富勒烯纳米颗粒(nC_(60))在饱和含水多孔介质中的迁移及对有机污染物迁移行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着碳纳米材料富勒烯及其衍生物的工业化应用不断扩大,这种新型的人造碳纳米材料的环境意义也引起了广泛的重视。水溶胶似的富勒烯纳米颗粒(nC_(60))是富勒烯在水环境中的主要存在形态。nC_(60)对地下水环境的影响不仅在于其本身潜在的生物毒性,而且在于其对于环境中常见的有机污染物的迁移归宿产生的影响。因此,能够全面了解nC_(60)在地下水中的迁移规律以及nC_(60)和有机污染物在含水介质中的协同迁移行为对于正确评估及控制富勒烯的环境风险是至关重要的。
     通过采用土壤柱实验,本论文研究了几种重要的环境参数的变化对nC_(60)在饱和含水土壤介质中的迁移所产生的影响。首先,当达西流速从10m/d降低到1m/d,nC_(60)在Ottawa砂(主要是石英砂)中的迁移并没有受到明显影响。但是当将土壤柱的填充介质换成Lula土壤(为一种有机质含量较低的砂性土壤)时,降低流速可以明显抑制nC_(60)的迁移。这种现象是与土壤含有更细的土壤颗粒以及更加不规则的表面形态有关,可以通过阴影区域效应来进行解释。同时,增加背景溶液的离子强度或者将背景溶液从氯化钠换成氯化钙也能够促进nC_(60)在土壤或砂子上的吸附,只不过这些变化效应对于土壤来说更为明显。这一现象可能与土壤中含有的粘土颗粒及有机质对于改变这些条件的响应比砂子更为明显有关。另外,本研究还发现阴离子种类和腐殖酸是否存在对于nC_(60)的迁移产生的影响不大。在通过使用不同的胶体迁移理论模型对nC_(60)的穿透曲线进行模拟时,本论文研究发现采用双点位模型比改良后的胶体过滤理论模型有更好的拟合效果,尤其是针对nC_(60)在土壤中的迁移情况更为明显。这是由于双点位模型不但考虑到nC_(60)在土壤颗粒上的沉积、阻隔等因素,还包括了nC_(60)被土壤截留等效应,因此双点位模型更适合模拟nC_(60)在复杂介质中的迁移行为。
     本文对富勒烯纳米颗粒与疏水性有机污染物(以多氯联苯和菲为例)在砂性土壤柱子中的协同迁移效应进行了研究。通过研究发现:溶液中含有微量的nC_(60)(浓度大致为10ppm)就能够大大增加多氯联苯和菲在土壤中的移动能力;但是同样浓度的溶解性有机质(如腐殖酸、富里酸和牛蛋白血清)却对多氯联苯的迁移没有任何影响。通过对多氯联苯与富勒烯纳米颗粒的吸附机理分析,得出结论为:nC_(60)能够促进多氯联苯迁移的主要原因是由污染物在nC_(60)上的不可逆吸附机理造成的,同时污染物从nC_(60)上的较慢地解吸附过程也会引起协同迁移现象。本研究结果证明了nC_(60)能够大大促进非极性疏水性有机污染物在地下水中的迁移能力。因此,在综合评价碳纳米材料的环境风险时,需要把纳米材料促进污染迁移的这一现象考虑在内。
With the increasing production and use of buckminsterfullerene (C_(60)) and itsderivatives, the potential environmental implications of these engineered carbonnanomaterials have received much attention. The stable colloidal suspension of C_(60),i.e., fullerene nanoparticles (nC_(60)) is likely the most important form of C_(60)in aqueousenvironments. The environmental effect of nC_(60)to groundwater is not only due to thepotential biological toxicity of nC_(60)to organisms, but also related to the fact that nC_(60)might significantly alter the fate and transport of common environmental organiccontaminants. Thus, understanding the subsurface transport of nC_(60)and the facilitatedtransport of organic contaminants with nC_(60)are of critical importance for the benignuse and risk management of C_(60).
