新型多酸超分子化合物的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用各种类型的多金属氧酸盐为基本构筑单元,与大阳离子簇以及金属-有机化合物通过超分子作用力或配位键来构筑新型的多金属氧酸盐超分子组装体;同时选取不同配位能力的3d、4f金属离子以及具有各种空间构型的有机配体来构筑新型高维的金属氧簇超分子网络,研究新型超分子化合物的合成条件及规律,考察配体的几何构型,辅助配体对于整个结构的影响等规律,以探究分子自组装原理,以及新物质结构和性能间的关系。
     利用水热技术和常规水溶液合成方法,合成了9个新型的基于多金属氧酸盐和3d、3d-4f金属氧簇构筑的高维超分子化合物,通过元素分析,IR,UV-Vis,XRPD,TG和单晶X-射线衍射对晶体结构进行了表征,对化合物的热稳定性、磁学特性和荧光性质进行了初步研究。
     1.利用不同的多金属氧酸盐和金属-有机阳离子作为建筑块,得到3个基于多金属氧酸盐的超分子化合物,并对影响晶体空间堆积的各种因素进行了探讨。其中化合物1是一个由循环三聚的Dawson型多酸[P_2W_(16)Mn_2O_(60)]_3~(24-)和3d-4f杂核阳离子簇[Ce_3Mn_2O_6(OAc)_6(H_2O)_9]~(2+)所组成的离子晶体型超分子化合物,其中循环三聚的Dawson型多酸代表着一种新的Dawson型多酸的连接方式,同时,化合物1也是第一例基于多酸和3d-4f杂核阳离子簇的超分子化合物。化合物2是由β-[Mo_8O_(26)]~(4-)同多阴离子和MnIII-希夫碱共同构筑的超分子组装体,在化合物2中,多酸层和金属-希夫碱层交替排列,通过静电力和范德华力形成3D的超分子化合物,它把古老的金属-希夫碱领域和多酸这个热点领域有机的结合在一起。化合物3是由仲钨酸[H_2W_(12)O_(42)]~(10-)通过过渡金属离子CuII连接而成的3D (8,3)-连接的纯无机拓扑网络。Na_(20)[CeIV_3MnIV_2O_6(OAc)_6(H_2O)_9]_2[P_2W_(16)MnIII_2O_(60)]_3·21H_2O (1) [N(CH_3)_4]_2[Mn(Salen)(DMF)_2]_2[β-Mo_8O_(26)]·2DMF (2) KNa_3[Cu(H_2O)_2{Cu(H_2O)_3}_2(H_2W_(12)O_(42))]·16H_2O (3)
     2.利用水热合成技术,通过合理的选用或者原位合成不同的有机配体和不同的过渡金属离子或稀土金属离子,采用分子识别和自组装原理成功的合成了6个新型高维金属氧簇超分子网络化合物。并且初步分析了不同金属离子的配位方式,配体的长度、柔韧性,以及混合配体对这些化合物的形成所产生的影响。化合物4-5是以对苯二氰为主体配体,通过加入不同功能的辅助配体,调节使其发生原位反应,从而得到2个新颖的拓扑网络。其中化合物4是通过具有1D梯状结构的2D超分子层发生平行互穿,形成的3D组装体。化合物5展现出由2D的波浪层构成的3D倾斜互穿结构。化合物6-9同时选用混合配体和混合金属,利用阴离子的模板效应,获得了4个3d-4f杂核的具有阳离子3D骨架的主客体超分子化合物。[Ni_2(TP)_2(BPP)_2(H_2O)_2]_n (4) {[Co(TP)(BPP)]_4·6H_2O}_n (5) [Ln2(1,2-bdc)_2(H_2O)_2Cu(inic)_2](ClO_4) (Ln = Eu (6), Tb (7), Nd (8) , Sm (9))
In this thesis, three novel polyoxometalate (POM) supramolecular assemblies based on macrocations clusters, metal-organic compounds and polyoxometalates have been synthesized via supramolecular interaction and coordination bonds. Moreover, a new series of high dimensional metal—oxogen clustes supramolecular networks have also been synthesized by choosing various of 3d or 4f metal ions with different coordination capacities and organic ligands with different space configuration. The study on synthetic conditions and rules for these new compounds, the effect of various auxiliary ligands on the ultimate structures, topological analyses, the principle of molecular self-assembly, and the exploration of relationships between structures and properties for these new compounds are also carried out.
     Nine new polyoxometalate and high dimensional metal—oxogen clustes supramolecular compounds have been synthesized on the basis of hydrothermal technique and/or convenient aqueous solution synthesis methods and structurally characterized by elemental analyses, IR, UV/Vis spectrum, XRPD, TG and single crystal X-ray diffractions. The thermal stabilities, magnetic properties and fluorescent activity of these compounds have been studied.
     1. Three new supramolecular compounds based on polyoxometalates and metal-organic cations building blocks have been synthesized and structurally characterized. We have also discussed the influence of various important factors to the cluster packing style. Among these compounds, compound 1 is the first ionic crystal supramolecular assembly base on unusual triple-Dawson-type polyoxoanions [P_2W_(16)MnIII_2O_(60)]_3~(24-) and bipyramid-like 3d-4f heterometallic clusters [CeIV_3MnIV_2O_6(OAc)_6(H_2O)_9]~(2+). Compound 2 represents a new and rare supramolecular example constructed by MnIII-salen Schiff-base building blocks andβ-octamolybdate isopolyoxoanions, which combines POMs chemistry and Schiff-base chemistry two interesting fields together to prepare new hybrid materials. Compound 3 represents the first example of a pure inorganic 3D (8,3)-connected structural topology based on the [H_2W_(12)O_(42)]~(10-) building blocks and CuII linkers. Na_(20)[CeIV_3MnIV_2O_6(OAc)_6(H_2O)_9]_2[P_2W_(16)MnIII_2O_(60)]_3·21H_2O (1) [N(CH_3)_4]_2[Mn(Salen)(DMF)_2]_2[β-Mo_8O_(26)]·2DMF (2) KNa_3[Cu(H_2O)_2{Cu(H_2O)_3}_2(H_2W_(12)O_(42))]·16H_2O (3)
     2. Six new 3d or 3d-4f high dimensional metal—oxogen clustes supramolecular networks have been successfully synthesized by rational selecting and in situ ligands synthesize new organic ligands and different 3d or 4f metal ions on the basis of hydrothermal technique. We further study the effect of various of metal ions with different coordination capacities, the length and flexility of organic ligands, and mixed ligands on the ultimate structures of these compounds. Compounds 4-5 are modulated synthesize by introduction of various auxiliary ligands into an in situ ligands synthesis system of terephthalonitrile. Compound 4 contains a new type of 1D zigzag ladders, which are further interlocked with the other two identical ones, forming a 3D polycatenated framework. Compound 5 displays a new 3D‘‘inclined’’interpenetration architecture based on 2D undulated layers. Compounds 6-9 are four new anion-templated 3D heterobimetallic host-guest supramolecular assemblies based on the lanthanide-carboxylate layers and copper(I)-inic pillars. [Ni_2(TP)_2(BPP)_2(H_2O)_2]_n (4) {[Co(TP)(BPP)]_4·6H_2O}_n (5) [Ln2(1,2-bdc)_2(H_2O)_2Cu(inic)_2](ClO_4) (Ln = Eu (6), Tb (7), Nd (8) , Sm (9))
引文
[1] Pope M T. Heteropoly and Isopoly Oxometalates[M]. Springer, Berlin, 1983.
    [2] Hill C L. Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems[J]. Chem Rev, 1998, 98: 1–2.
    [3] Pope M T, Müller A. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity[M]. Kluwer, Dordrecht, 1993.
