, 37: 199-207.
    51. Askash C. V., Chandra K. O., Ashok K. G., A Simple Synthesis of 2,3'-bis-benzimodazoles. Chemistry and lndustry, 1980, 5: 5-8.
    52. Sigman D. S., Mazumder A., Perrin D. M., Chemical Nucleases. Chem. Rev. 1993, 93: 2295-2316.
    53. Perston, P. N., Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem. Rev. 1974, 74: 279-314.
    54. Chaudhury S., Debroy A., Mahajan M., Synthesis of Condensed Imidazoles by Lead Tetraacetate Oxidation of Amidines. Can. J. Chem. 1982, 60, 1122-1125.
    55.韩长日,宋小平主编.药物制造技术.北京:科学计算文献出版社.2000.
    56.百熙礼编著.浮药选剂.第一版.北京:冶金工业出版社.1981.
    57. Chauhan P. M. S., Bhakuni D. S., Synthesis of 2,5(6)-Disubstituted benzimidazoles, 2-Substituted-5-(4-substituted -phenyl)-1,3,4-thiadiazoles and Imidazothioxanthene and Their Antifilarial Activity. Indian Journal of Chemistry. 1986, 25B: 1146-1149.
    58. Matthews C. J., Mark W. C., Elsegood R. J., Leese T. A., Thorp D., Thornton P., Lockhart J. C., Synthesis and Crystal Structure of Some Bis-benzimidazoles,-benzothiazoles and -benzoxazoles by An Alternative Route: Their Complexation with Copper(Ⅱ) Salts. J. Chem. Soc. Dalton Trans. 1996, 1531-1538.
    59. Ueda M., Sato M., Mochizuki A., Poly(benzimida-zole) Synthesis by Direct Reaction of Diacids and diamines. Macromolecules. 1985, 18: 2723-2726.
    60. Sorenson J. R. J., Copper chelates as possible active forms of the antiarthritic agents, J. Med. Chem. 1976, 19: 135-148.
    61. Koczon E, Dobrowolski J. Cz., Lewandowski W., Mazurek A. P., Experimental and Theoretical IR and Raman Spectra of Picolinic, Nicotinic and Isonicotic Acids, J. Mol. Struc. 2003, 655, 89-95.
    62. Wang W., Basinger A., Neese R. A. Shane B., Myong S.-A. Christiansen M., Hellerstein M. K., Effect of nicotinic acid administration on hepatic very low density lipoprotein-triglyceride production. Am. J. Physiol. Endocrinol Metab, 2001; 280: 540-547.
    63. Berg, I.; Potter, B. V. L., J. Cell Biol. 2000, 150(3): 581-588.
    64. Barton, J. K. Metals and DNA: molecular lseft-handed complements. Science. 1986, 233: 727-734.
    65. Naing K., Takahashi M., Taniguchi M., Yamagishi A., Interactions of Enantiomeric Ruthenium (Ⅱ) Complexes with Polynucleotides as Studied by Circular Dichroism, Electric Dichroism Measurements, and Photolysis. Inorg. Chem. 1995, 34: 350-356.
    66. Arounaguiri S., Maiya B. G., Dipyridophenazine Complexes of Cobalt(Ⅲ) and Nickel(Ⅱ): DNA-Binding and Photocleavage Studies. Inorg. Chem. 1996, 35: 4267-4270.
    67. Harris W. R., Bess R. C., Martell A. E., Ridgway T. H., The irreversible redox rearrangement of cobalt oxygen complexes of dipeptides, J. Am. Chem. Soc. 1977, 99: 2958-2963.
    68. HarrisW. R., Martell A. E., Irreversible redox rearrangement of dioxygen complexes. Ⅰ. Selective oxidation of dipeptides coordinated to cobalt (Ⅱ). J. Coord. Chem. 1980, 10: 107-113.
    69. Bogucki R. E., McLendon G., Martell A. E., Oxygen complexation by cobaltous chelates of multidentate pyridyl-type ligands. Equilibriums, reactions, and electron structure of the complexes. J. Am. Chem. Soc. 1976, 98: 3202-3205.
