多孔阳极氧化铝膜的电化学表征及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔阳极氧化铝(AAO)膜以高密度孔排列、可控孔径和优良的形态结构等特点在纳米科学和技术领域引起广泛的关注。因此,研究预处理的电化学抛光行为和AAO膜的生长动力学,对提高膜的性能具有重要意义。
     本文采用电化学方法研究高纯铝在高氯酸和无水乙醇混合溶液中的电化学抛光行为,并对抛光表面的形态和组成进行了表征。结果表明,高纯铝最佳电抛光条件是高氯酸和乙醇体积比为1:8,温度范围为10-30℃。抛光机理遵循溶解产物限制传递机理,高纯铝表面形成难溶的固体盐膜,其组成为无定形氧化铝。电抛光过程中引入超声波后,搅拌作用和空化效应使具有屏蔽作用的极性有机分子CH3CH2OH在高纯铝表面微观突起处分散更均匀,吸附间距缩短,导致自组织条纹宽度由212 nm减至54 nm,且均方根粗糙度RMS从23.5 nm降至17.4 nm。
     恒电流条件下0.3mol/L H2C2O4溶液中AAO膜生长动力学研究表明,膜形成的稳定阶段,随电流密度升高,膜迅速增厚使离子穿过膜的阻力增加,离子传导性能下降而引起电压升高。温度的升高导致膜溶解,膜阻力减小,离子传导性能提高,从而降低了膜生长稳定阶段的电压。AAO膜厚随氧化时间的延长逐渐增厚,当出现特征时间tc时,膜厚达到了最大值。之后,随时间继续延长,膜厚保持一定或略微下降。电流密度从10mA/cm2增至20 mA/cm2时,特征时间tc从110 min降至80 min,膜极限厚度从15.6 u m增至23μm。AAO膜动力学方程为δp =k′·it(t≤tc),其中k′是与温度和电流密度无关的常数,拟合值为1.45×10-6 cm3/(mA·min)。
     本文将1,2-丙二醇(PROH)加入0.4mol/L H3PO4溶液和0.3mol/L H2C2O4溶液中,开发了在-15~0℃条件下制备AAO膜的方法。-15℃时,0.4mol/L H3PO4溶液中得到的膜平均孔径最小可达56.29 nm,是20℃制备膜平均孔径(218.51 nm)的1/4,这是由于降低温度导致离子传递速率减缓,阻滞了AAO膜氧化和溶解速度。随着温度的降低,孔密度减小,孔隙率降低,据此可推断,温度降低导致高纯铝表面初始氧化中心的生成速率降低,单位面积形成的晶胞数量减少。电解液中PROH含量从25%增至75%时,溶液黏度的增加和双电层内OH-的累积,使得AAO膜孔径和孔隙率减小,孔密度降低。
     填孔实验前后AAO膜的交流阻抗测试结果表明,填孔后中高频区的相位角峰和低频区的相位角峰分别表征阻挡层和多孔层。计算出阻挡层厚度δb在1-18 nm。随PROH含量从25%增至75%,阻挡层电容CPEb下降,电阻Rb增加,阻挡层厚度δb增大。填孔实验后膜表面的不均匀度有所改善,因此CPEp下降,计算的多孔层厚度δp增大。
Anodic aluminum oxide (AAO) film have attracted great attention in the areas of nanoscience and engineering due to their highly ordered pore arrangement, controllable pore diameter and well-characterized morphology. Therefore the study of electropolishing behaveiour of high-purity aluminum and growth kinetics of AAO film to further improve the performance of AAO film is of great significance.
     The electropolishing behavior of high-purity aluminum in perchloric acid ethanol electrolytes is studied by the electrochemical methods. The morphologies and composition of electropolished surface are examined. The results shows that the high-purity aluminum can be electrochemically polished in the mixed solution with volume ratios of 1:8 in the temperature range of 10-30℃. The electropolishing of high-purity aluminum follows dissolution product limited transport mechanism, a salt film precipitated on the electropolishing surface, consists of amorphous alumina. In addition, the effect of fierce stiring agitation and cavitation of ultrasonic agitation is to make ethanol molecule which is a polar molecule with a repulsive shield dispersion homogeneously dispersed, to shorten adsorption spacing on surface microscopic concave. The root-mean-square (RMS) surface roughness of the aluminum electropolished surface decreases from 23.5 nm to 17.4 nm and the self-organized nanostripes decreases from 212 nm to 54 nm after using the ultrasonic agitation.
     The growth kinetics of AAO films formed in 0.3 mol/L H2C2O4 under galvanstatic conditions shows that the film thickness increases with an increase in the current density in steady-state stage of AAO film formation, the film resistance and the ionic conductivity are also increased, which lead to voltage increases. It has been found that the film thickenss increases with the anodizing time and achives the limiting thickenss when the time is characteristic time, and then with the increase of the anodizing time, the film thickensss maintains certain or appreciably decreases. The chatacteristic time dencreases form 110 min to 80min and the limiting thickenss increases from 15.6μm to 23μm, increasing current density from 10 mA/cm2 to 20 mA/cm2. The film Growth can be expressed by the equationδp= k" it (t≤tc) and k" is a constant independent of the current density and the anodization temperature with a average value of 1.45×10-6 cm3/(mA·min).
