河北平原麦田二熟制生态经济效益的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河北平原麦田二熟制一方面消耗大量水资源、构成当地农业“不可持续”发展的重要因素,另一方面在保障区域和国家粮食安全方面发挥着重要的作用。从宏观的高度全面地认识这一种植制度,对于科学合理地调整种植业结构具有重要意义。本文运用大样本调查数据和模型方法,对以冬小麦-夏玉米为典型代表的河北平原麦田二熟制和以棉花一熟为代表的一年一熟种植制度的经济效果、水分利用效率和防风蚀效果进行了分析。主要结果如下:
     (1)利用2004-2005年对河北省曲周县114个农户的调查数据,分析了小麦-玉米和棉花种植的经济效果,结果表明:种植小麦-玉米、棉花的净产值分别为10624.3元/hm~2和13870元/hm~2,小麦-玉米的净产值比棉田低23.4%;小麦-玉米的盈利为4174.3元/hm~2,棉花的盈利为5520元/hm~2,小麦-玉米的盈利比棉花低24.4%。
     (2)运用气象资料和调查数据分析了小麦-玉米和棉花的水分经济利用效率(单位面积单位水资源消耗量的盈利),结果表明:小麦-玉米和棉花的水分经济利用效率分别为4.12元/mm·hm~(-2)和7.67元/mm·hm~(-2),小麦-玉米的水分经济利用效率是棉花的74.46%;小麦-玉米、棉花对灌溉水的经济利用效率分别为11.13/mm·hm~(-2)和36.80元/mm·hm~(-2),小麦-玉米田的灌溉水的经济利用效率是棉花的30.25%。
     (3)依据EPIC模型的基本原理,建立了一个新的模型用以估算农田风蚀量。该模型的主要参数包括潜在风蚀量、植被覆盖度、土壤可蚀性、地表粗糙度、地块宽度和表层含水量。
     利用气象数据并使用日平均风速与土壤风蚀量的关系式求出当地农田的潜在风蚀量。根据2m处可蚀风和不同高度风速的关系式得出气象站的临界风蚀速度为6.94m/s。对气象数据分析结果表明,河北平原冬春季节为易蚀性季节,此阶段的可蚀风日数和潜在风蚀量分别占全年的82.35%和68.62%。
     依据田间实测数据建立了植被覆盖度与作物叶面积指数(LAI)的关系方程,以田间试验条件下的作物LAI数据求得植被覆盖度;依据植被覆盖度与潜在风蚀量的关系方程分析的结果表明:易风蚀季节12月-翌年5月小麦-玉米田比裸露农田减少土壤风蚀量98%,而棉花田在此时无植被覆盖;6-7月和10-11月,小麦-玉米田仅比裸露农田减少土壤风蚀量60%,而棉田可比裸露农田减少土壤风蚀量97%以上。故在易风蚀季节小麦-玉米田防风蚀效应远远大于棉花田。
     利用土壤剖面含水量与表层含水量的经验公式及根据彭曼公式和农田水分平衡方程计算得出的土壤剖面含水量数据估算土壤表层土壤含水量。结果表明:5月-10月小麦-玉米田和棉田的表层含水量均大于10%,不会发生风蚀;11月-翌年4月小麦-玉米田的表层含水量显著高于棉田,棉花收获后翻耕晒垡使得棉田的表层含水量处于全年最低值,易发生风蚀。因此在易风蚀的冬春季节,小麦-玉米田表层含水量的防风蚀效应大于棉田。
     用与农田初始粗糙度(Z_(~*0))相对应的土壤风蚀量对地表粗糙度(Z_0)与土壤风蚀量的关系方程进行修正。利用Z_0与土壤粒径之间的定量关系计算农田初始粗糙度(Z_(~*0))的值,并根据不同耕作措施之间地表粗糙度的定量关系,估算出不同耕作措施的Z_0的值。研究结果表明:Z_0及其防风蚀效果与耕作措施呈正显著相关关系。秸秆覆盖的小麦-玉米田和不拔柴的棉田的地表粗糙度最大,Z_0为22.1cm和19.32cm,FR为0,防风蚀效果最好;其次为免耕农田,Z_0值为13cm,FR为0;常规耕作小麦-玉米田(秸秆还田)和棉田(覆膜+翻耕)的Z_0为0.52cm和0.58cm,FR为26%和25%,比裸露农田的土壤风蚀量减少74和75%;传统旋耕小麦-玉米田和棉田的Z_0为0.45cm,比裸露农田的土壤风蚀量减少65%。
     利用两个地点的试验数据对新建立的土壤风蚀模型进行了验证,结果表明,新建立的土壤风蚀模型的模拟值与实测值的线性吻合程度较好,达到5%统计显著水平。
     (4)运用新建立的风蚀模型估算农田风蚀量的结果表明:小麦-玉米田的土壤风蚀量为100.7 kg/hm~2,棉田的土壤风蚀量为1603.6kg/hm~2,小麦-玉米田的风蚀量仅为棉田的6.2%;小麦-玉米田和棉田因土壤风蚀造成的经济损失分别为0.77元/hm~2和12.21元/hm~2,小麦-玉米田比棉田减少风蚀损失11.44元/hm~2。
     综上所述,河北平原小麦-玉米田的单位面积净产值、盈利和水分经济利用效率均低于棉田,但防风蚀效果远远高于棉田。
On the one side, wheat-based double cropping system in hebei plain cost mass water resource, which was the key factor of "non-sustainable" developing agriculture. On the other side, it plays an important role in the protection of regional and national food security. Understanding the croping system all-around from macroscopical point is of great significance to adjust crop structure scientificly and reasonably. In this paper, using a large sample survey data and model, we analysised the economic efficiency and water economic use effeciency use economic efficiency and erosion-preventing effects of wheat-maize and cotton fields in hebei plain. The result shows:
     (1) The economic effects of wheat -maize and cotton fields were analyzed using the investigating data from 114 farmers in quzhou county during the year 2004-2005, the rusults showed: the net output of wheat-maize and cotton fields were separetely 10624.3 yuan/hm~2 and 13870 yuan/hm~2, the net output of wheat-maize and cotton fields were separetely 4174.3 yuan/hm~2 and 5520 yuan/hm~2, the net prifits in wheat -maize was lower 24.4% than that of cotton.
     (2) Water economic use efficiency (the profit of water consumption per unit area) was analyzed using meteorologic and survey data. The results showed: Water economic use effeciency of wheat -maize and cotton field were separetely 4.12 yuan/ mm·hm~(-2) and 7.67 yuan/ mm·hm~(-2). Water economic use effeciency of wheat -maize was 74.46% of that of cotton. The irrigation water economic use effeciency of wheat -maize and cotton field were separetely 11.13 yuan/ mm·hm~(-2) and 36.80 yuan/ mm·hm~(-2). The irrigation water economic use effeciency of wheat -maize was 30.25% of that of cotton.
     (3) We established a new modle on the basis of EPIC model to estimates the amount of wind erosion on farmland. The main parameters of the model included the amount of potential wind erosion, vegetation cover, soil erodibility, surface roughness, block width and surface soil moisture.