    70. Lehn J. M., Supramolcular Chemistry -Scope and Perspectives, Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem., Int. Ed Engl. 1988, 27: 89-112.
    71. Lehn J. M., Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization, Angew. Chem., Int. Ed. Engl. 1990, 29: 1304-1319.
    72. Chen, C. T.; Suslick, K. S., One-dimensional coordination polymers: applications to material science. Cood. Chem. Rew. 1993, 128, 293-322.
    73. Arends I. W. C. E., Sheldon R. A., Wallau M., Schuchardt, U., Oxidative Transformations of Organic Compounds Mediated by Redox Molecular Sieves, Angew. Chem., lnt. Ed. Engl. 1997, 36: 1144-1163.
    74.Lehn J. M.,沈兴海,叶宪曾.超分子化学—概念和展望.第一版.北京:北京大学出版社,2002.
    75.杜灿屏,刘鲁生,张恒.21世纪有机化学发展战略.第一版.北京:化学工业出版社,2002.
    76. Philp D., Stoddart J. F., Self-Assembly in Natural and Unnatural Systems. Angew. Chem. Int. Ed. Engl. 1996, 35: 1154-1196.
    77. Colquhoun H. M., Stoddart J. F., Williams D. J., Second-Sphere Coordination-a Novel Role for Molecular Receptors. Angew. Chem., Int. Ed. Engl. 1986, 25: 487-507.
    78. Gallant M., Phan V. M. T., Wuest J. D., Hydrogen-bonded dimers. Direct study of the interconversion of pyridone dimers and hydroxypyridine monomers by low-temperature nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 1991, 113: 721-723.
    79. Hosseini, M. W.; Brand, G.; Schaeffer, P.; Ruppert, R.; De Cican, A.; Fischer, J., Molecular tectonics. Ⅱ. Synthesis of molecular sheets by self-assembly of complementary molecular units in the solid state. Tetrahedron Lett. 1996, 37(9): 1405-1408.
    80. Sherrington D. C., Taskinen K. A., Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem. Soc. Rev. 2001, 30: 83-93.
    81. Lawrence D. S., Jiang T., Levett M., Self-Assembling Supramolecular Complexes, Chem. Rev. 1995, 95: 2229-2260.
    82. Beijer F. H., Sijbesma R. P., Kooijman H., Spek A. L., Meijer E. W., Strong Dimerization of Ureidopyrimidones via Quadruple Hydrogen Bonding, J. Am. Chem. Soc. 1998, 120: 6761-6769.
    83. Januky W., Hosseini M. W., Planeix J. M., de Cian A., Kyritsakas N. Fischer J., Molecular braids: quintuple helical hydrogen bonded molecular network, Chem. Commun. 1999, 2313-2314.
    84. Thomas S., The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41: 48-76.
    85. Ogilvie J. W., Corwin A. H., The Structure of Dehydrodithizone: A Novel Synthesis of Tetrazolium Salts. J. Am. Chem. Soc. 1961, 83: 5023-5027.
    86. Hohenberg R, Kohn W., Inhomogeneous Electron Gas, Phys. Rev. 1964, B136: 864.
    87. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 1965, A140, 1133.
    88. Becke A. D., Correlation Energy of Inhomogeneous Electron Gas: A Coordinate-Space Model, J. Chem. Phys. 1988, 88: 1053-1062.
    89. Beche A. D., Density Functional Theories in Quantum Chemistry. ACS Symp. Ser. 1989, 394-397.
    90. Parr R. G., Yang W., Density-Functional Theory of Atoms and Molecules. Oxford University Press: New York, 1989.
    91. Hedin L., Lundqvist B. L., Explicit local exchange-correlation potentials, J. Phys. C. 1971, 4: 2064-2083.
    92. Ceperley D. M., Alder B. J., Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45: 566-569.
    93. Vosko S. H., Wilk L., Nusair M., Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200-1211.
    94. Perdew J. P., Wang Y., Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. 1986, B33, 8800-8802.
    95. Sheldrick G. M., Program for Empirical Absorption Correction of Area Detector Data, (University of Gottingen, Germany, 1996).