     A method of fabrication of AAO film in in 0.3 mol/L H2C2O4 and 0.4 mol/L H3PO4 by adding 1,2-propanediol(PROH) and at sub-zero temperature has been proposed. The smallest pore diameter of AAO film is 56.29 nm, which is one quarter of those anodized in 20℃0.4 mol/L H3PO4. Sub-zero andization decrease the pore diameter possibly by retarding the ionic transport in the oxide and thus decreasing the rate of oxidation and dissolution. A uniform pore-size distribution with ordered pore arrangement of AAO films is observed in the SEM images. Moreover, the pore density and the porosity of AAO films were found to decrease with decreasing anodizing temperature hereby referred that the lower is the rate of formation of defect sites in the first place and less unit cells are developed around these centers for a given area with decreasing temperature. An increase of the volume percentage of PROH in electrolyte from 25% to 75% results in a corresponding increase in electrolyte viscosity and an accumulation of OH- in double layer causes the pore diameter, pore density and porosity of AAO film decreased.
     The electrochemical characteristics of the barrier and porous layers of AAO films before and after pore-filling are examined using electrochemical impedance spectroscopy (EIS). It is shown that the high and medium frequency range corresponds to the barrier layer properties and the low frequency ranges reflect the sealed porous layer properties. Calculated thickenss of the barrier layer is in the range of 1-18 nm. The resistance (Rb) and the thickness (8b) of the barrier layer increase and the capacitance of the barrier layer (CPEb) decreases with the volume percentage of PROH increasing from in electrolyte from 25% to 75%. The surface non-homogeneity of AAO film goes better by pore-filling, leads to decrease in the capacitance of porous layer (CPEp) and increase in the porous layer thickness.
引文
[1]Yakovleva N M, Anicai L, Yakovlev A N, et al. Structural study of anodic films formed on aluminum in nitric acid electrolyte[J]. Thin Solid Films.2002,416 (1-2):16-23.
    [2]Parkhutik V P, Belov V T, Chernyckh M A. Study of aluminium anodization in sulphuric and chromic acid solutions--Ⅱ. Oxide morphology and structure[J]. Electrochimica Acta.1990,35 (6):961-966.
    [3]Ono S, Saito M, Asoh H. Self-ordering of anodic porous alumina formed in organic acid electrolytes[J]. Electrochimica Acta.2005,51 (5):827-833.
    [4]Diggle J W, Downie T C, Goulding C W. Anodic oxide films on aluminum[J]. Chemical Reviews. 1969,69 (3):365-405.
    [5]Thompson G E, Wood G C. Anodic Films on Aluminium[C]. Corrosion:Aqueous Processed and Passive Films, New York,1983:205-329.
    [6]Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum[J]. Journal of the Electrochemical Society.1953,100 (9):411-419.
    [7]Young L. Anodic Oxide Films[M]. New York:Academic Press,1961.
    [8]Thompson G E, Furneaux R C, Wood G C, et al. Nucleation and growth of porous anodic films on aluminum[J]. Nature.1978,272 (30):433-435
    [9]O'Sullivan J P, Wood G C. The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum[M]. London:Proceedings of the Royal Society of London Series A,1970.
    [10]Siejka J, Ortega C. An O18 study of field-assisted pore formation in compact anodic oxide films on aluminum[J]. Journal of the Electrochemical Society.1977,124 (6):883-891.
    [11]Hoar T P, Yahalom J. The initiation of pores in anodic oxide films formed on aluminum in acid solutions[J]. Journal of the Electrochemical Society.1963,110 (6):614-621.
    [12]Renshaw T. A study of pore structures on anodized aluminum[J]. Journal of the Electrochemical Society.1961,108 (2):185-191.
    [13]Heber K V. Studies on Porous Al2O3 Growth. Pt.2. Ionic Conduction [J]. Electrochimica Acta. 1978,23 (2):135-139.
    [14]Heber K V. Studies on Porous Al2O3 Growth. Pt.1. Physical Model [J]. Electrochimca Acta. 1978,23 (2):127-133.
    [15]Murphy J B. Interdiffusion in dilute aluminium-copper solid solutions[J]. Acta Metallurgica. 1961,9(6):563-569.
    [16]Parkhutik V P. Modelling of low-temperature oxidation of materials in gaseous environments[J]. Journal of Physics D:Applied Physics.25 (2):256-261.
    [17]Nagayama M, Tamura K. Dissolution of the anodic oxide film on aluminium in a sulphuric acid solution[J]. Electrochimica Acta.1967,12 (8):1097-1107.
    [18]Hunter M S, Fowle P. Determination of barrier layer thickness of anodic oxide coatings[J]. Journal of the Electrochemical Society.1954,101 (9):481-485.
    [19]Patermarakis G, Papandreadis N. Effect of the structure of porous anodic Al2O3 films on the mechanism of their hydration and pore closure during hydrothermal treatment[J]. Electrochimica Acta.1993,38 (10):1413-1420.