     Using meteorologic data and the relationship between the average wind speed and amount of wind erosion, we estimated the amount of potential wind erosion. And using the value on eroding wind of 2m hight and the relationship among different high-speeds, we calculated the value of eroding wind of meteorological station, 6.94m/s. The result of analysising meteorological data showed, the days of eroding wind in winter-spring season was 82.35% of that of the annual volume, and the amount of potential wind erosion in winter-spring season was 68.62% of that of the annual volume.
     We estimated the value of vegetation using the LAI obtained from the field experiment and the relationship equation between vegetation cover and the crops leaf area index; and then we calculated the amount of wind erosion by the relationship equation between vegetation cover and the the amount of wind erosion; The result showed: the amount of wind erosion rised by planting wheat-maize was 2% of that of bare farmland, but the amount of wind erosion by planting cotton in winter-spring season was 100% of that of bare farmland, the amount of wind erosion rised by planting wheat-maize was 40% of that of bare farmland from June to July and from October to November, but the amount of wind erosion rised by planting cotton was 3% of that of bare farmland. Therefore, the erosion-preventing effect of wheat-maize was better than that of cotton fields.
     We estimated surface soil moisture the relationship equation between surface soil moisture and profile soil moisture calculated penman formula and farmland water balance equation. The resulted showed: the amount of wind erosion rised by planting wheat-maize and cotton was merely 0, because the surface soil water of wheat-maize and cotton fields was more than 10%. And the amount of wind erosion rised by planting wheat-maize was larger than that of cotton fields from November to next year April, because surface soil moisture of cotton fields was in the annual minimum value. Therefore, the erosion-preventing effect of wheat-maize was better than that of cotton fields.
     We revised the ralathionship equation between land surface roughness and the amount of wind erosion according to the value of the amount of wind amount of wind erosion correspond to initial land surface roughness. And then we calculated the value of the amount of wind erosion by the value of land surface roughness estimated by the relationship between land surface roughness (Z_0) and the diameter of soil particles and the ralationship of different tillage. The result showed: the land surface roughness of wheat-maize fields with straw stalk cover and the cotton fields with firewood was the biggest, Z_0 was 22.1cm and 19.32cm, FR was 0, the erosion-preventing effects was the biggest; the no-tillage wheat-maize and cotton fields was next, Z_0 was 13cm, FR was 0; And then it was conventional cultivation wheat-maize fields (straw stalk also field) and cotton fields (rotary + ploughing), Z_0 was 0.52cm and 0.58cm, FR was 26% and 25%, it was planting wheat-maize and cotton that reduced 76 and 76% of the amount of wind erosion compared to bare farmland. Z_0 of traditional rotary cultivation wheat maize and cotton fields was 0.45cm, which could reduces 65% of amount of wind erosion compared to bare farmland.
     We tested the new modle with the experimental data of two different places. The result showed: the effect of the new modle was good, which achieved 5% remarkable level.
     (4) We estimated the amount of wind erosion by the new modle, the result was that the amount of wheat-maize fields was 100.7 kg/hm~2, and that the amount of cotton fields was 1603.6 kg/hm~2. the value on the amount of wheat-maize fields was 6.2% of the value on the amount of cotton fields. Moreover, the economic loss rised by soil nutrient outflow of wheat- maize fields was 0.77 Yuan /hm~2. and the economic loss rised by soil nutrient outflow of cotton fields was 12.21 Yuan /hm~2.
     In summary, in Hebei plain, the wheat - maize field's net output value of unit area,the profit and the water economic use efficiency were lower than that of the cotton field, but wind erosion-resisitence effect is higher than that of the cotton field by far.
引文
[1] 段红平,赵正雄.中国农业可持续发展与粮食安全问题的分析[J].耕作与栽培,2002(2):58-60.
    