    [4] Pope M T, Müller A. Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications[M]. Kluwer, Dordrecht, 2001.
    [5] BorrYs-Almener J J, Coronado E, Müller A, et al. Polyoxometalate Molecular Science[M]. Kluwer, Dordrecht, 2003.
    [6]王恩波,胡长文,许林.多酸化学导论[M].化工出版社,北京,1998.
    [7] Niu J Y, You X Z, Duan C Y, et al. A Novel Optical Complex between an Organic Substrate and aPolyoxometalate. Crystal and Molecular Structure ofα-H4SiW12O40·4HMPA·2H2O(HMPA = Hexamethylphosphoramide)[J]. Inorg Chem, 1996, 35: 4211–4217.
    [8] Cui X B, Xu J Q, Li Y, et al. Hydrothermal synthesis and characterization of (enH2)3.5[As8V14O42(PO4)]·2H2O[J]. J Mol Struct, 2003, 655: 207–213.
    [9] Han Z G, Zhao Y L, Peng J, et al. Supramolecular assembly of organic bicapped Keggin polyoxometalate[J]. J Solid State Chem, 2004, 177: 4325–4331.
    [10] Han Z G, Ma H Y, Peng J, et al. The first polyoxometalate polymer constructed by assembly of the heptamolybdic anion and copper coordination groups[J]. Inorg Chem Commun, 2004, 7: 182–185.
    [11] Han Z G, Zhao Y L, Peng J, et al. Keggin Polyoxometalate with Pendant Tricyclic, Aromatic Entity[J]. J Mol Struct, 2005, 738: 1–7.
    [12] Han Z G, Zhao Y L, Peng J, et al. Inorganic-organic hybrid polyoxometalate: preparation, characterization and electrochemistry properties[J]. J Solid State Chem, 2005, 178: 1386–1394.
    [13] Upreti S, Ramanan A. Structure-Directing Role of Hydrogen-Bonded Dimers of Phenylenediammonium Cations: Supramolecular Assemblies of Octamolybdate-Based Organic-Inorganic Hybrids[J]. Crystal Growth&Design, 2005, 5: 1837–1843.
    [14] Upreti S, Ramanan A. Role of Hydrogen-Bonded Interactions in the Crystal Packing of Phenylenediammonium Phosphomolybdates[J]. Crystal Growth&Design, 2006, 6: 2066–2071.
    [15] Holscher M, Englert U, Zibrowius B, et al. (H3N(CH2)6NH3)[W18P2O62]·3H2O, a microporous solid from Dawson anions and 1,6-diaminohexane[J]. Angew Chem Int Ed Engl, 1994, 33: 2491–2493.
    [16] Coronado E, Gomez-Garcia C J. Polyoxometalate-based molecular materials[J]. Chem Rev, 1998, 98: 273–296.
    [17] Peng J, Wang E B, Xin M H, et al. Synthesis, electrical properties and X-ray crystal structure of a new BEDT-TTF-based radical cation salt withα-Keggin heteropolymolybdate[J]. Polyhedron, 1999, 18: 3147–3152.
    [18] Coronado E, Galán-Mascarós J R, Giménez-Saiz C, et al. Radical salts of the organic donor BET-TTF with polyoxometalate clusters[J]. J Mater Chem, 1998, 8: 313–317.
    [19] Ouahab L. Organic/Inorganic Supramolecular Assemblies and Synergy between Physical Properties[J]. Chem Mater, 1997, 9: 1909–1926.
    [20] Coronado E, Galán-Mascarós J R, Giménez-Saiz C, et al. Hybrid Molecular Materials Based upon Magnetic Polyoxometalates and Organic 29π-Electron Donors: Syntheses, Structures, and Properties of Bis(ethylenedithio)tetrathiafulvalene Radical Salts with Monosubstituted Keggin Polyoxoanions[J]. J Am Chem Soc, 1998, 120: 4671–4681.
    [21] Coronado E, Clemente-león M, Galán-Mascarós J R, et al. Design of molecular materials combining magnetic, electrical and optical properties[J]. J Chem Soc Dalton Trans, 2000, 3955–3961.
    [22] Coronado E, Giménez-Saiz C, Gómez-García C J, et al. Metallic Conductivity Down to 2 K in a Polyoxometalate-Containing Radical Salt of BEDO-TTF[J]. Angew Chem Int Ed, 2004, 43: 3022–3025.
    [23] Sugiura K, Sakata Y, Tanaka T, et al. Anion controlled donor alignment: Electrosynthesis and crystal structure of a novel ction radical salt constructed from porphyrin and hexatungstate[J]. Chem Lett, 1997, 281–282.
    [24] Hagrman D, Hagrman P J, Zubieta J. Solid-State Coordination Chemistry: The Self-Assembly of Microporous Organic-Inorganic Hybrid Frameworks Constructed from Tetrapyridylporphyrin and Bimetallic Oxide Chains or Oxide Clusters[J]. Angew Chem Int Ed, 1999, 38: 3165–3168.
    [25] Osamu N, Yukiyoshi S. Structure of the drated potassium hexamolybdate comoplex of hexaoxacyclooctadecane(18-crown-6)[J]. Acta Cryst, 1979, B35: 2387–2389.
    [26] Osamu N. Structure of the potassium molybdate complex of 18-crown-6[J]. Acta Cryst, 1979, B35: 465.
    [27] You W S, Wang E B, Zhang H, et al. Synthesis and structuralcharacterization of a new supermolecular compound: H3PW12O40·6C14H2OO5·16H2O (C14H2OO5 = benzo-15-crown-5)[J]. J Mol Struct, 2000, 554: 141–147.
    [28] You W S, Wang E B, He Q L, et al. Synthesis and crystalstructure of a new supermolecular compound: [C12H24O6][H3PMo12O40]·22H2O (C12H24O6 = 18-crown-6)[J]. J Mol Struct, 2000, 524: 133-139.
    [29] You W S, Wang E B, Xu Y, et al. An Alkali Metal-Crown Ether Complex Supported by a Keggin Anion through the Three Terminal Oxygen Atoms In a Single M3O13 Triplet: Synthesis and Characterization of [{Na(dibenzo-18-Crown-6)(MeCN)}3{PMo12O40}[J]. Inorg Chem, 2001, 40: 5468–5471.
    [30] You W S, Wang E B, Xu L, et al. A molecule based on polyoxometalate acid and crown ether: synthesis and characterization of [(H3O)(C20H24O6)]2[HPMo12O40]·C20H24O6·3MeCN·H2O (C20H24O6 = dibenzo-18-crown-6)[J]. J Mol Struct, 2002, 605: 41–49.
    [31] Li Y G, Hao N, Wang E B, et al. New High-Dimensional Networks Based on Polyoxometalate and Crown Ether Building Blocks[J]. Inorg Chem, 2003, 42: 2729–2735.
    [32] Shivaiah V, Das S K. Inclusion of a Cu2+ Ion by a Large-Cavity Crown Ether Dibenzo-24-Crown-8 through Supramolecular Interactions[J]. Inorg Chem, 2005, 44: 7313–7315.
    [33] Akutagawa T, Endo D, Imai H, et al. Formation of p-Phenylenediamine-Crown Ether-[PMo12O40]4- Salts[J]. Inorg Chem, 2006, 45: 8628–8637.
    [34] Alexander D, Michaele J H, Colin L R. Selective isolation of Keggin ions using self-assembled superanion capsules[J]. J Chem Soc Dalton Trans, 1999, 3639–3642.
    [35] Ishii Y, Takenaka Y, Konishi K. Porous Organic-Inorganic Assemblies Constructed from Keggin Polyoxometalate Anions and Calix [4] arene–Na+ Complexes: Structures and Guest-Sorption Profiles[J]. Angew Chem Int Ed, 2004, 43: 2702–2705.