    [20]Patermarakis G, Lenas P, Karavassilis C, et al. Kinetics of Growth of Porous Anodic Al2O3 Films on Aluminium Metal[J]. Electrochimica Acta.1991,36 (3-4):709-725.
    [21]Takahashi H, Fujimoto K, Konno H, et al. Distribution of anions and protons in oxide films formed anodically on aluminum in a phosphate solution[J]. Journal of the Electrochemical Society.1984,131 (8):1856-1861.
    [22]O'Sullivan J P, Wood G C. The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum[J]. Proceedings of the Royal Society of London Series A.1970,317 (1531):511-543.
    [23]Nagayama M, Tamura K, Takahashi H. DisslutionI of porous anodic oxide films on Al in COOH2 solutions[J]. Corrosion Science.1970,10 (8):617-627.
    [24]Hoar T P, Wood G C. The sealing of porous anodic oxide films on aluminium[J]. Electrochimica Acta.1962,7 (3):333-353.
    [25]Ebihara K, Takahashi H, Nagayama M. Structure and Density of Anodic Oxide Films Formed on Aluminum in Oxalic Acid Solutions[J]. Journal of the Metal Finishing Society of Japan.1983, 34(11):548-553.
    [26]Wood G C, Skeldon P, Thompson G E, et al. A model for the incorporation of electrolyte species into anodic alumina[J]. Journal of the Electrochemical Society.1996,143 (1):74-83.
    [27]Patermarakis G, Moussoutzanis K, Chandrinos J. Erratum:Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes[J]. Journal of Solid State Electrochemistry.2001,6 (1):71-72.
    [28]Patermarakis G, Moussoutzanis K, Chandrinos J. Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes[J]. Journal of Solid State Electrochemistry.2001,6 (1):39-54.
    [29]Patermarakis G, Moussoutzanis K. Mathematical models for the anodization conditions and structural features of porous anodic Al2O3 films on aluminum[J]. Journal of the Electrochemical Society.1995,142 (3):737-743.
    [30]Patermarakis G. Transport phenomena inside the pores involved in the kinetics and mechanism of growth of porous anodic Al2O3 films on aluminium[J]. Journal of Electroanalytical Chemistry. 1996,404 (1):69-76.
    [31]Patermarakis G. Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of porous anodic Al2O3 films on aluminium by a transport phenomenon analysis[J]. Journal of Electroanalytical Chemistry.1998, 447(1-2):25-41.
    [32]Shawaqfeh A T, Baltus R E. Growth kinetics and morphology of porous anodic alumina films formed using phosphoric acid[J]. Journal of the Electrochemical Society.1998,145 (8):2699-2706.
    [33]Hryniewicz T. Concept of micro-smoothing in the electropolishing process[J]. Surface and Coatings Technology.1994,64 (1-2):75-80.
    [34]Vidal R, West A C. Copper Electropolishing in Concentrated Phosphoric Acid Ⅱ. Theoretical Interpretation[J]. Journal of the Electrochemical Society.1995,142 (8):2689-2694.
    [35]Piotrowski O, Madore C, Landolt D. Electropolishing of tantalum in sulfuric acid-methanol electrolytes[J]. Electrochimica Acta.1999,44 (19):3389-3399.
    [36]Landolt D. Fundamental aspects of electropolishing[J]. Electrochimica Acta.1987,32 (1):1-11.
    [37]Gabe D R. Toward a universal electropolishing solution[J]. Metallography.1972, (5):415-421.
    [38]Tegart W. The Electrolytic and chemical polishing of metals in research and industry [M]. Dunod: 1960.
    [39]Wagner C. Contribution to the theory of Electropolishing[J]. Journal of the electrochemical society.1954,101 (5):225-228.
    [40]Hojka H M, Zamin M, Murthy M K. On the validity of Wagner's theory of Electropolishing[J]. Journal of the Electrochemical Society.1979,126 (5):795-797.
    [41]Grimm R D, West A C, Landolt D. AC Impedance Study of Anodically Formed Salt Films on Iron in Chloride Solution[J]. Journal of the Electrochemical Society.1992,139 (6):1622-1629.
    [42]Matlosz M, Magaino S, Landolt D. Impedance analysis of a model mechanism for acceptor-limited electropolishing[J]. Journal of the Electrochemical Society.1994,141 (2):410-418.
    [43]Landolt D, Chauvy P F, Zinger O. Electrochemical micromachining, polishing and surface structuring of metals:fundamental aspects and new developments[J]. Electrochimica Acta.2003, 48(20-22):3185-3201.
    [44]Matlosz M. Modeling of impedance mechanisms in electropolishing[J]. Electrochimica Acta. 1995,40(4):393-401.
    [45]Hoar T, Mears D, Rothwell G. The relationships between anodic passivity, brightening and pitting[J]. Corrosion Science.1965,279 (5):821-840.
    [46]Masuda H, Yamada H, Satoh M, et al. Highly ordered nanochannel-array architecture in anodic alumina[J]. Applied Physics Letters.1997,71 (19):2770-2772.