    [2] 李文体,李永根.河北省城市水资源开发利用存在问题及对策建议[J].水资源保护,2002,2:33-35.
    
    [3] 郑连生,穆仲义,马大明.河北省缺水状况、问题及对策[J].地理学与国土研究,2002,18(1):44-50.
    
    [4] 隋鹏.黄淮海平原节水种植模式生态经济分析及优化配置研究—以河北省栾城县为例[D].中国农业大学,2005,2-6.
    
    [5] 张东云.河北省土壤侵蚀放感性分级及其区划研究[D].河北师范大学,2005,133-37.
    
    [6] 安月改,刘学锋.京、津、冀区域沙尘天气气候变化特征分析[J].山东农业大学学报(自然科学版),2004,35(1):84-88.
    
    [7] 祁旭升.甘肃河西地区扩种冬小麦的生态效益分析[J].西北农业学报.2004,13(4):93-97.
    
    [8] William F,Schillinger.保持种植区的水分[J].水土保持情报,1996(4):14-16,19.
    
    [9] 贾树龙,孟春香,张执欣.保护性耕作在河北省的区域适应性[J].华北农学报,2003,18(院庆专辑):139-141.
    
    [10] 王礼先,吴斌,洪惜英译.M.J.柯可比,R.P.C.摩根编著.土壤侵蚀[M].北京:水利水电出版社,1987,241.
    