    [36]徐如人,庞文琴.无机合成与制备化学[M].第15章,高等教育出版社, 2001, 415.
    [37] Choi H, Kwon Y U, Han O H. Nanocomposite Gels between [V10O28]6- and [AlO4Al12(OH)24(H2O)12]7+ Polyoxometalate Clusters[J]. Chem Mater, 1999, 11: 1641–1643.
    [38] Son J H, Choi H, Kwo Y U, et al. Characterization of precipitates from the reactions between[Al13O4(OH)24(H2O)12]7+ polycations and [Mo7O24]6- polyoxometalate anions[J]. J Non-Crystal Solids, 2003, 318: 186–192.
    [39] Son J H, Choi H, Kwon Y U. J Porous Crystal Formation from Polyoxometalate Building Blocks: Single-Crystal Structure of [AlO4Al12(OH)12(H2O)24][Al(OH)6Mo6O18]2(OH)·29.5H2O[J]. J Am Chem Soc, 2000, 122: 7432–7433.
    [40] Son J H, Kwon Y U, Han O H. New Ionic Crystals of Oppositely Charged Cluster Ions and Their Characterization[J]. Inorg Chem, 2003, 42: 4153–4159.
    [41] Son J H, Kwon Y U. Crystal Engineering through Face Interactions between Tetrahedral and Octahedral Building Blocks: Crystal Structure of [ε-Al13O4(OH)24(H2O)12]2 [V2W4O19]3(OH)2·27H2O[J]. Inorg Chem, 2004, 43: 1929–1932.
    [42] Son J H, Kwon Y U. Polymorphism in intercluster salt system: two crystal structures of [Al13O4(OH)24(H2O)12][H2W12O40](OH)·nH2O[J]. Inorg Chim Acta, 2005, 358: 310–314.
    [43] Uchida S, Mizuno N. Design and syntheses of nano-structured ionic crystals with selective sorption properties[J]. Coord Chem Rev, 2007, 251: 2537–2546.
    [44] Uchida S, Kawamoto R, Akatsuka T, et al. Structures and Sorption Properties of Ionic Crystals of Macrocation-Dawson-Type Polyoxometalates with Different Charges[J]. Chem Mater, 2005, 17: 1367–1375.
    [45] Uchida S, Kawamoto R, Mizuno N. Recognition of Small Polar Molecules with an Ionic Crystal ofα-Keggin-Type Polyoxometalate with a Macrocation[J]. Inorg Chem, 2006, 45: 5136–5144.
    [46] Lesbani A, Kawamoto R, Uchida S, et al. Control of Structures and Sorption Properties of Ionic Crystals of A2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] (A = Na, K, Rb, NH4, Cs, TMA)[J]. Inorg Chem, 2008, 47: 3349–3357.
    [47] Uchida S, Mizuno N. Zeotype Ionic Crystal of Cs5[Cr3O(OOCH)6(H2O)3] [α-CoW12O40]·7.5H2O with Shape-Selective Adsorption of Water[J]. J Am Chem Soc, 2004, 126: 1602–1603.
    [48] Kawamoto R, Uchida S, Mizuno N. Amphiphilic guest sorption of K2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] ionic crystal[J]. J Am Chem Soc, 2005, 127: 10560–10567.
    [49] Jiang C J, Lesbani A, Kawamoto R, et al. Channel-Selective Independent Sorption and Collection of Hydrophilic and Hydrophobic Molecules by Cs2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] Ionic Crystal[J]. J Am Chem Soc, 2006, 128: 14240–14241.
    [50] Uchida S, Kawamoto R, Tagami H, et al. Highly Selective Sorption of Small Unsaturated Hydrocarbons by Nonporous Flexible Framework with Silver Ion[J]. J Am Chem Soc, 2008, 130: 12370–12376
    [51] Ogasawara Y, Uchida S, Mizuno N. States of water in ionic crystals of [Cr3O(OOCH)6(H2O)3]+ macrocation withα-keggin-type polyoxometalates[J]. J Phys Chem C, 2007, 111: 8218–8227.
    [52] Uchida S, Hashimoto M, Mizuno N. A Breathing Ionic Crystal Displaying Selective Binding of Small Alcohols and Nitriles: K3[Cr3O(OOCH)6(H2O)3] [α-SiW12O40]·16H2O[J]. Angew Chem Int Ed, 2002,41: 2814–2817.
    [53] Uchida S, Mizuno N. Unique Guest-Inclusion Properties of a Breathing Ionic Crystal of K3[Cr3O(OOCH)6(H2O)3][α-SiW12O40]·16H2O[J]. Chem Eur J, 2003, 9: 5850–5857.
    [54] Mizuno N, Uchida S. Structures and sorption properties of ionic crystals of polyoxometalates with macrocation[J]. Chem Lett, 2006, 35: 688–693.
    [55] Qu X S, Xu L, Qiu Y F, et al. New series of porous ionic crystals constructed from various polyoxometalate anions and macrocations: Syntheses, crystal structures, and comparison with diverse spatial arrangement[J]. Z Anorg Allg Chem, 2007, 633: 1040–1047.
    [56] Sha J Q, Huang L, Peng J, et al. Assembly of hexad-track Ag-N coordination polymeric chain-modified Keggin polyoxometalates[J]. Solid State Sci, 2008, 10: 1491–1498.
    [57] Wang X L, Guo Y Q, Li Y G, et al. Novel Polyoxometalate-Templated, 3-D Supramolecular Networks Based on Lanthanide Dimers: Synthesis, Structure, and Fluorescent Properties of [Ln2(DNBA)4(DMF)8][Mo6O19] (DNBA = 3,5-Dinitrobenzoate)[J]. Inorg Chem, 2003, 42: 4135–4140.
    [58] Jin H, Qi Y F, Wang E B, et al. A Novel Copper(I) Halide Framework Templated by Organic–Inorganic Hybrid Polyoxometalate Chains Formed In Situ: A New Route for the Design and Synthesis of Porous Frameworks[J]. Eur. J. Inorg. Chem., 2006, 4541–4545.
    [59] Knaust J M, Inman C, Keller S W. A host-guest complex between a metal-organic cyclotriveratrylene analog and a polyoxometalate: [Cu6(4,7-phenanthroline)8(MeCN)4]2 PM12O40 (M = Mo or W)[J]. Chem Commun, 2004, 492–493.
    [60] Wei M L, He C, Hua W J, et al. A Large Protonated Water Cluster H+(H2O)27 in a 3D Metal-Organic Framework[J]. J. Am. Chem. Soc., 2006, 128: 13318–13319.
    [61] Wei M L, He C, Sun Q Z, et al. Zeolite Ionic Crystals Assembled through Direct Incorporation of Polyoxometalate Clusters within 3D Metal-Organic Frameworks[J]. Inorg. Chem., 2007, 46: 5957–5966.
    [62] Zhao X Y, Liang D D, Liu S X, et al. Two Dawson-Templated Three-Dimensional Metal?Organic Frameworks Based on Oxalate-Bridged Binuclear Cobalt(II)/Nickel(II) SBUs and Bpy Linkers[J]. Inorg. Chem., 2008, 47: 7133–7138.
    [63] Li Y G, Dai L M, Wang Y H, et al. A new molybdenum-oxide-based organic–inorganic hybrid framework templated by double-Keggin anions[J]. Chem Commun, 2007, 2593-2595.
    [64] Dai L M, You W S, Li Y G, et al. A new polyoxometalate-templated Mo/V-oxide-based organic–inorganic hybrid framework with a honeycomb-like structure[J]. Chem Commun, 2009, asap.
    [65] Müller A, Das S K, B?gge H, et al. Generation of cluster capsules (Ih) from decomposition products of a smaller cluster (Keggin-Td) while surviving ones get encapsulated: Species with core-shell topology formed by a fundamental symmetry-driven reaction[J]. Chem Commun, 2001, 657–658.