    96. Sheldrick G. M. SHELXTL V5.1 Software Reference Manual. (Bruker AXS, Inc, Madison, Wisconsin, USA, 1997).
    97. Wilson A. J. International Table for X-ray Crystallography. (Vol. C, Kluwer Academic Publishers, Dordrecht, 1992), Tables 6.1.1.4 (pp.500-502) and 4.2.6.8 (pp.219-222), respectively.
    98. Glusker J. P., Lewis, M., Rossi, M. Crystal structure analysis for chemists and biologists. VCH Publishers Inc, New York: 1994.
    99. Steiner, T. Cryst. Rev, 1996, 6, 1-35.
    100. Hunter R., Haueisen R. H., Irving A., The First Water-Dependent Liquid Clathrate: X-Ray Evidence in the Solid for a C—H(?) π(Heteroarene) (?)H—C Interaction. Angew. Chem. Int. Ed. Engl., 1994, 33: 566-568.
    101. Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. J. P., Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985, 107: 3902-3909.
    102. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C. Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A., Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburgh PA, 1998.
    103. Peng C., Ayala R Y., Schlegel H. B., Frisch M. J., Using redundant internal coordinates to optimize equilibriuln geometries and transition states. J. Comput. Chem., 1996, 17: 49-56.
    104. Dewar M. J. S., Thiel W., Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 1977, 99: 4907-4917.
    105. Stewart J. J. P., Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10: 209-220.
    106. Stewart J. J. P., QCPE Program 455, 1983, Version 6.0, 1990.
    107. Hahre W. J., Radom L., Schleyer P. V. R., Pople J. A., Ab Initio Molecular Orbital Theory. Weiley, New York, 1986.
    108. Ogilvie J. W., Corwin A. H., The Structure of Dehydrodithizone: A Novel Synthesis of Tetrazolium Salts. J. Am. Chem. Soc. 1961, 83: 5023-5027.
    109. Kozarek W. J., Fernando Q., X-Ray crystal and molecular structure of the adduct of rnercury(Ⅱ) chloride with dehydrodithizone. J. Chem. Soc., Chem. Commun. 1972, 604-606.
    110. Runge E., Gross E. K. U., Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52: 997-1000.
    111. Petersilka M., Gossmann U. J., Gross E. K. U., Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 1966, 76: 1212-1215.
    112. Bauernschmitt R., Ahlrichs R., Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256: 454-464.
    113. Jamorski C., Casida M. E., Salahub D. R., Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N_2 as a case study. J. Chem. Phys. 1996, 104: 5134-5147.
    114. Hanley R. N., Ollis W. D., Ramsden C. A., Smith I. S., Cylic meso-ionic compound, Part 19. The reaction of 5-ethoxy-1,2,3,4-tetrazolium and 5-ethoxy-1,2,3,4 thiatriazolium tetrafluoroborates with nucleophics. The preparation of 1,2,3,4-tetrazolium and 1,2,3,4-thiatriazolium-5-dicyanomethylides. J. Chem. Soc., Perkin Ⅱ, 1979, 744-749.
    115. Preston P. N., Tiwari K. K., Turnbull K., King T. J., Thermal isomerisation of mesoinic tetrazoles. A new type of heterocyclic rearrangement. J Chem. Soc., Chem. Commun., 1976, 343-343.
    116. Ansell G. B., Tetrazoles and tetrazole complexes. Part Ⅰ. Crystal structure of cis-bis[dimethyl(phenyl)phosphine]bis-(5-methyltetrazolato)palladium(Ⅱ). J. Chem. Soc., Dalton Trans., 1973, 4: 371-377.
    117. Kiwan A. M., Wanas G. A., Studies on mesoionic compounds. Part 4. Protonation equilibria of 2,3-diaryl-2H-tetrazolium-5-thiolates and 1,3,4-thiadiazolium-2-Thiolates in aqueous perchloric acid solutions. J. Chem. Soc., Perkin Trans 2. 1981, 12: 1534-1537.