     The effects of several important environmental factors on the transport of nC_(60)through saturated porous media were examined in this paper. Decreasing flowvelocity from approximately10m/d to1m/d had little effect on nC_(60)transportthrough Ottawa sand (mainly pure quartz), but significantly inhibited the transportthrough Lula soil (a sandy, low-organic-matter soil). The difference can beattributed to both the smaller gain size and the more irregular and rougher shapes ofLula soil, and can be explained with the shadow zone effect theory. Increasing ionicstrength and switching background solution from NaCl to CaCl2enhanced thedeposition of nC_(60)in both sand and soil columns, but the effects were moresignificantly for soil. This was likely because the clay minerals (and possibly soilorganic matter) in soil responded to changes of ionic strength and ionic speciesdifferently than quartz. Anions and fulvic acid in the effluents had little effect on thetransport of nC_(60). Compared with the modified clean-bed filtration theory (CFT)model (which incorporates the blocking effect on particle deposition/attachment, i.e.,the blocking of available deposition sites by earlier deposited nanoparticles), thetwo-site transport model that takes into account of both the blocking-affectedattachment process and the straining effect can more accurately model the breakthrough profiles of nC_(60).
     In this study, facilitated transport of2,2’,5,5’-polychloronated biphenyl (PCB) andphenanthrene by nC_(60)(a stable aqueous-phase aggregates of C_(60)) through two sandysoil columns was investigated. Experimental results indicated that low-level (from1.55to12.8mg/L) nC_(60)could significantly enhance the mobility of PCB andphenanthrene. However, none of the three model dissolved organic matters(DOM)—a humic acid, a fulvic acid and a bovine serum albumin—had noticeableeffect on the transport of PCB, when these DOMs were present at concentrationsequivalent to approximately10–11mg/L organic carbon. It is proposed in thisresearch that the contaminant-mobilizing ability of nC_(60)is a result of irreversibleadsorption of a fraction of nC_(60)-associated PCB/phenanthrene (whereasDOM-associated PCB is readily desorbable). Additionally, slow desorption kineticsof nC_(60)-adsorbed PCB/phenanthrene is another possible mechanism. Findings inthis study indicate that nC_(60)in the subsurface environment can greatly enhance themobility of nonionic, highly hydrophobic organic contaminants, which typicallyexhibit very low mobility. Such effects should be taken into account when assessingthe potential environmental risks of engineered carbonaceous nanomaterials.
引文
[1] Mauter M S, Elimelech M. Environmental applications of carbon-based nanomaterials.Environ Sci Technol,2008,42:5843-5859.
    [2] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution viaself-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends.Nat Mater,2008,7:158-164.
    [3] Simon F, Peterlik H, Pfeiffer R, et al. Fullerene release from the inside of carbon nanotubes:A possible route toward drug delivery. Chem Phys Lett,2007,445:288-292.
    [4] Isaacson C W, Kleber M, Field J A. Quantitative analysis of Fullerene nanomaterials inenvironmental systems: a critical review. Environ Sci Technol,2009,43:6463-6474.
    [5] Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment: Behavior,fate, bioavailability, and effects. Environ Toxicol Chem,2008,27:1825-1851.
    [6] Chen K L, Elimelech M. Aggregation and deposition kinetics of fullerene (C60)nanoparticles. Langmuir,2006,22:10994-11001.
    [7] Fortner J D, Lyon D Y, Sayes C M, et al. C60in water: Nanocrystal formation and microbialresponse. Environ Sci Technol,2005,39:4307-4316.
    [8] Oberdorster E, Zhu S Q, Blickley T M, et al. Ecotoxicology of carbon-based engineerednanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon,2006,44:1112-1120.
    [9] Dhawan A, Taurozzi J S, Pandey A K, et al. Stable colloidal dispersions of C60fullerenes inwater: Evidence for genotoxicity. Environ Sci Technol,2006,40:7394-7401.
    [10] Lyon D Y, Fortner J D, Sayes C M, et al. Bacterial cell association and antimicrobialactivity of a C60water suspension Environ Toxicol Chem,2005,24:2757-2762.
    [11] Wiesner M R, Hotze E M, Brant J A, et al. Nanomaterials as possible contaminants: thefullerene example. Water Sci Technol,2008,57:305-310.
    [12] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on naturalsediments. Water Res,1979,13:241-248.
    [13] Brownawell B J, Chen H, Collier J M, et al. Adsorption of organic cations to naturalmaterials. Environ Sci Technol,1990,24:1234-1241.
    [14] Brusseau M L, Rao P S C. Influence of sorbate structure on nonequilibrium sorption oforganic compounds. Environ Sci Technol,1991,25:1501-1506.
    [15] Schwarzenbach R, Gschwend P, Imboden D. Environmental organic chemistry secondedition ed. Hoboken, New Jersey: John Wiley&Sons, Inc.,2003.
    [16] Fetter C W. Contaminant Hydrogeology2nd ed. Upper Saddle River, NJ: Prentice Hall,1998.