    [66] Müller A, Das S K, K?gerler P, et al. A New Type of Supramolecular Compound: Molybdenum-Oxide-Based Composites Consisting of Magnetic Nanocapsules with EncapsulatedKeggin-Ion Electron Reservoirs Cross-Linked to a Two-Dimensional Network[J]. Angew Chem Int Ed, 2000, 39: 3413–3417.
    [67] Müller A, Zhou Y S, B?gge H, et al.“Gating”the Pores of a Metal Oxide Based Capsule: After Initial Cation Uptake Subsequent Cations Are Found Hydrated and Supramolecularly Fixed above the Pores[J]. Angew Chem Int Ed, 2006, 45: 460–465.
    [68] Müller A, Todea A M, B?gge H, et al. Formation of a“less stable”polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth: [{Mo6O19}2?{MoVI72FeIII30O252(ac)20(H2O)92}]4-[J]. Chem Commun, 2006, 3066–3068.
    [69] (a) Randall D. Kamien. Topology from the Bottom Up[J]. Science, 2003, 299: 1671–1672. (b) Zhang J P, Huang X C, Chen X M. Supramolecular isomerism in coordination polymers[J]. Chem. Soc. Rev., 2009, DOI: 10.1039/b900317g.
    [70] Ikkala1 O, Brinke G t. Functional Materials Based on Self-Assembly of Polymeric Supramolecules[J]. Science, 2002, 295: 2407–2409.
    [71] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469–472.
    [72] Wang X L, Qin C, Wang E B, et al. Self-Assembly of Nanometer-Scale [Cu24I10L12]14+ Cages and Ball-Shaped Keggin Clusters into a (4,12)-Connected 3D Framework with Photoluminescent and Electrochemical Properties[J]. Angew Chem Int Ed, 2006, 45: 7411–7414.
    [73] Cheetham A K, Férey G, Loiseau T. Open-Framework Inorganic Materials[J]. Angew. Chem Int Ed, 1999, 38: 3268–3292.
    [74] Yu J H, Xu R R. Rich Structure Chemistry in the Aluminophosphate Family[J]. Acc Chem Res, 2003, 36: 481–490.
    [75] Smith J V, Topochemistry of zeolites and related materials. 1. Topology and geometry[J]. Chem Rev, 1988, 88: 149–182.
    [76] Hagrman P J, Hagrman D, Zubieta J. Organic-Inorganic Hybrid Materials: From“Simple”Coordination Polymers to Organodiamine-Templated Molybdenum Oxides[J]. Angew Chem Int Ed, 1999, 38: 2638–2684.
    [77] Tanev P T, Pinnavaia T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies[J]. Science, 1996, 271: 1267–1269.
    [78] Kong X J, Ren Y P, Zheng P Q, et al. Construction of Polyoxometalates-Based Coordination Polymers through Direct Incorporation between Polyoxometalates and the Voids in a 2D Network[J]. Inorg. Chem., 2006, 45: 10702–10711.
    [79] Wang X L, Bi Y F, Chen B K, et al. Self-Assembly of Organic–Inorganic Hybrid Materials Constructed from Eight-Connected Coordination Polymer Hosts with Nanotube Channels and Polyoxometalate Guests As Templates[J]. Inorg. Chem., 2008, 47, 2442–2448.
    [80]赵朴素,卑凤利,杨绪杰,等.新型异三聚体超分子的密度泛函计算及其晶体结构、热性能研究[J ].化学学报, 2004 ,62 (14): 12652–1271.
    [1] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem Rev, 2001, 101: 1629–1658.
    [2] Cotton F A, Lin C, Murillo C A. Supramolecular Arrays Based on Dimetal Building Units[J]. Acc Chem Res, 2001, 34: 759–771.
    [3] Müller A, Serain C. Soluble Molybdenum Blues-"des Pudels Kern"[J]. Acc Chem Res, 2000, 33: 2–10.
    [4] Eddaoudi M, Moler D B, Li H L, et al. Acc Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Chem Res, 2001, 34: 319–330.
    [5] Holliday B J, Mirkin C A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry[J]. Angew Chem Int Ed, 2001, 40: 2022-2043.
    [6] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375.
    [7] Yaghi O M, Li H L, Groy T L. A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)2.5(H2O)2(ClO4)2·1.5(4,4'-bpy)·2H2O[J]. Inorg Chem, 1997, 36: 4292–4293.
    [8] Cussen E J, Claridge J B, Rosseinsky M J, et al. Flexible Sorption and Transformation Behavior in a Microporous Metal-Organic Framework[J]. J Am Chem Soc, 2002, 124: 9574–9581.
    [9] Finn R C, Burkholder E, Zubieta J. The hydrothermal syntheses and characterization of one-and two-dimensional structures constructed from metal–organic derivatives of polyoxometalates: [{Cu(bpy)2}{Cu(bpy)(H2O)}(Mo5O15){O3P(CH2)4PO3}]·H2O and [{Cu2(tpypyz)(H2O)2}(Mo5O15)(O3PCH2CH2PO3)]·5.5H2O [bpy = 2,2’-bipyridine, tpypyz = tetra(2-pyridyl)pyrazine][J]. Chem Commun, 2001, 1852–1853.
    [10] Kahn M I, Yohannes E, Powell D. Vanadium Oxide Clusters as Building Blocks for the Synthesis of Metal Oxide Surfaces and Framework Materials: Synthesis and X-ray Crystal Structure of [H6Mn3VIV15VV4O46(H2O)12]·30H2O[J]. Inorg Chem, 1999, 38: 212–213.
    [11] Sadakane M, Dickman M H, Pope M T. Controlled Assembly of Polyoxometalate Chains from Lacunary Building Blocks and Lanthanide-Cation Linkers[J]. Angew Chem Int Ed, 2000, 39: 2914–2916.
    [12] Coronado E, Gómez-García C J. Polyoxometalate-Based Molecular Materials[J]. Chem Rev, 1998, 98: 273–296.
    [13] Golhen S, Ouahab L, Grandjean D, et al. Preparation,Crystal Structures,and Magnetic and ESR Properties of Molecular Assemblies of Ferrocenium Derivatives and Paramagnetic Polyoxometalates[J]. Inorg Chem, 1998, 37: 1499–1506.
    [14] Yaghi O M, Sun Z, Richardson D A, et al. Directed Transformation of Molecules to Solids: Synthesis of a Microporous Sulfide from Molecular Germanium Sulfide Cages[J]. J Am Chem Soc, 1994, 116: 807–808.
    [15] Beauvais L G, Shores M P, Long J R. Cyano-Bridged Re6Q8 (Q = S, Se) Cluster-Metal Framework Solids: A New Class of Porous Materials[J]. Chem Mater, 1998, 10: 3783–3786.
    [16] Shores M P, Beauvais L G, Long J R. Cluster-Expanded Prussian Blue Analogues[J]. J Am Chem Soc, 1999, 121: 775–779.
    [17] Müler A, K?gerler P, Kuhlmann C. A variety of combinatorially linkable units as disposition: from a giant icosahedral Keplerate to multi-functional metal–oxide based network structures[J]. Chem Commun, 1999, 15: 1347–1358.
    [18] Müller A, Krickemeyer E, Meyer J, et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)-: A Water-Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000[J]. Angew Chem Int Ed, 1995, 34: 2122–2124.
    [19] Müller A, Krickemeyer E, B?gge H, et al. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide[J]. Angew Chem Int Ed, 1998, 37: 3359–3363.
    [20] Fenske D, Anson C E, Eichhofer A, et al. Syntheses and Crystal Structures of [Ag123S35(StBu)50] and [Ag344S124(StBu)96][J]. Angew Chem Int Ed, 2005, 44: 5242–5246.