    118. Jian F. F., Li Y., Xiao H. L., Sun P. P., Synthesis and Crystal Structure of α-1,2,4-dihydro-Triazole-4-Chlorine Acetophenone,[ClC_6H_4CH_2CO(C_2H_4N_3)]. Chin. J. Struc. Chem. 2003, 6: 687-690.
    119. Yoshihiko K., Quintus F., Crystal and molecular structure of the meso-ionic sydnone, anhydro-5-mercapto-2,3-diphenyltetrazolium hydroxide. J. Am. Chem. Soc. 1970, 92: 1965-1968.
    120. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven Jr., T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A, Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A., Gaussian, Inc., Pittsburgh PA, 2003.
    121. Scott A. P., Radom L., Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100: 16502-16513.
    122 Reed A. E., Weinstock R. B., Weinhold F., Natural population analysis~(a)), J. Chem. Phys. 1985, 83, 735-746.
    123 Mulliken R. S., Ermler W. C., Diatomic Molecules: Results of Ab Inition Calculations, Academic, New York, 1977, pp.33-38.
    124. Naik P. R., Pandeya S. N., Singh P. N., Synthesis anti-inflammatory and analgesic activities of 1,2,4-thiadiazolidines and 1,2,4-thiadiazoles. Pharmakeutike, 1991, 4(1): 44-47.
    125. Prasad V. S. R., Reddy K. K., Synthesis of 2,6-diaryl-[1,2,4]-triazlko-[5, 1-b]-1,3,4-thiadia-zoles. Indian J. Chem. Sect. B, 1991, 30B(4): 435-436.
    126. You X. Z. Progress in Coordination Chemistry. Higher Education Publishing Company, Beijing, 2000.
    127. Shuncheng L., Zubieta J., Chemical and x-ray structural characterization of diphenylcarbazone and diphenylthiocarbazone complexes of molybdenum(Ⅵ), (n-Bu_4N)[MoO_2(C_6H_5NNC(X)NNC_6H_5)(C_6H_5NNC(X)NN(H)C_6H_5)] (X=0 or S) and (n-Bu_4N)[MoOCl_3(C_6H_5NNC(O)NNC_6H_5)]; isolation of 2,3-diphenyltetrazolium-5-thiolate, C_6H_5NNC(S)NNC_6H_5, from the reaction of diphenylthiocarbazone with molybdate. Polyhedron, 1989, 8: 677-688.
    128. Xiao W., Lu Z. L., Su C. Y., Yu K. B., Deng L. R., Liu H. Q., Kang B. S., Bivalent transition metal complexes of 4,5-diazofluorene-9-one benzoylhydrazone(HL) and the characterization of weak interaction in CoL_2(H_2O)_2. J. Mol. Struct. 2000, 553: 91-99.
    129. Bi L. H., Huang R. D., Peng J., Wang E. B., Wang Y. H., Hu C. W., Rational syntheses, characterization, crystal structure, and replacement reactions of coordinated water molecules of [As_2W_(18)M_4(H_2O)_2O_(68)]~(10-) (M=Cd, Co, Cu, Fe, Mn, Ni or Zn). J. Chem. Soc., Dalton Trans. 2001, 121-129.
    130. Rowland J. M., Thornton M. L., Olmstead M. M., Mascharak P. K., Structure Variation Due to Ligand Flexibility: Syntheses and Structures of the Copper(Ⅱ) Complexes [Cu(APPy)] and [Cu_2(AEPy)_2] Where APPyH_2=Bis[3-(2-pyridinecarboxamido)propyl]- methylamine and AEPyH_2=Bis[3-(2-pyridine-carboxamido)ethyl]methylamine. Inorg. Chem. 2001, 40: 1069-1073.
    131. Fang C. J., Duan, C. Y., Guo D., He C., Meng Q. J., Wang Z. M., Yan C. H., Self-assembly of a chloro-bridged helical coordination polymer achieved from a ferrocenyl-containing double-helicate. Chem. Commun. 2001, 2540-2541.