    [17] Sparks D L. Environmental soil chemistry.2nd ed. London, UK: Academic Press,2002.
    [18] Grolimund D, Borkovec M, Barmettler K, et al. Colloid-facilitated transport of stronglysorbing contaminants in natural porous media: A laboratory column study. Environ SciTechnol,1996,30:3118-3123.
    [19] Mccarthy J F, Jlmenez B D. Interactions between polycyclic aromatic hydrocarbons anddissolved humic material: Binding and dissociation. Environ Sci Technol,1985,19:1072-1076.
    [20] Kan A T, Tomson M B. Groundwater transport of hydrophobic organic compounds in thepresence of dissolved organic matter. Environ Toxicol Chem,1990,9:253-263.
    [21] Rav-Acha C, Rebhun M. Binding of organic solutes to dissolved humic substances and itseffects on adsorption and transport in the aquatic environment. Water Res,1992,26:1645-1654.
    [22] Ryan J N, Elimelech M. Colloid mobilization and transport in groundwater. Colloids Surf,A1996,107:1-56.
    [23] Kretzschmar R, Borkovec M, Grolimund D, et al. Mobile subsurface colloids and their rolein contaminant transport. Adv Agron1999,66:121-193.
    [24] Sen T K, Khilar K C. Review on subsurface colloids and colloid-associated contaminanttransport in saturated porous media. Adv Colloid Interface Sci,2006,119:71-96.
    [25] Totsche K U, Koegel-Knabner I, Danzer J. Dissolved organic matter-enhanced retention ofpolycyclic aromatic hydrocarbons in soil miscible displacement experiments J EnvironQual,1997,26:1090-1100.
    [26] Koegel-Knabner I, Totsche K U. Influence of dissolved and colloidal phase humicsubstances on the transport of hydrophobic organic contaminants in soil. Phys Chem Earth,1998,23:179-185.
    [27] Totsche K U, Koegel-Knabner I. Mobile organic sorbent affected contaminant Transport insoil: numerical case studies for enhanced and reduced mobility. Vadose Zone J,2004,3:352-367.
    [28] Pan B, Ning P, Xing B. Part V-sorption of pharmaceuticals and personal care products.Environ Sci Pollut Res,2009,16:106-116.
    [29] Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbonnanomaterials. Environ Sci Technol,2006,40:1855-1861.
    [30] Cheng X K, Kan A T, Tomson M B. Uptake and sequestration of naphthalene and1,2-dichlorobenzene by C60. J Nanopart Res,2005,7:555-567.
    [31] Cheng X K, Kan A T, Tomson M B. Naphthalene adsorption and desorption from AqueousC60fullerene. J Chem Eng Data,2004,49:675-683.
    [32] Lecoanet H F, Bottero J Y, Wiesner M R. Laboratory assessment of the mobility ofnanomaterials in porous media. Environ Sci Technol,2004,38:5164-5169.
    [33] Lecoanet H F, Wiesner M R. Velocity effects on fullerene and oxide nanoparticle depositionin porous media. Environ Sci Technol,2004,38:4377-4382.
    [34] Espinasse B, Hotze E M, Wiesner M R. Transport and retention of colloidal aggregates ofC60in porous media: Effects of organic macromolecules, ionic composition, andpreparation method. Environ Sci Technol,2007,41:7396-7402.
    [35] Wang Y, Li Y, Fortner J D, et al. Transport and retention of nanoscale C60aggregates inwater-saturated porous media. Environ Sci Technol,2008,42:3588-3594.
    [36] Li Y, Wang Y, Pennell K D, et al. Investigation of the transport and deposition of fullerene(C60) nanoparticles in quartz sands under varying flow conditions. Environ Sci Technol,2008,42:7174-7180.
    [37] Cheng X K, Kan A T, Tomson M B. Study of C60transport in porous media and the effect ofsorbed C60on naphthalene transport. J Mater Res,2005,20:3244-3254.
    [38] Wang Y, Li Y, Kim H, et al. Transport and retention of fullerene nanoparticles in naturalsoils. J Environ Qual,2010,39:1925-1933.
    [39] Chen W, Duan L, Zhu D Q. Adsorption of polar and nonpolar organic chemicals to carbonnanotubes. Environ Sci Technol,2007,41:8295-8300.
    [40] Chen W, Duan L, Wang L L, et al. Adsorption of hydroxyl-and amino-substituted aromaticsto carbon manotubes. Environ Sci Technol,2008,42:6862-6868.