    [21] Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices[J]. Chem Soc Rev, 2007, 36: 105–121.
    [22] Mialane P, Dolbecq A, Sécheresse F. Functionalization of polyoxometalates by carboxylato and azido ligands: Macromolecular complexes and extended compounds[J]. Chem Commun, 2006, 3477–3485.
    [23] B?sing M, N?h A, Loose I. et al. Highly efficient catalysts in directed oxygen-transfer processes: Synthesis, structures of novel manganese-containing heteropolyanions, and applications in regioselective epoxidation of dienes with hydrogen peroxide[J]. J Am Chem Soc, 1998, 120: 7252–7259.
    [24] Fukaya K, Yamase T. Alkali-metal-controlled self-assembly of crown-shaped ring complexes of lanthanide/[α-AsW9O33]9-[J]. Angew Chem Int Ed, 2003, 42: 654–658.
    [25] Ritchie C, Burkholder E M, Long D L, et al. Exploiting the multifunctionality of organocations in the assembly of hybrid polyoxometalate clusters and networks[J]. Chem Commun, 2007, 468–470.
    [26] Botar B, Geletii Y V, K?gerler P, et al. The true nature of the di-iron(III)γ-Keggin structure in water: Catalytic aerobic oxidation and chemistry of an unsymmetrical trimer[J]. J Am Chem Soc, 2006, 128: 11268–11277.
    [27] Clemente-Juan J M, Coronado E, Forment-Aliaga A, et al. A New Heptanuclear Cobalt(II) Cluster Encapsulated in a Novel Heteropolyoxometalate Topology: Synthesis, Structure, and Magnetic Properties of [Co7(H2O)2(OH)2P2W25O94]16-[J]. Inorg Chem, 2004, 43: 2689–2694.
    [28] Mal S S, Dickman M H, Kortz U, et al. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster[J]. Chem Eur J, 2008, 14: 1186–1195.
    [29] Fang X K, Anderson T M, Hou, Y,et al. Stereoisomerism in polyoxometalates: Structural and spectroscopic studies of bis(malate)-functionalized cluster systems[J]. Chem Commun, 2005, 5044–5046.
    [30] Zhang Z M, Li Y G, Wang E B, et al. Synthesis, Characterization, and Crystal Structures of Two Novel High-Nuclear Nickel-Substituted Dimeric Polyoxometalates[J]. Inorg Chem, 2006, 45: 4313–4315.
    [31] Zhang Z M, Qi Y F, Qin C, et al. Two Multi-Copper-Containing Heteropolyoxotungstates Constructed from the Lacunary Keggin Polyoxoanion and the High-Nuclear Spin Cluster[J]. Inorg Chem, 2007, 46: 8162–8169.
    [32] Contant R, TézéA. A new crown heteropolyanion, K28Li5H7P8W48O184·92H2O: Synthesis, structure, and properties[J]. Inorg Chem, 1985, 24: 4610–4614.
    [33] Contant R. Potassium octadecatungstodiphosphates K6P2W18O62[J]. Inorg Synth, 1990, 27: 104–110.
    [34] Alam M S, Dremov V, Müller P, et al. STM/STS observation of polyoxoanions on HOPG surfaces: The wheel-shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- and the ball-shaped [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-PW9O34)12]36-[J]. Inorg Chem, 2006, 45: 2866–2872.
    [35] Godin B, Chen Y G, Vaissermann J, et al. Coordination chemistry of the hexavacant tungstophosphate [H2P2W12O48]12- with FeIII ions: Towards original structures of increasing size and complexity[J]. Angew Chem Int Ed, 2005, 44: 3072–307.
    [36] Mal S S, Kortz U. The wheel-shaped Cu20 tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- ion[J]. Angew Chem Int Ed, 2005, 44: 3777–3780.
    [37] Müller A, Pope M T, Todea A M, et al. Metal-oxide-based nucleation process under confined conditions: Two mixed-valence V6- type aggregates closing the W48 wheel-type cluster cavities[J]. Angew Chem IntEd, 2007, 46: 4477–4480.
    [38] Pichon C, Mialane P, Dolbecq A, et al. Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates[J]. Inorg Chem, 2007, 46: 5292–5301.
    [39] Zimmermann M, Belai N, Butcher R J, et al. New lanthanide-containing polytungstates derived from the cyclic P8W48 anion: {Ln4(H2O)28[K?P8W48O184(H4W4O12)2 Ln2(H2O)10]13-}x, Ln = La, Ce, Pr, Nd[J]. Inor Chem, 2007, 46: 1737–1740.
    [40] Mal S S, Nsouli N H, Dickman M H, et al. Organoruthenium derivative of the cyclic [H7P8W48O184]33- anion: [{K(H2O)}3{Ru(p-cymene)(H2O)}4P8W49O186(H2O)2]27-[J]. Dalton Trans, 2007, 2627–2630.
    [41] Zhang Z M, Yao S, Li Y G, et al. New trimeric polyoxotungstate aggregates based on [P2W12O48]14- building blocks[J]. Chem Commun, 2008, 1650–1652.
    [42] Zhang Z M, Yao S, Qi Y F, et al. A new heart-like Co-containing polyoxoanion based on the lacunary Preyssler Anion[J]. Dalton Trans, 2008, 3051–3053.
    [43] Jeannin Y P. Arsenic(III) as a non-metallic atom in heteropolytungstates: Toward very large polyanions[J]. Cluster Sci, 1992, 3: 55–81.
    [44] Alizadeh M H, Harmalker S P, Jeannin Y, et al. A heteropolyanion with fivefold molecular symmetry that contains a nonlabile encapsulated sodium ion. The structure and chemistry of [NaP5W30O110]14-[J]. J Am Chem Soc, 1985, 107: 2662–2669.
    [45] Hussain F, Kortz U, Keita B,et al. Tetrakis(dimethyltin)-containing tungstophosphate [{Sn(CH3)2}4(H2P4W24O92)2]28-: First evidence for a lacunary preyssler ion[J]. Inorg Chem, 2006, 45: 761–766.
    [46] Mal S S, Dickman M H, Kortz U. Actinide polyoxometalates: Incorporation of uranyl-peroxo in U-shaped 36-tungsto-8-phosphate[J]. Chem Eur J, 2008, 14: 9851–9855.
    [47] Mitchell S G, Gabb D, Ritchie C, et al. Controlling nucleation of the cyclic heteropolyanion {P8W48}: A cobalt-substituted phosphotungstate chain and network[J]. Cryst Eng Comm, 2009, 11: 36–39.
    [48] Zhang Z M, Li Y G, Wang Y H, et al. Extended Organic–Inorganic Hybrids Based on Dawson and Double-Dawson-Type Polyoxometalates[J]. Inorg Chem, 2008, 47: 7615–7622.
    [49] Ostuni A, Pope M T. A large heteropolytungstotetracerate(III) based on a new divacant lacunary derivative of the Wells-Dawson tungstophosphate anion[J]. Comptes Rendus Acad Sci Sér IIc, 2000, 3: 199–204.
    [50] Godin B, Vaissermann J, Herson P, et al. Coordination chemistry of the hexavacant tungstophosphate [H2P2W12O48]12-: Synthesis and characterization of iron(III) complexes derived from the unprecedented {P2W14O54} fragment[J]. Chem Commun, 2005, 5624–5626.
    [51] Tasiopoulos A J, O’Brien T A, Abboud K A, et al. Mixed Transition-Metal-Lanthanide Complexes at Higher Oxidation States: Heteronuclear CeIV-MnIV Clusters[J]. Angew Chem Int Ed, 2004, 43: 345–349.