    132. Ye B. H., Chen X. M., Zeng T. X., Ji L. N., Syntheses, crystal structures and spectroscopic characterization of [Co(phen)_2(gly)]Cl_2·4H_2O and [Co(phen)_2(H_2O)_2](NO_3)_3·2H_2O. Polyhedron, 1994, 13: 2185-2191.
    133. Ablov A. V., Complexes of trivalent cobalt with 1,10-phenamthroline. Zhur. Neorg. Khim. 1961, 3: 309-315.
    134. Ablov A. V., The nature of the two crystal forms of trinitrotriammine-Cobalt. Ucherye Zapiski, Kishinev. Gosudarst. Univ. 1960, 56: 11-15.
    135. Shi X. H., You X. Z., Li C., Xiong R. G., Yu K. B., Synthesis, spectral and magnetic studies on mixed ligand complexes M(DIAFO)_2(NCS)_2 and M(DIAFH)_2X_2 (M=Fe~Ⅱ, Co~Ⅱ, Ni~Ⅱ). The crystal structure of Co(DIAFO)_2(NCS)_2Transition Met. Chem. 1995, 20(2): 191-195.
    136. Gou S. H., You X. Z., Yu K. B., Lu J. P., Synthesis and characterization of a series of tripodal transition metal complexes with the Schiff base of 2,2',2"-triaminoethylamine and 2-pyridinecarboxaldehyde N-oxide. Crystal structures of heptacoordinate manganese(Ⅱ) and cobalt(Ⅱ) complexes of a seven-coordinate ligand. Inorg. Chem. 1993, 32: 1883-1887.
    137. Guild B. C., Hayden T., Brennan T. F., Crystal structure of carbonatobis(1,10-phenanthroline) Cobalt(Ⅱ) chloride trihydrate [Co(N_2Cl_2H_8)_2CO_3]Cl·3H_2O. Cryst. Struct. Commun. 1980, 9(2): 371-376.
    138. Niederhoffer E. C., Martell A. E., Rudolf P., Clearfield A., Structures of (carbonato)bis(2,2'-bipyridine)cobalt(Ⅲ) and (carbonato)bis(1,10-phenanthroline) cobalt(Ⅲ) complexes. Inorg. Chem. 1982, 21, 3734-3741.
    138. McAuliffe C. A., Pritchard R. G., Bermejo M. R., Garcia-Vazquez A., Macias A., Sanmartin J., Romero J., Sousa A.,Carbonatobis(1,10-phenanthroline)cobalt(Ⅲ) perchlorate. Acta Cryst. 1992, C48: 1841-1842.
    140. Tian Y. P., Duan C. Y., Xu X. X., You X. Z., Screw-Chain Structure of 1,10-Phenanthroline Hydrate, C_(12)H_8N_2.H_2O. Acta Cryst. 1995, C51: 2309-2312.
    141. Pang L., Lucken E. A. C., Bemardinelli G., The application of nuclear quadrupole resonance to the study of clathrates. Chlorine-35 NQR and crystallography of clathrated carbon tetrachloride. J. Am. Chem. Soc. 1990, 112: 8754-8764.
    142. Xiong R. G., Liu C. M., Zuo J. L., Li H. Z., You X. Z., Fun H. K., Sivakumar K., A novel molecular channel: thermal analyses and X-ray structure of [Ni(Et-XA)_2·phen]·3H_2O (Et-XA=ethylcarbonodithiolato-S,S', phen=phenanthroline). Polyhedron, 1997, 16: 2315-2319.
    143. Becke A. D., Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98: 5648-5652.
    144. Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988, B37: 785-789.
    145. Gordon M. S., Binkley J. S., Pople J. A., Pietro W. J., Hehre W. J., Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982, 104: 2797-2803.
    146. (a) Boys S. F., Localized orbitals and localized adjustment functions. Quantum Theory At., Mol., Solid State. 1966, 253-262.
    (b) Boys S. F., Handy N. C., Determination of energies and wavefunctions with full electronic correlation. Proc. Roy. Soc.. Ser. A. 1969, 310(1500): 43-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700