    [47]Masuda H, Hasegwa F, Ono S. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution[J]. Journal of the Electrochemical Society.1997,144 (5):L127-L130.
    [48]Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore structures in anodic alumina[J]. Journal of the Electrochemical Society.1998,145 (11):3735-3740.
    [49]Whitney T M, Jiang J S, Searson P C, et al. Fabrication and magnetic properties of arrays of metallic nanowires[J]. Science.1993,261 (5126):1316-1319.
    [50]Matsumoto F, Ishikawa M, Nishio K, et al. Optical properties of long-range-ordered, high-density gold nanodot arrays prepared using anodic porous alumina[J]. Chemistry Letters.2005,34 (4):508-509.
    [51]Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J]. Nature.2001,409 (6822):66-69.
    [52]Yuzhakov V V, Takhistov P V, Miller A E, et al. Pattern selection during electropolishing due to double-layer effects[J]. Chaos.1999,9 (1):62-77.
    [53]Yuzhakov V V, Chang H C, Miller A E. Pattern formation during electropolishing[J]. Physical Review B:Condensed Matter.1997,56 (19):12608-12624.
    [54]Saito M, Shibasaki M, Nakamura S, et al. Optical waveguides fabricated in anodic alumina films[J]. Optics Letters.1994,19 (10):710-712.
    [55]Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science.1995,268 (5216):1466-1468.
    [56]Chik H, Xu J M. Nanometric superlattices:non-lithographic fabrication, materials, and prospects [J]. Materials Science and Engineering Reports.2004,43 (4):103-138.
    [57]Bandyopadhyay S, Miller A E, Chang H C, et al. Electrochemically assembled quasi-periodic quantum dot arrays[J]. Nanotechnology.1996,7 (4):360-371.
    [58]Bandyopadhyay S. Self-assembled quantum dots:The route to novel optical, electronic, magnetic and superconducting properties[J]. Bulletin of Materials Science.1999,22 (3):537-542.
    [59]Ricker R E, Miller A E, Yue D F, et al. Nanofabrication of a quantum dot array:Atomic force microscopy of electropolished aluminum [J]. Journal of Electronic Materials.1996,25 (10):1585-1592.
    [60]Liu H W, Guo H M, Wang Y L, et al. Self-assembled stripes on the anodic aluminum oxide by atomic force microscope observation [J]. Applied Surface Science.2003,219 (3-4):282-289.
    [61]Li Y, Cheng G S, Zhang L D. Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes[J]. Journal of Materials Research.2000,15 (11):2305-2308.
    [62]Li F, Zhang L, Metzger R M. On the growth of highly ordered pores in anodized aluminum oxide[J]. Chemistry of Materials.1998,10 (9):2470-2480.
    [63]Li A P, Muller F, Gosele U. Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina[J]. Electrochemical and Solid-State Letters.2000,3 (3):131-134.
    [64]Li A P, Muller F, Birner A, et al. Polycrystalline nanopore arrays with hexagonal ordering on aluminum[J]. Journal of Vacuum Science and Technology A.1999,17 (4):1428-1431
    [65]Li A P, Muller F, Birner A, et al. Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina[J]. Advanced Materials.1999,11 (6):483-487.
    [66]Li A P, Muller F, Birner A, et al. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina[J]. Journal of Applied Physics.1998,84 (11):6023-6026.
    [67]Guo W, Johnson D T. Pattern selection with anisotropy during aluminum electropolishing[J]. Journal of Crystal Growth.2004,268(1-2):258-271.
    [68]Guo W, Johnson D. Role of interfacial energy during pattern formation of electropolishing[J]. Physical Review B:Condensed Matter.2003,67 (7):075411-075418.
    [69]Crouse D, Lo Y-H, Miller A E, et al. Self-ordered pore structure of anodized aluminum on silicon and pattern transfer[J]. Applied Physics Letters.2000,76 (1):49-51.
    [70]Ba L, Li W S. Influence of anodizing conditions on the ordered pore formation in anodic alumina[J]. Journal of Physics D:Applied Physics.2000,33 (20):2527-2531.
    [71]Masuda H, Yada K, Osaka A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution[J]. Japanese Journal of Applied Physics.1998,37 (11):L1340-L1342.
    [72]Masuda H, Satoh M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask[J]. Japanese Journal of Applied Physics.1996,35 (1B):L126-L129.
    [73]Masuda H, Nishio K, Baba N. Fabrication of porous TiO2 films using two-step replication of microstructure of anodic alumina[J]. Japanese Journal of Applied Physics.1992,31 (12B):1775-1777.
    [74]Zhao G Y, Xu C L, Guo D J, et al. Patterning polycrystalline aluminum by electropolishing at low voltages[J]. Journal of Solid State Electrochemistry.2006,10 (5):266-269.
    [75]Yu C U, Hu C C, Bai A, et al. Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design[J]. Surface and Coatings Technology.2007,201 (16-17):7259-7265
    [76]Konovalov V, Zangari G, Metzger R. Highly ordered nanotopographies on electropolished aluminum single crystals[J]. Chemistry of Materials.1999,11 (8):1949-1951.