    [52] Tasiopoulos A J, Milligan Jr P L, Abboud K A, et al. Mixed transition metal-lanthanide complexes athigh oxidation states: Heteronuclear CeIVMnIV clusters[J]. Inorg Chem, 2007, 46: 9678–9691.
    [53] Tasiopoulos A J, Wernsdorfer W, Moulton B, et al. Template Synthesis and Single-Molecule Magnetism Properties of a Complex with Spin S = 16 and a [Mn8O8]8+ Saddle-Like Core[J]. J Am Chem Soc, 2003, 125: 15274–15275.
    [1] Bar-Nahum I, Cohen H, Neumann R. Organometallic-polyoxometalate hybrid compounds: Metallosalen compounds modified by Keggin type polyoxometalates[J]. Inorg Chem, 2003, 42: 3677–3684.
    [2] Bar-Nahum I, Khenkin A M, Neumann R. Mild, aqueous, aerobic, catalytic oxidation of methane to methanol and acetaldehyde catalyzed by a supported bipyrimidinylplatinum- polyoxometalate hybrid compound[J]. J Am Chem Soc, 2004, 126: 10236–10237.
    [3] Bar-Nahum I, Neumann R. Synthesis, characterization and catalytic activity of a Wilkinson's type metal-organic-polyoxometalate hybrid compound[J]. Chem Commun, 2003, 2690–2691.
    [4] Mirkhani V, Moghadam M, Tangestaninejad S, et al. Oxidation of alkanes with hydrogen peroxidecatalyzed by Schiff base complexes covalently anchored to polyoxometalate[J]. Catal Commun, 2008, 9: 2171–2174.
    [5] Mirkhani V, Moghadam M, Tangestaninejad S, et al. Catalytic oxidation of olefins with hydrogen peroxide catalyzed by [Fe(III)(salen)Cl] complex covalently linked to polyoxometalate[J]. Inorg Chem Commun, 2007, 10: 1537–1540.
    [6] Filowitz M, Ho R K C, Klemperer W G, et al. 17O nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution[J]. Inorg Chem, 1979, 18: 93–103.
    [7] Garcia-Deibe A, Bermejo M R, Sousa A, et al. Synthesis and characterisation of manganese(III) unsymmetrical Schiff-base complexes: A unique example of a cocrystallised manganese(III) unsymmetrical Schiff-base complex, and a symmetric Schiff-base complex arising from rearrangement of the former[J]. J Chem Soc Dalton Trans, 1993, 1605–1610.
    [8] Bermejo M R, Casti?eiras A, Garcia-Monteagudo J C, et al. Electronic and steric effects in manganese Schiff-base complexes as models for the water oxidation complex in photosystem II. The isolation of manganese-(II) and -(III) complexes of 3- and 3,5-substituted N,N′-bis(salicylidene)ethane-1,2-diamine (H2salen) ligands[J]. J Chem Soc Dalton Trans, 1996, 2935–2944.
    [9] Garcia-Deibe A, Sousa A, Bermejo M R, et al. The visible light induced rearrangement of a manganese(III) complex of an unsymmetrical tetradentate Schiff's base ligand, 4-[2-(2- hydroxyphenylmethyleneamino)ethylamino]pent-3-en-2-one, to a manganese(III) complex of the symmetrical ligand salen[J]. J Chem Soc Chem Commun, 1991, 728–729.
    [10] Miyasaka H, Clrac R, Ishii T, et al. Out-of-plane dimers of Mn(III) quadridentate Schiff-base complexes with saltmen2- and naphtmen2- ligands: Structure analysis and ferromagnetic exchange[J]. J Chem Soc Dalton Trans, 2002: 1528–1534.
    [11] Zhang X M. Hydro(solvo)thermal in situ ligand syntheses[J]. Coord Chem Rev, 2005, 249: 1201–1219.
    [12] Xi R, Wang B, Isobe K, et al. Isolation and X-ray crystal structure of a new octamolybdate: [(RhCp*)2(μ2-SCH3)3]4[Mo8O26]·2CH3CN (Cp* =η5-C5Me5)[J]. Inorg Chem, 1994, 33: 833–836.
    [13] Qin C, Wang X L, Qi Y F, et al. A novel two-dimensionalβ-octamolybdate supported alkaline-earth metal complex: [Ba(DMF)2(H2O)]2[Mo8O26]·2DMF[J]. J Solid State Chem, 2004, 177: 3263–3269.
    [14] Veltman T R, Stover A K, Sarjeant A N, et al. Directed synthesis of noncentrosymmetric molybdates using composition space analysis[J]. Inorg Chem, 2006, 45: 5529–5537.
    [1] An H Y, Wang E B, Xiao D R, et al. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper–Amino Acid Complexes[J]. Angew. Chem., Int. Ed., 2006, 45: 904–908.
    [2] Lu Y, Xu Y, Wang E B, et al. Novel Two-Dimensional Network Constructed from PolyoxomolybdateChains Linked through Copper?Organonitrogen Coordination Polymer Chains: Hydrothermal Synthesis and Structure of [H2bpy][Cu(4,4‘-bpy)]2[HPCuMo11O39][J]. Cryst. Growth Des., 2005, 5: 257–260.
    [3] Niu J Y, Wei M L, Wang J P,et al. 1D-Polyoxometalate-Based Composite Compounds - Design, Synthesis, Crystal Structures, and Properties of [{Ln(NMP)6}(PMo12O40)]n (Ln = La, Ce, Pr; NMP = N-methyl-2-pyrrolidone)[J]. Eur. J. Inorg. Chem., 2004,160–170.
    [4] Wu C D, Lu C Z, Zhuang H H, et al. Hydrothermal Assembly of a Novel Three-Dimensional Framework Formed by [GdMo12O42]9- Anions and Nine Coordinated GdIII Cations[J]. J. Am. Chem. Soc., 2002, 124: 3836–3837.
    [5] Reinoso S, Vitoria P, Lezama L, et al. A Novel Organic?Inorganic Hybrid Based on a Dinuclear Copper Complex Supported on a Keggin Polyoxometalate[J]. Inorg. Chem., 2003, 42: 3709–3711.
    [6] Bonhomme F, Larentzos J P, Alam T M, et al. Synthesis, Structural Characterization, and Molecular Modeling of Dodecaniobate Keggin Chain Materials[J]. Inorg. Chem., 2005, 44: 1774–1785.
    [7] Khan M I, Yohannes E, Powell D. Synthesis and characterization of a new mixed-metal oxide framework material composed of vanadium oxide clusters: X-ray crystal structure of (N2H5)2[Zn3VIV12VV6O42(SO4)(H2O)12]·24H2O[J]. Chem. Commun., 1999, 23–24.
    [8] Khan M I, Yohannes E, Doedens R. [M3V18O42(H2O)12(XO4)]·24H2O (M=Fe, Co; X=V, S): Metal Oxide Based Framework Materials Composed of Polyoxovanadate Clusters[J]. Angew. Chem., Int. Ed., 1999, 38: 1292–1294
    [9] Cui X B, Xu J Q, Meng H., et al. A Novel Chainlike As?V?O Polymer Based on a Transition Metal Complex and a Dimeric Polyoxoanion[J]. Inorg. Chem., 2004, 43: 8005–8009.
    [10] An H Y, Li Y G, Wang E B, et al. Self-Assembly of a Series of Extended Architectures Based on Polyoxometalate Clusters and Silver Coordination Complexes[J]. Inorg. Chem., 2005, 44: 6062–6070.
    [11] Tan H Q, Li Y G, Zhang Z M, et al. Chiral Polyoxometalate-Induced Enantiomerically 3D Architectures: A New Route for Synthesis of High-Dimensional Chiral Compounds[J]. J. Am. Chem. Soc., 2007, 129: 10066–10067.