    [41] Cheng X K. C60Nanoparticles: Adsorption and Desorption of Organic Contaminants, andTransport in Soil.[D]. Houston; Rice University,2006.
    [42] Yang K, Xing B S. Desorption of polycyclic aromatic hydrocarbons from carbonnanomaterials in water. Environ Pollut,2007,145:529-537.
    [43] Hofmann T, Von Der Kammer F. Estimating the relevance of engineered carbonaceousnanoparticle facilitated transport of hydrophobic organic contaminants in porous media.Environ Pollut,2009,157:1117-1126.
    [44] Dunnivant F M, Jardine P M, Taylor D L, et al. Cotransport of cadmium andhexachlorobiphenyl by dissolved organic carbon through columns containing aquifermaterial. Environ Sci Technol,1992,26:360-368.
    [45] Ryan J N, Elimelech M. Colloid mobilization and transport in groundwater. Colloids Surf,A,1996,107:1-56.
    [46] Roy S B, Dzombak D A. Chemical factors influencing colloid-facilitated transport ofcontaminants in porous media. Environ Sci Technol,1997,31:656-664.
    [47] Kretzschmar R, Borkovec M, Grolimund D, et al. Mobile subsurface colloids and their rolein contaminant transport. Adv Agron,1999,66:121-193.
    [48] Wiesner M R, Lowry G V, Alvarez P, et al. Assessing the risks of manufacturednanomaterials. Environ Sci Technol,2006,40:4336-4345.
    [49] Colvin V L. The potential environmental impact of engineered nanomaterials. NatBiotechnol,2003,21:1166-1170.
    [50] Zhang L, Wang L, Zhang P, et al. Facilitated transport of2,2′,5,5′-polychlorinated biphenyland phenanthrene by fullerene nanoparticles through sandy soil columns. Environ SciTechnol,2011,45:1341-1348.
    [51] Wang Y G, Li Y S, Pennell K D. Influence of electrolyte species and concentration on theaggregation and transport of fullerene nanoparticles in quartz sands. Environ Toxicol Chem,2008,27:1860-1867.
    [52] Yao K M, Habibian M M, Omelia C R. Water and waste water filtration: Concepts andapplications. Environ Sci Technol,1971,5:1105-1112.
    [53] Bradford S A, Simunek J, Bettahar M, et al. Modeling colloid attachment, straining, andexclusion in saturated porous media. Environ Sci Technol,2003,37:2242-2250.
    [54] Bradford S A, Simunek J, Bettahar M, et al. Significance of straining in colloid deposition:Evidence and implications. Water Resour Res,2006,42.
    [55] Jaisi D P, Saleh N B, Blake R E, et al. Transport of single-walled carbon nanotubes inporous media: Filtration mechanisms and reversibility. Environ Sci Technol,2008,42:8317-8323.
    [56] Gargiulo G, Bradford S A, Simunek J, et al. Transport and deposition of metabolicallyactive and stationary phase Deinococcus radiodurans in unsaturated porous media. EnvironSci Technol,2007,41:1265-1271.
    [57] Gargiulo G, Bradford S A, Simunek J, et al. Bacteria transport and deposition underunsaturated flow conditions: the role of water content and bacteria surface hydrophobicity.Vadose Zone J,2008,7:406-419.
    [58] Andrievsky G V, Kosevich M V, Vovk O M, et al. On the production of an aqueous colloidalsolution of Fullerenes. J Chem Soc, Chem Commun,1995,12:1281-1282.
    [59] Tufenkji N, Elimelech M. Correlation equation for predicting single-collector efficiency inphysicochemical filtration in saturated porous media. Environ Sci Technol,2004,38:529-536.
    [60] Simunek J, Van Genuchten M T, Sejna M. The HYDRUS-1D software package forsimulating the one-dimentional movement of water, heat, and multiple solutes invariably-saturated media: Version3.0[M]. HYDRUS Software Series1. Riverside, CA;Dep. of Environmental Science, University of California Riverside.2005.
    [61] Ko C H, Elimelech M. The "shadow effect" in colloid transport and deposition dynamics ingranular porous media: Measurements and mechanisms. Environ Sci Technol,2000,34:3681-3689.
    [62] Shen C Y, Huang Y F, Li B G, et al. Effects of solution chemistry on straining of colloids inporous media under unfavorable conditions. Water Resour Res,2008,44: W05419.
    [63] Sharma M M, Yen T F. Interfacial electrochemistry of oxide surfaces in oil-bearing sandsand sandstones. J Colloid Interface Sci,1984,98:39-54.