    [77]Barkey D P, Muller R H, Tobias C W. Roughness development in metal electrodeposition[J]. Journal of the Electrochemical Society.1989,136 (8):2199-2207.
    [78]Nguyen V X, Stebe K J. Patterning of small particles by a surfactant-enhanced marangoni-benard instability [J]. Physical Review Letters.2002,88 (16):164501-164504.
    [79]Johnson D, Narayanan R. Geometric effects on convective coupling and interfacial structures in bilayer convection[J]. Physical Review E.1997,56 (5):5462-5472.
    [80]Johnson D, Narayanan R. Experimental observation of dynamic mode switching in interfacial-tension-driven convection near a codimension-two point[J]. Physical Review E.1996, 54(4):R3102-R3104.
    [81]McFadden G B, Coriell S R, Sekerka R F. Effect of surface tension anisotropy on cellular morphologies[J]. Journal of Crystal Growth.1988,91 (1-2):180-198
    [82]Hoyle R B, McFadden G B, Davis S H. Pattern selection with anisotropy during directional solidification[J]. Philosophical Transactions:Mathematical, Physical and Engineering Sciences. 1996,354 (1721):2915-2949.
    [83]Brattkus K, Davis S H. Cellular growth near absolute stability[J]. Physical Review B.1988,38 (16):11452-11460.
    [84]Smith A W, Seattle W. Process for producing an anodic aluminum oxide membranes[P]. US Patent, design patents,3850762.1974.
    [85]Itaya K, Sugawara S, Arai K, et al. Properties of porous anodic aluminum oxide films as membranes[J]. Journal of chemical engineering of Japan.1984,17 (5):514-520.
    [86]Mitrovic M, Knetic L. Electrolytic aluminium oxide membranes-a new kind of membrane with reverse osmotic Characteristrics[J]. Desalination.1979,28 (2):147-150.
    [87]Seshadri K S, Sinha P K, Babu C A, et al. Preparation and characterization of alumina membranes by anodic oxidation of aluminium[J]. Indian journal of chemical technology.1994, 1 (3):161-164.
    [88]Rai K, Ruckenstein E. Alumina substrates with parallel pores[J]. Journal of Catalysis.1975,40 (1):117-119.
    [89]Michelson C. The Current-Voltage Characteristics of Porous Anodic Oxides on Aluminum[J]. Journal of The Electrochemical Society.1968,115 (2):213-219.
    [90]Thomas R. Studies of The Barrier Layer and Spontaneous Separation of Porous Anodic Coatings from the Metal Substrate[J]. Transactions of the Institute of Metal Finishing.1952,54:80.
    [91]Furneaux R C, Rigby W R, Davidson A P. The formation of controlled-porosity membranes from anodically oxidized aluminium[J]. Nature.1989,337 (6203):147-149.
    [92]Ono S, Saito M, Ishiguro M, et al. Controlling factor of self-ordering of anodic porous alumina[J]. Journal of the Electrochemical Society.2004,151 (8):B473-B478.
    [93]Jacquet P A. Electrolytic Polishing of Metallic Surface-Part1 [J]. Metal Finishing.1949,47 (5):48-54.
    [94]Faust C L. Surface preparation by electropolishing[J]. Journal of The Electrochemical Society. 1949,95(3):62C-72C.
    [95]Hryniewicz T. On Discrepancies Between Theory and Practice of Electropolishing[J]. Mater Chem Phys 1986,15 (2):139-154.
    [96]Huo J, Solanki R, McAndrew J. Electrochemical Polishing of Copper for Microelectronic Applications[J]. Surface Engineering.2003,19 (1):11-16.
    [97]Pourbaix M. Atlas of Electrochemical Equilibrium in Aqueous Solutions[M]. Houston:National Association of Corrosion Engineers,1974.
    [98]郭鹤桐,刘淑兰.理论电化学[M].北京:宇航出版社,1984.
    [99]方景礼.金属材料抛光技术[M].北京:国防工业出版社,2005.
    [100]Grimm R D, Landolt D. Salt films formed during mass transport controlled dissolution of iron-chromium alloys in concentrated chloride media[J]. Corrosion Science.1994,36 (11):1847-1868
    [101]Thompson G E, Xu Y, Skeldon P, et al. Anodic oxidation of aluminium[J]. Philosophical magazine.1987,55 (6):651-667.
    [102]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [103]Bartolome M, Rio J d, Escudero E, et al. Behaviour of different bare and anodised aluminium alloys in the atmosphere[J]. Surface and Coatings Technology.2008,202 (12):2783-2793.
    [104]戴曦.超声空化与过程强化[J].有色金属.2001,11(1):20-22.
    [105]甘雪萍.超声空化及其在电化学中的应用[J].四川有色金属.2001,(3):24-26.
    [106]Hocheng H, Kuo K. Fundamental study of ultrasonic polishing of mold steel[J]. International Journal of Machine Tools and Manufacture.2002,42 (1):7-13.