    [12] Liu S X, Li D H, Xie L H,et al. Two-Dimensional Lanthanide Heteropolyvanadates of Manganese(IV) and Nickel(IV) Containing Two Types of Heteropoly Anions with 1:13 and 1:12 Stoichiometry[J]. Inorg. Chem., 2006, 45: 8036–8040.
    [13] Zhang X T, Wang D Q, Dou J M, et al. Polyoxometalate (W/Mo) Compounds Connected via Lanthanide Cations with a Three-Dimensional Framework, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}·nH2O: Synthesis, Structures, and Magnetic Properties[J]. Inorg. Chem., 2006, 45: 10629–10635.
    [14] Bareyt S, Piligkos S, Hasenknopf B, Gouzerh P, et al. Highly Efficient Peptide Bond Formation to Functionalized Wells-Dawson-Type Polyoxotungstates[J]. Angew. Chem., Int. Ed., 2003, 42: 3404–3406.
    [15] Evans J H T, Rollins O W. Sodium paradodecatungstate 20-hydrate[J]. Acta Crystallogr Sect B, 1976, 32: 1565–1567.
    [16] Xu Z H, Wang X L, Li, Y G, et al. A novel bismuth ion-bridged chainlike assembly from paradodecatungstate [H2W12O42]10- anions: (NH4)7[Bi(H2W12O42)]·20H2O[J]. Inorg Chem Commun, 2007, 10: 276–278.
    [17] Gimenez-Saiz C, Galan-Mascaros J R, Triki S, et al. [(Co(H2O)4)2(H2W12O42)]n6n-: A novel chainlike heteropolyanion formed by paradodecatungstate and cobalt(II) ions[J]. Inorg Chem, 1995, 34: 524–526.
    [18] Sun C Y, Liu S X, Xie L H, et al. Synthesis and characterization of one- to three- dimensional compounds composed of paradodecatungstate-B cluster and transition metals as linkers[J]. J Solid State Chem, 2006, 179: 2093–2100.
    [19] Loose I, Bosing M, Klein R, et al. Synthesis, structure of polymeric cobalt-containing heteropolytungstates and their applications in oxidation catalysis[J]. Inorg Chim Acta, 1997, 263: 99–108.
    [20] Zhang X T, Dou J M, Wang D Q, et al. Divalent Manganese Linked Tungsten- Molybdenum Polyoxometalates: Synthesis, Structure, and Magnetic Characteristics[J]. Cryst Growth Des, 2007, 7(9): 1699–1705.
    [21] Shi D M, Pang H J, Chen Y G. A new polymeric chain constructed from isopolyanions and lanthanide cations: Synthesis, crystal structure, and properties of (NH4)5[Ln(NO3)2(H2O)3] [H2W12O40]·nH2O (Ln = Ce, Pr, Nd, Gd, Dy, Ho)[J]. Solid State Sciences, 2008, 10: 847–853.
    [22] Zhang X T, Wang, D Q, Dou J M,et al. Polyoxometalate (W/Mo) Compounds Connected via Lanthanide Cations with a Three-Dimensional Framework, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}·nH2O: Synthesis, Structures, and Magnetic Properties[J]. Inorg Chem, 2006, 45: 10629–10635.
    [1] Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord. Chem Rev, 2003, 246: 247–289.
    [2] Evans O R, Lin W B. Crystal engineering of NLO materials based on metal-organic coordination networks[J]. Acc Chem Res, 2002, 35: 511–522.
    [3] Batten S R, Murray K S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide[J]. Coord Chem Rev, 2003, 246: 103–130.
    [4] Hill R J, Long D L, Champenss N R,et al. New approaches to the analysis of high connectivity materials: Design frameworks based upon 44- and 63-subnet tectons[J]. Acc Chem Res, 2005, 38: 335–348.
    [5] Kawano M, Fujita M. Direct observation of crystalline-state guest exchange in coordination networks[J]. Coord Chem Rev, 2007, 251: 2592–2605.
    [6] Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers[J]. Coord Chem Rev, 2007, 251: 2490–2509.
    [7] Lu J Y. Crystal engineering of Cu-containing metal-organic coordination polymers under hydrothermal conditions[J]. Coord Chem Rev, 2003, 246: 327–347.
    [8] Chun H, Dybtsev D N, Kim H, et al. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials[J]. Chem Eur J, 2005, 11: 3521–3529.
    [9] Cui Y, Lee S J, Lin W B. Interlocked chiral nanotubes assembled from quintuple helices[J]. J Am Chem Soc, 2003,125: 6014–6015.
    [10] Moulton B, Abourahma H, Bradner M W, et al. A new 65.8 topology and a distorted 65.8 CdSO4 topology: Two new supramolecular isomers of [M2(bdc)2(L)2]n coordination polymers[J]. Chem Commun, 2003, 1342–1343.
    [11] Lehn J M. Toward self-organization and complex matter[J]. Science, 2002, 295: 2400–2403.
    [12] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement[J]. Angew Chem Int Ed, 1998, 37: 1460–1494.
    [13] Batten S R. Topology of interpenetration[J]. CrystEngComm. 2001, 3: 67–72.
    [14] Blatov V A, Carlucci L, Ciani G, et al. Interpenetrating metal-organic and inorganic 3D networks: A computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database[J]. CrystEngComm, 2004, 6: 377–395.
    [15] Bu X H, Tong M L, Chang H C, et al. A neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew Chem Int Ed, 2004, 43: 192–195.
    [16] Withersby A, Blake A J, Champness N R,et al. Assembly of a three-dimensional polyknotted coordination polymer[J]. J Am Chem Soc, 2000, 122: 4044–4046.
    [17] Galet A, Munoz M C, Real J A. Synergy between Spin Crossover and Metallophilicity in Triple Interpenetrated 3D Nets with the NbO Structure Type[J]. J Am Chem Soc, 2003, 125: 14224–14225.
    [18] Wang Q M, Guo G C, Mak T C W. A coordination polymer based on twofold interpenetrating three-dimensional four-connected nets of 42638 topology, [CuSCN(bpa)] [bpa = 1,2-bis(4-pyridyl)ethane][J]. Chem Commun, 1999, 1849–1850.
    [19] Carlucci L, Ciani G, Proserpio D M. Interpenetrated and noninterpenetrated three-dimensional networks in the polymeric species Ag(tta) and 2Ag(tta). AgNO3 (tta = tetrazolate): The first examples of theμ4:η1:η1:η1:η1 bonding mode for tetrazolate[J]. Angew Chem Int Ed, 1999, 38: 3488–3492.
    [20] Carlucci L, Ciani G, Porta F, et al. Crystal engineering of mixed-metal Ru-Ag coordination networks by using the trans-[RuCl2(pyz)4] (pyz = pyrazine) building block[J]. Angew Chem Int Ed, 2002, 41: 1907–1911.
    [21] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705–714.
    [22] Eddaoudi M, Moler D B, Li H L, et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks[J]. Acc Chem Res, 2001, 34: 319–330.
    [23] Chen B L, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291: 1021–1023.
    [24] Kong L Y, Zhang Z H, Zhu H F, et al. Copper(II) and zinc(II) complexes can fix atmospheric carbon dioxide[J]. Angew Chem Int Ed, 2005, 44: 4352–4355.
    [25] Zhu H F, Fan J, Okamura T, et al. Metal-organic architectures of silver(I), cadmium(II), and copper(II) with a flexible tricarboxylate ligand[J]. Inorg Chem, 2006, 45: 3941–3948.
    [26] Moulton B, Zaworotko M J. From molecules to crystal engineering: Supramolecular isomerism andpolymorphism in network solids[J]. Chem Rev, 2001, 101: 1629–1658.