    [64] Fortner J D, Solenthaler C, Hughes J B, et al. Interactions of clay minerals and a layereddouble hydroxide with water stable, nano scale fullerene aggregates (nC60). Appl Clay Sci,2012,55:36-43.
    [65] Kuznar Z A, Elimelech M. Adhesion kinetics of viable Cryptosporidium parvum oocysts toquartz surfaces. Environ Sci Technol,2004,38:6839-6845.
    [66] Chen K L, Elimelech M. Interaction of Fullerene (C60) nanoparticles with humic acid andalginate coated silica surfaces: Measurements, mechanisms, and environmental implications.Environ Sci Technol,2008,42:7607-7614.
    [67] Sayes C M, Gobin A M, Ausman K D, et al. Nano-C60cytotoxicity is due to lipidperoxidation. Biomaterials,2005,26:7587-7595.
    [68] Mackay A A, Gschwend P M. Enhanced concentrations of PAHs in groundwater at a coaltar site. Environ Sci Technol,2001,35:1320-1328.
    [69] Pan B, Xing B S. Adsorption mechanisms of organic chemicals on carbon nanotubes.Environ Sci Technol,2008,42:9005-9013.
    [70] Averett R C, Leenheer J A, Mcknight D M, et al. Humic Substances in the Suwannee River,Georgia: Interactions, Properties, and Proposed Structures [M]. U.S. Geological SurveyWater-Supply Paper2373.1994:224.
    [71] Sethuraman A, Han M, Kane R S, et al. Effect of surface wettability on the adhesion ofproteins. Langmuir,2004,20:7779-7788.
    [72] Santos S F, Zanette D, Fischer H, et al. A systematic study of bovine serum albumin (BSA)and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-rayscattering. J Colloid Interface Sci,2003,262:400-408.
    [73] Bouchard D, Ma X, Isaacson C. Colloidal properties of aqueous fullerenes: Isoelectricpoints and aggregation kinetics of C60and C60derivatives. Environ Sci Technol,2009,43:6597-6603.
    [74] Saleh N B, Pfefferle L D, Elimelech M. Influence of biomacromolecules and humic acid onthe aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol,2010,44:2412-2418.
    [75] Yang W C, Mang J, Zhang C D, et al. Sorption and Resistant Desorption of Atrazine inTypical Chinese Soils. J Environ Qual,2009,38:171-179.
    [76] Yang W C, Duan L, Zhang N, et al. Resistant desorption of hydrophobic organiccontaminants in typical Chinese soils: Implications for long-term fate and soil qualitystandards. Environ Toxicol Chem,2008,27:235-242.
    [77] Kan A T, Fu G, Hunter M, et al. Irreversible sorption of neutral hydrocarbons to sediments:Experimental observations and model predictions. Environ Sci Technol,1998,32:892-902.
    [78] Everett D H, Powl J. Adsorption in slit-like cylindrical micropores in the Henry's law region:A model for the microporosity of carbons. Chem Soc Faraday Trans1976,72:619-636.
    [79] Bold S, Kraft S, Grathwohl P, et al. Sorption/desorption kinetics of contaminants on mobileparticles: Modeling and experimental evidence. Water Resour Res,2003,39.
    [80] Grathwohl P. Diffusion in Natural Porous Media: Contaminant Transport,Sorption/Desorption and Dissolution Kinetics. Norwell, Mass.: Kluwer Academic.,1997.
    [81] Werner D, Ghosh U, Luthy R G. Modeling polychlorinated biphenyl mass transfer afteramendment of contaminated sediment with activated carbon. Environ Sci Technol,2006,40:4211-4218.
    [82] Pignatello J J, Xing B S. Mechanisms of slow sorption of organic chemicals to naturalparticles. Environmental Science&Technology,1996,30:1-11.
    [83] Luthy R G, Aiken G R, Brusseau M L, et al. Sequestration of hydrophobic organiccontaminants by geosorbents. Environ Sci Technol,1997,31:3341-3347.
    [84] Thurman E M, Wershaw R L, Malcolm R L, et al. Molecular size of aquatic humicsubstances. Org Geochem,1982,4:27-35.
    [85] Landrum P F, Nlhart S R, Eadle B J, et al. Reverse-phase separation method for determiningpollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters.Environ Sci Technol,1984,18:187-192.
    [86]王贺.溶解性腐殖酸对持久性有机污染物在地下含水层中迁移影响的研究[硕士学位论文].天津:南开大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700