    [107]包胜华,吴蒙华,刘正宁.超声波作用下医用钛合金(Ti-6Al-4V)植入物的电解抛光[J].表面技术.2005,34(12):25-27.
    [108]包胜华,吴蒙华,刘正宁.医用钛合金超声-电化学抛光工艺[J].材料保护.2005,38(11):34-36.
    [109]Martin C R. Nanomaterials:A membrane-based synthetic approach[J]. Science.1994,266 (5193):1961-1966.
    [110]Khan H R, Petrikowski K. Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina[J]. Journal of Magnetism and Magnetic Materials.2000,215-216:526-528.
    [111]Ding J X, Zapien J A, Chen W W, et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates[J]. Applied Physics Letters.2004,85 (12):2361-2363.
    [112]Kohli P, Wharton J E, Braide O, et al. Template synthesis of gold nanotubes in an anodic alumina membrane[J]. Journal of Nanoscience and Nanotechnology.2004,4 (6):605-610.
    [113]Chen P L, Chang J K, Kuo C T, et al. Field emission of carbon nanotubes on anodic aluminum oxide template with controlled tube density[J]. Applied Physics Letters.2005,86 (12):1-3.
    [114]Thompson G E. Porous anodic alumina:fabrication, characterization and applications[J]. Thin Solid Films.1997,297 (1-2):192-201.
    [115]Thompson G E, Wood G C. Porous anodic film formation on aluminium[J]. Nature.1981,290 (5803):230-232.
    [116]O'Sullivan J P, Wood G C. Nucleation and growth of porous anodic films on aluminum[M]. London:Proceedings of the Royal Society of London Series A,1970.
    [117]Patermarakis G, Karayannis H S. The mechanism of growth of porous anodic Al2O3 films on aluminium at high film thicknesses[J]. Electrochimica Acta.1995,40 (16):2647-2656.
    [118]Patermarakis G, Papanderadis N. Study on the kinetics of growth of porous anodic Al2O3 films on Al metal[J]. Electrochimica Acta.1993,38 (15):2351-2361
    [119]Randon J, Mardilovich P P, Govyadinov A N, et al. Computer simulation of inorganic membrane morphology part 3. anodic alumina films and membranes [J]. Journal of Colloid and Interface Science.1995,169 (2):335-341.
    [120]Ono S, Masuko N. Dissolution behavior of the barrier layer of porous anodic films formed on aluminum studied by pore-filling technique[J]. Journal of Japan Institute of Light Metals.1993, 43 (9):447-452.
    [121]Ono S, Ichinose H, Masuko N. Defects in porous anodic films formed on high purity aluminum[J]. Journal of the Electrochemical Society.1991,138 (12):3705-3710.
    [122]Dekker A J, Middelhoek A. Transport Numbers and the Structure of Porous Anodic Films on Aluminum[J]. Journal of the Electrochemical Society.1970,117 (4):440-448.
    [123]Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates[J]. Journal of Physical Chemistry.1996,100 (33):14037-14047.
    [124]Vrublevsky I, Parkoun V, Schreckenbach J. Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique[J]. Applied Surface Science.2005,242 (3-4):333-338.
    [125]Vrublevsky I, Parkoun V, Schreckenbach J, et al. Study of porous oxide film growth on aluminum in oxalic acid using a re-anodizing technique[J]. Applied Surface Science.2004,227 (1-4):282-292.
    [126]Ono S, Masuko N. Evaluation of pore diameter of anodic porous films formed on aluminum[J]. Surface and Coatings Technology.2003,169-170:139-142.
    [127]Shikanai M, Sakairi M, Takahashi H, et al. Formation of Al/(Ti, Nb, Ta)-composite oxide films on aluminum by pore filling[J]. Journal of the Electrochemical Society.1997,144 (8):2756-2766.
    [128]Ono S, Wada C, Asoh H. Structure and property of anodic barrier films formed on aluminum in low voltage range[J]. Electrochimica Acta.2005,50 (25-26):5103-5110.
    [129]Lemaitre L, Fransaer J, Peteghem A P V, et al. The application of the pore-filling method to the study of the structure of porous anodic films on aluminium[J]. Materials Chemistry and Physics. 1987,17(3):285-291.
    [130]Zahariev A, Kanazirskib I, Girginovb A. Anodic alumina films formed in sulfamic acid solution[J]. Inorganica Chimica Acta.2008,361 (6):1789-1792.
    [131]Ono S, Takeda K. Patterning of Semiconductors by Metal-Assisted Chemical Etching/Electrodeposition through Self-Organized Spheres[C]. Proceedings of Passivity of Eighth International Symposium on the Metals and Semiconductors, Canada,2000:931-938.
    [132]Takahashi H, Nagayama M. The Determination of the Porosity of Anodic Oxide Films on Aluminium by the Pore-Filling Method[J]. Corrosion Science.1978,18 (10):911-925.
    [133]Abramoff M D, Magelhaes P J, Ram S J. Image Processing with ImageJ[J]. Biophotonics International.2004,11 (7):36-42.