    [27] Robson R. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): A personal view[J]. Dalton Trans, 2008, 5113–5131.
    [28] Holliday B J, Mirkin C A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry[J]. Angew Chem Int Ed, 2001, 40: 2022–2043.
    [29] Leininger S, Olenyuk B, Stang P J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals[J]. Chem Rev, 2000, 100: 853–908.
    [30] Hosseini M W. Molecular tectonics: From simple tectons to complex molecular networks[J]. Acc Chem Res, 2005, 38: 313–323.
    [31] Steel P J. Ligand design in multimetallic architectures: Six lessons learned[J]. Acc Chem Res, 2005, 38: 243–250.
    [32] Brammer L. Developments in inorganic crystal engineering[J]. Chem Soc Rev, 2004, 33: 476–489.
    [33] Seidel S R, Stang P J. High-symmetry coordination cages via self-assembly[J]. Acc Chem Res, 2002, 35: 972–983.
    [34] Caulder D L, Raymond K N. Supermolecules by design[J]. Acc Chem Res, 1999, 32: 975–982.
    [35] Wang X L, Qin C, Wang E B, et al. Interlocked and interdigitated architectures from self-assembly of long flexible ligands and cadmium salts[J]. Angew Chem Int Ed, 2004, 43: 5036–5040.
    [36] Wang X L, Qin C, Wang E B, et al. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting[J]. Angew Chem Int Ed, 2005, 44: 5824–5827.
    [37] Wang X L, Qin C, Wang E B, et al. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes[J]. Angew Chem Int Ed, 2006, 45: 904–908.
    [38] Wang X L, Qin C, Wang E B, et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, Bi-, and trimetallic cores as nodes[J]. Chem Eur J, 2006, 12: 2680–2691.
    [39] Xiao D R, Wang E B, An H Y, et al. Rationally designed, polymeric, extended metal-ciprofloxacin complexes[J]. Chem Eur J, 2005, 11: 6673–6686.
    [40] Demko Z P, Sharpless K B. Preparation of 5-substituted 1H-tetrazoles from nitriles in water[J]. J Org Chem, 2001, 66: 7945–7950.
    [41] Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks[J]. Chem Commun, 2006, 1689–1699.
    [42] Chen X M, Tong M L. Solvethermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry[J]. Acc Chem Res, 2007, 40: 162–170.
    [43] Zhang X M. Hydro(solvo)thermal in situ ligand syntheses[J]. Coord Chem Rev, 2005, 249: 1201–1219.
    [44] Zhao H, Qu Z R, Ye H Y, et al. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties[J]. Chem Soc Rev, 2008, 37: 84–100.
    [45] Zhang X M, Tong M L, Chen X M. Hydroxylation of N-heterocycle ligands observed in two unusualmixed-valence CuI/CuII complexes[J]. Angew Chem Int Ed, 2002, 41: 1029–1031.
    [46] Hu S, Chen J C, Tong M L, et al. Cu2+-mediated dehydrogenative coupling and hydroxylation of an N-heterocyclic ligand: From generation of a new tetratopic ligand to the designed assembly of three-dimensional copper(I) coordination polymers[J]. Angew Chem Int Ed, 2005, 44: 5471–5475.
    [47] Xiong R G, Xue X, Zhao H, et al. Novel, acentric metal-organic coordination polymers from hydrothermal reactions involving in situ ligand synthesis[J]. Angew Chem Int Ed, 2002, 41: 3800–3803.
    [48] Xue X, Wang X S, Wang L Z, et al. Hydrothermal preparation of novel Cd(II) coordination polymers employing 5-(4-pyridyl)tetrazolate as a bridging ligand[J]. Inorg Chem, 2002, 41: 6544–6546.
    [49] Zhang J Y, Cheng A L, Yue Q, et al. Eight coordination with bis(bidentate) bridging ligands: Zeolitic topology versus square grid networks[J]. Chem Commun, 2008, 847–849.
    [50] Wu T, Yi B H, Li D. Two novel nanoporous supramolecular architectures based on copper(I) coordination polymers with uniform (8, 3) and (8210) nets: In situ formation of tetrazolate ligands[J]. Inorg Chem, 2005, 44: 4130–4132.
    [51] Li J R, Tao Y, Yu Q, et al. A pcu-type metal-organic framework with spindle [Zn7(OH) 8]6+ cluster as secondary building units[J]. Chem Commun, 2007, 1527–1529.
    [52] Tao J, Ma Z J, Huang R B, et al. Synthesis and characterization of a tetrazolate-bridged coordination framework encapsulating D2h-symmetric cyclic (H2O)4 cluster arrays[J]. Inorg Chem, 2004, 43: 6133–6135.
    [53] DincǎM, Yu A F, Long J R. Microporous metal-organic frameworks incorporating 1,4- benzeneditetrazolate: Syntheses, structures, and hydrogen storage properties[J]. J Am Chem Soc, 2006, 128: 8904–8913.
    [54] Bunzli J C G, Piguet C. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies[J]. Chem Rev, 2002, 102: 1897–1928.
    [55] Shibasaki M, Yoshikawa N. Lanthanide Complexes in Multifunctional Asymmetric Catalysis[J]. Chem Rev, 2002, 102: 2187–2210.
    [56] Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals[J]. Chem Rev, 2002, 102: 2369–2388.
    [57] Kido J, Okamoto Y. Organo Lanthanide Metal Complexes for Electroluminescent Materials[J]. Chem Rev, 2002, 102: 2357–2368.
    [58] Bunzli J C G, Piguet C. Taking advantage of luminescent lanthanide ions[J]. Chem Soc Rev, 2005, 34: 1048–1077.
    [59] Plecnik C E, Liu S M, Shore S G. Lanthanide - Transition-metal complexes: From ion pairs to extended arrays[J]. Acc Chem Res, 2003, 36: 499–508.
    [60] Mikami K, Terada M, Matsuzawa H. "Asymmetric" catalysis by lanthanide complexes[J]. Angew Chem Int Ed, 2002, 41: 3555–3572.
    [61] Sabatini N, Guardigli M, Lehn J M. Luminescent lanthanide complexes as photochemicalsupramolecular devices[J]. Coord Chem Rev, 1993, 123: 201–228.
    [62] Zhao B, Chen X Y, Cheng P, et al. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J]. J Am Chem Soc, 2004, 126: 15394–15395.
    [63] Pope S J A, Coe B J, Faulkner S, et al. Self-Assembly of Heterobimetallic d-f Hybrid Complexes: Sensitization of Lanthanide Luminescence by d-Block Metal-to-Ligand Charge-Transfer Excited States[J] J Am Chem Soc, 2004, 126: 9490–9491.
    [64] Zaleski C M, Depperman E C, Kampf J W, et al. Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal single-molecule magnet[J]. Angew Chem Int Ed, 2004, 43: 3912–3914.
    [65] Liu S, Meyers E A, Shore S G. An Inclusion Complex with [Gd(dmf)8]3+ Ions Encapsulated in Pockets of an Anionic Array of [{Cu6(CN)9}3-] Units; A Cyanide-Bridged Cu-Gd Layer Structure[J]. Angew Chem Int Ed, 2002, 41: 3609–3611.
    [66] Zhao B, Cheng P, Dai Y, et al. A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J]. Angew Chem Int Ed, 2003, 42: 934–936.
    [67] Sun Y Q, Zhang J, Yang G Y. A series of luminescent lanthanide–cadmium–organic frameworks with helical channels and tubes[J]. Chem Commun, 2006, 4700-4702.
    [68] Li Y, Zheng F K, Liu X, et al. Crystal structures and magnetic and luminescent properties of a series of homodinuclear lanthanide complexes with 4-cyanobenzoic ligand[J]. Inorg Chem, 2006, 45: 6308-6316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700