    [11] 朱朝云,丁国栋,杨明远.风沙物理学[M].北京:中国林业出版社,1992, 8.
    
    [12] 臧英,高焕文.国外农田风蚀发生机理与防治技术的研究[J].农业工程学报,2002,18(3):195-198.
    
    [13] 董治宝,高尚玉,董光荣.土壤风蚀预报研究述评[J].中国沙漠,1999,19(4):312-317.
    
    [14] Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Science Society ofAmerica Proceedings, 1965, 29 (5): 602-608.
    
    [15] Skidmore E L. A wind erosion climate erosivity[J]. Climate Change, 1986, 9 (1-2):195-208.
    
    [16] 董治宝.土壤风蚀预报简述[J].中国水土保持,1996(6):17-19.
    
    [17] Yaping Shao, M.R.R.a.J.F.L. A modle for predicting acolian and drift and dust entrainment on scales from paddock to region[J]. Australian Journal of Soil Research, 1996,34:309-342.
    
    [18] 贺大良,邹本功,李长治,等.地表风蚀过程风洞实验的初步研究[J].中国沙漠,1986,6(1):25-31.
    
    [19] 董光荣,李民治,金炯,等.关于土壤风蚀风洞实验的某些结果[J].科学通报,??1987,32(4):277-301.
    
    [20] 吴正.风沙地貌学[M].北京:科学出版社,1987,23-90,260.
    
    [21] 董治宝,陈渭南,李振山,等.植被对土壤风蚀影响作用的实验研究[J].土壤侵蚀与水土保持学报,1996,2,(2):1-8.
    
    [22] 董治宝.建立小流域风蚀量统计模型初探[J].水土保持通报,1998,18(5):55-62.
    
    [23] 严军,张信宝.137C_s法在风化过程研究中的应用前景[J].中国沙漠,1998,18(2):182-187.
    
    [24] 王训明,董治宝,武生智,等.土壤风蚀过程的一类随机模型[J].水土保持通报,2001,21(1):19-22.
    
    [25] 郑东旭.农田保护措施防治防治沙尘暴效果及土壤风蚀模型的研究[D].河北农业大学,2004,31.
    
    [26] 赵彩霞.阴山北麓农牧交错带防治风蚀沙化的恢复生态学研究[D].中国农业大学,2004,42.
    
    [27] 张华,李锋瑞,张铜会,等.春季裸露沙质农田土壤风蚀量动态与变异特征[J].水土保持学报,2002,16(1):29-32,79.
    
    [28] 郭志民,陈永宝,陈志伟.土壤可蚀性特征及其K值图制作研究[J].山西水土保持科技,2002(1):15-17.
    
    [29] 门明清,赵同科,彭正萍,等.基于土壤粒径分布模型的河北省土壤可蚀性研究[J].中国农业科学,2004,37(11):1647-1653.
    
    [30] Williams J R, Renard K G, Dyke P T. EPIC-a new method for assessing erosion's effect on soil productivity [J]. Journal of Soil and Water Conservation, 1983, 38: 381-383.
    
    [31] 陈明华,周伏建,黄炎和,等.土壤可蚀性因子的研究[J].水土保持学报,1995,9(1):9-24.
    
    [32] 史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国亚热带土壤的可蚀性[J].水土保持学报,1995,9(3):399-405.
    
    [33] 张清春,刘宝元,翟刚.植被与水土流失研究综述[J].水土保持研究,2002,9(4):96-101.
    
    [34] Van de Ven, T.A.M., D.W. Fry, etal. Vegetation characteristics and soil loss bywind[J]. Journal of Soil and Water Conservation, 1989, 44: 347-349.
    
    [35] Wolf S.A., W.G.Nickling. The protective role of sparse vegetation in wind erosion[J].Progress on Physical Geography, 1993, 7: 50-68.
    
    [36] Gibbens R.P., J.M.Tromble, J.T.Hennessy. Soil movement in mesquite dunelandsand former grasslands of southern New Mexico from 1933 to 1980[J]. Journal of RangeMangement, 1983, 36:145-148.
    