    [134]洪淑文.喷射电沉积制备泡沫金属的试验装置研制及试验研究[D]:(硕士学位论文)南京:南京航空航天大学,2007.
    [135]李纯清,严海彪,陈绪煌.泡沫材料孔径及分布测量研究[J].湖北工业大学学报.2007,22(6):7-10.
    [136]汤国华,杨俊和,琢张,et al.一种定量分析多孔材料孔隙结构的新方法[J].煤炭转化.2004,27(1):71-75.
    [137]戴华.真空阴极电弧离子镀层中宏观颗粒去除技术研究[D]:(博士学位论文)上海:上海交通大学,2009.
    [138]赵欣宇.直接碳燃料电池阳极反应和特性研究[D]:(硕士学位论文)北京:清华大学,2008.
    [139]Tan K, Obendorf S K. Fabrication and evaluation of electrospun nanofibrous antimicrobial nylon 6 membranes [J]. Journal of Membrane Science.2007,305(1-2):287-298.
    [140]Sun W, Chen T, Chen C, et al. A study on membrane morphology by digital image processing[J]. Journal of Membrane Science.2007,305 (1-2):93-102.
    [141]Belwalkar A, Grasing E, Geertruyden W V, et al. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes[J]. Journal of Membrane Science.2008,319 (1-2):192-198.
    [142]Plumb R C. Studies of the Anodic Behavior of Aluminum [J]. Journal of the Electrochemical Society.1958,105 (9):498-502.
    [143]Vrublevsky I, Jagminas A, Schreckenbach J, et al. Electronic properties of electrolyte/anodic alumina junction during porous anodizing[J]. Applied Surface Science.2007,253 (10):4680-4687.
    [144]Vrublevsky I, Parkoun V, Schreckenbach J, et al. Dissolution behaviour of the barrier layer of porous oxide films on aluminum formed in phosphoric acid studied by a re-anodizing technique[J]. Applied Surface Science.2006,252 (14):5100-5108.
    [145]Wann S S, Uehara G. Surface Charge Manipulation of Constant Surface Potential Soil Colloids: I. Relation to Sorbed Phosphorus[J]. Soil Science Society of America.1978,42:565-570.
    [146]Oldham K B. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface[J]. Journal of Electroanalytical Chemistry.2008,613 (2):131-138.
    [147]Aerts T, Dimogerontakis T, Graeve I D, et al. Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film[J]. Surface and Coatings Technology.2007,201 (16-17):7310-7317.
    [148]Cole K, Cole R. Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. The Journal of Chemical Physics.1941,9 (4):341-351.
    [149]Armstrong R D, Henderson M. The transpassive dissolution of chromium[J]. Journal of Electroanalytical Chemistry.1971,32 (1):1-11.
    [150]Walton M E, Brook P A. The dissolution of copper-nickel alloysin hydrochloric acid—Ⅱ. Stationary electrode and impedance measurements[J]. Corrosion Science.1977,17 (7):593-602.
    [151]Haruyama S, Masamura K. The dissolution of magnetite in acidic perchlorate solutions[J]. Corrosion Science.1978,18 (4):263-274.
    [152]Kendig M W, Leidheiser H. The Electrical Properties of Protective Polymer Coatings as Related to Corrosion of the Substrate[J]. Journal of the Electrochemical Society.1976,123 (7):982-989.
    [153]Deflorian F, Fedrizzi L, Rossi S, et al. Defect dimension evaluation in organic coated galvanized steel by electrochemical impedance spectroscopy[J]. Journal of Applied Electrochemistry.2002, 32 (8):921-927.
    [154]Blanc G, Gabrielli C, Ksouri M, et al. Experimental study of the relationships between the electrochemical noise and the structure of the electrodeposits of metals[J]. Electrochimica Acta. 1978,23(4):337-340.
    [155]Momma T, Kakuda S, Yarimizu H, et al. Electrochemical Redox Properties of Polypyrrole/Nafion Composite Film in a Solid Polymer Electrolyte Battery[J]. Journal of the Electrochemical Society.1995,142 (6):1766-1769.
    [156]Bauerle J E. Study of solid electrolyte polarization by a complex admittance method[J]. Journal of Physics and Chemistry of Solids.1969,30 (12):2657-2670.
    [157]Jayaraj B, Vishweswaraiah S, Desai V H, et al. Electrochemical impedance spectroscopy of thermal barrier coatings as a function of isothermal and cyclic thermal exposure[J]. Surface and Coatings Technology.2004,177-178:140-151.
    [158]Zhao X-h, Zuo Y, Zhao J-m, et al. A study on the self-sealing process of anodic films on aluminum by EIS[J]. Surface and Coatings Technology.2006,200 (24):6846-6853.
    [159]Zemanova M, Hives J, Chovancova M. Study of Anodic Oxide Layers by Electrochemical Impedance Spectroscopy (EIS)[J]. Solid State Phenomena.2003,90-91:455-462.
    [160]Thomas S, Birss V. Oxide Film Formation on a Microcrystalline Al Alloy inSulfuric Acid[J]. Journal of the Electrochemical Society.1997,144 (4):1353-1361.