    [37] Brazel A.J., W.G.Nickling. Dust storm and their relation to moisture in theSonoran-Mojave desert region of the South-Western United States[J]. Journal ofEnvironmental Mangement, 1987,24: 279-291.
    
    [38] Higgitt. Soil erosion and soil problems[J]. Progress in Physical Geography, 1993, 17:461-472.
    
    [39] Wasson G.J., Nanninga P.M. Estimating wind transport of sand on vegetationsurface[J]. Earth surface Processes and Landforms, 1986, N (1): 505-514.
    
    [40] 胡孟春,刘玉璋,乌兰,等.科尔沁沙地土壤风蚀的风洞实验研究[J].中国沙漠,1991,11(1):22-29.
    
    [41] 黄富祥,牛海山,王明星,等.毛乌素沙地植被覆盖率与风蚀输沙率定量关系[J].地理学报,2001,56(6):700-710.
    
    [42] 刘玉璋,董光荣,李长治.影响土壤风蚀主要因素的风洞实验研究[J].中国沙漠,1992,12(4):41-49.
    
    [43] 张春来,邹学勇,董光荣,等.植被对土壤风蚀影响的风洞实验研究[J].水土保持学报.2003,17(3):31-33.
    
    [44] 郭雨华,赵廷宁,孙保平,等.灌木林对地表风况及空气动力学参数影响的野外调查研究—以丰宁满足自治县小坝子村为例[J].林业调查规划,2006,31(4):72-75.
    
    [45] 张华,李锋锐,伏乾科,等.沙质草地植被防风抗蚀生态效应的野外预测研究[J].环境科学,2004,25(2):119-124.
    
    [46] Adams J. EArkin G F. A light interception method for measuring row crop ground cover[J]. Soil Science Society of America Journal, 1997, 41 (4): 789-792.
    
    [47] Robert P Ewing, Robert Horton. Quantitative color image analysis of agronomic images[J]. Agron Journal, 1999, 91: 148-153.
    
    [48] 章文波,刘宝元,吴敬东.小区植被覆盖度动态快速测定方法研究[J].水土保持通报.2001,21(6):60-63.
    
    [49] 路炳军,刘洪鹄,符素华,等.照相法结合数字图像技术计算植被覆盖度精度研究[J].水土保持通报,2007,21(1):78-80,85.
    
    [50] Nikon T. A theoretical analysis of the frequency of gaps in plant stands[J]. Agric Meteorol, 1971,8:25-38.
    
    [51] 李存军,王纪华,刘良云,等.基于数字照片特征的小麦覆盖度自动提取研究[J].浙江大学学报(农业与生命科学版),2004,30(6):650-656.
    
    [52] Toby N Carlson. On the Relation between NDVI, Fractional Vegetation Cover and Leaf Area Index[J]. Remote sensing of Environment, 1997 (2): 241-25.
    
    [53] 李远华,张明注,范文昌,等.非充分灌溉条件旱作物需水量分析计算研究[J].武汉水利电力大学学报,1994,27(5):506-512.
    
    [54] 李振山,陈广庭.粗糙度研究的现状及展望[J].中国沙漠,1997,17(1):99-102.
    
    [55] 陈东,曹文洪,傅玲燕,等.风沙运动规律的初步研究[J].泥沙研究,1999(6):84-89.
    
    [56] 郑子成.坡耕地地表糙度及其作用研究[D].西北农林科技大学,2002,1-11.
    
    [57] 张春来,邹学勇,董光荣,等.耕作土壤表面的空气动力学粗糙度及其对土壤??风蚀的影响[J].中国沙漠,2002,22(5):473-475.
    
    [58] 黄高宝,于爱忠,郭清毅,等.甘肃河西冬小麦保护性耕作对土壤风蚀影响的风洞试验研究[J].土壤学报,2007,44(6):965-973.
    
    [59] 吴发启,赵晓光,刘秉正,等.地表糙度的测量方法及对坡面径流和侵蚀的影响[J].西北林学院学报,1998,13(2):15-19.
    
    [60] 刘晓民,程国彦,郝建国,等.农田留茬覆盖抗风蚀效果浅析[J].农村牧区机械化,2005(1):10-12.
    