    [161]Suay J J, Gimenez E, Rodriguez T, et al. Characterization of anodized and sealed aluminium by EIS[J]. Corrosion Science.2003,45 (3):611-624.
    [162]Snogan F, Blanc C, Mankowski G, et al. Characterisation of sealed anodic films on 7050 T74 and 2214 T6 aluminium alloys[J]. Surface and Coatings Technology.2002,154 (1):94-103.
    [163]Potucek R K, RateickJr. R G, Birss V I. Impedance Characterization of Anodic Barrier Al Oxide Film Beneath Porous Oxide Layer[J]. Journal of the Electrochemical Society.2006,153 (8):B304-B310.
    [164]Mansfeld F, Kendig M W. Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopy [J]. Journal of the Electrochemical Society.1988,135 (4):828-833.
    [165]Mansfeld F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection [J]. Electrochimica Acta.1990,35 (10):1533-1544.
    [166]Lopez V, Gonzalez J A, Otero E, et al. Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part Ⅱ:Electrochemical responses[J]. Surface and Coatings Technology.2002,153 (2-3):235-244.
    [167]Linden B V d, Terryn H, Vereecken J. Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy [J]. Journal of Applied Electrochemistry.1990,20 (5):798-803.
    [168]Laeta J D, Scheersa J, Terryna H, et al. Characterization of aluminium surface treatments with electrochemical impedance spectroscopy and spectroscopic ellipsometry [J]. Electrochimica Acta.1993,38(14):2103-2109.
    [169]Klein I E, Yaniv A E, White J H. An electrical equivalent for barrier anodic films on aluminium[J]. Electrochimica Acta.1972,17 (12):2231-2237.
    [170]Jr. S F, Gonzalez J A, Lopez V, et al. Characterisation of porous and barrier layers of anodic oxides on different aluminium alloys[J]. Journal of Applied Electrochemistry.2007,37 (9):1027-1037.
    [171]Hitzig J, Juttner K, Lorenz W J, et al. AC-impedance measurements on porous aluminium oxide films[J]. Corrosion Science.1984,24 (11-12):945-952.
    [172]Hitzig J, Juttner K, Lorenz W J. AC-impedance measurements on corroded porous aluminium oxide films[J]. Journal of the Electrochemical Society.1986,133 (5):887-892.
    [173]Gonzalez J A, Lopez V, Bautista A, et al. Characterization of porous aluminium oxide films from a.c. impedance measurements[J]. Journal of Applied Electrochemistry.1999,29 (2):229-238.
    [174]Goeminne G, Terryn H, Vereecken J. Characterisation of conversion layers on aluminium by means of electrochemical impedance spectroscopy[J]. Electrochimica Acta.1995,40 (4):479-486.
    [175]Girginov A, Popova A, Kanazirski I, et al. Characterization of complex anodic alumina films by electrochemical impedance spectroscopy [J]. Thin Solid Films.2006,515 (4):1548-1551.
    [176]Gervasi C A, Vilche J R. An impedance spectroscopy study of the anodically formed barrier layer on aluminium substrates[J]. Electrochimica Acta.1992,37 (8):1389-1394.
    [177]Debuyck F, Lemaitre L, Moors M, et al. Estimating the barrier layer thickness of porous aluminium oxide films with A.C. impedance measurements [J]. Surface and Coatings Technology.1988,34 (3):311-318.
    [178]Celati N, Sainte Catherine M C, Keddam M, et al. Electrochemical impedance spectroscopy characterization of the protection by anodized layers on aluminium alloys[J]. Materials Science Forum.1995,192-194 (Part 1):335-344.
    [179]Boisier G, Pebere N, Druez C, et al. FESEM and EIS Study of Sealed AA2024 T3 Anodized in Sulfuric Acid Electrolytes:Influence of Tartaric Acid[J]. Journal of the Electrochemical Society. 2008,155(11):C521-C529.
    [180]Bartolome M J, Lopez V, Escudero E, et al. Changes in the specific surface area of porous aluminium oxide films during sealing[J]. Surface and Coatings Technology.2005,200 (14-15):4530-4537.
    [181]Srinivasan R, Bose CSC. Alternating current impedance studies on oxide films in metal/oxide/electrolyte systems:a modified approach[J]. Journal of Applied Electrochemistry. 1982,12 (4):487-496.
    [182]Dasquet J P, Caillard D, Conforto E, et al. Investigation of the anodic oxide layer on 1050 and 2024T3 aluminium alloys by electron microscopy and electrochemical impedance spectroscopy [J]. Thin Solid Films.2000,371 (1-2):183-190.
    [183]Macdonald J R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes [J]. Journal of Electroanalytical Chemistry.1987,223 (1-2):25-50.
    [184]Juttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces[J]. Electrochimica Acta.1990,35 (10):1501-1508.
    [185]Jiittner K, Lorenz W J, Paatsch W. The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide films[J]. Corrosion Science.1989,29 (2-3):279-288.
    [186]Moutarlier V, Gigandet M P, Normand B, et al. EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species[J]. Corrosion Science.2005,47 (4):937-951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700