    [61] Bagnold R A. The movement of desert sand[A]. Proceedings of Royal Society London,Series A[C]. 1938,157: 594-620.
    
    [62] 董治宝,Donald W Fryrear,高尚玉.直立植物防沙措施粗糙特征的模拟实验[J].中国沙漠,2000,20(3):260-263.
    
    [63] 刘小平,董治宝,王训明.固定沙质床面的空气动力学粗糙度[J].中国沙漠,2003,23(2):111-117.
    
    [64] 董治宝,陈广庭.生物防沙物理学研究进展[J].中国沙漠,1996,16(Supp.3):44-48.
    
    [64] 赵宏亮,侯立白,张雯,等.彰武县保护性耕作防治土壤风蚀效果监测[J].西北农业学报,2006,15(2):159-163.
    
    [65] 尚润阳.地表覆盖对土壤风蚀影响机理及效应研究[D].北京林业大学,2007,40-50.
    
    [66] 陈广庭.北京平原机械组成和抗风蚀能力的分析[J].干旱区资源与环境,1991,5(1):103-113.
    
    [67] 董治宝,陈渭南,李振山,等.风沙土水分抗风蚀性研究[J].水土保持通报,1996,16(2):17-22.
    
    [68] 移小勇,赵哈林,赵学勇,等.不同风沙土含水量因子的抗风蚀性[J].土壤学报,2006,43(4):684-687.
    
    [69] 何文清,赵彩霞,高旺盛,等.不同土地利用方式下土壤风蚀主要影响因子研究—以内蒙古武川县为例[J].应用生态学报,2005,16(11):2092-2096.
    
    [70] 贾金生,刘昌明.华北平原地下水动态及其对不同农业开采量响应的计算[J].地理学报,2002,57(2):201-209.
    
    [71] 刘昌明.发挥南水北调的生态效益、修复华北平原地下水[J].南水北调与水利科技,2003,24(1):17-19.
    
    [72] 李承绪,丁鼎治,杨思治.河北土壤[M].石家庄:河北科学技术出版社,1990,14-17,360-374.
    
    [73] 李元华,安月改.河北省冻土气候变化初探[J].干旱区资源与环境,2005,19(6):38-42.
    
    [74] 王道波,邢素丽,李会龙,等.河北平原农田用水现状及灌溉方式和保证率对农田用水的影响[J].干旱地区农业研究,2005,23(2):21-24.
    
    [75] 张国印.土壤质量评价指标和方法初探[D].中国农业大学,2005,12.
    
    [76] 王红亚,石元春,于澎涛,等.河北平原南部曲周地区早、中全新世冲积物的分析及古环境状况的推测[J].第四纪研究,2002,22(4):381-393.
    
    [77] 王红亚,石元春,汪美华,等.曲周地区早、中全新世古年径流深状况的推估[J].地理研究,2004,23(2):183-191.
    
    [78] 夏爱萍.河北平原小麦-玉米两熟生产的限制因素研究[D].河北农业大学,2006,12-20.
    
    [79] 王贵彦.从FSD视角对农户水平上转基因抗虫棉技术应用过程和效果的系统分析[D].中国农业大学,2005,26-27.
    
    [80] 孙红春.氮素和源库比对棉花“铃—叶”系统生理特性影响的研究[D].河北农业大学,2004,8.
    
    [81] 白由路,杨俐苹.基于图象处理的植物叶面积测定方法[J].农业网络信息.2004(1):36-38.
    
    [82] 王尔大,Wyatte Harman,郑大玮,等.旱作农区轮作和留茬处理方式对风蚀的影响—应用EPIC模型进行模拟和分析的武川案例[J].中国农业科学,2002,35(11):1330-1336.
    
    [83] 徐为根,申双和,姚克敏,等.7个水分等级下棉花耗水量特征及其模拟[J].南京气象学院学报,2002,25(2):221-225.
    
    [84] 刘目兴,刘连友,孙炳彦,等.耕作地表土块状况及其对近地表风场的影响[J].干旱地区农业研究,2008,26(1):12-17.
    
    [85] 周建忠,路明.保护性耕作残茬覆盖防治农田土壤风蚀的试验研究[J].吉林农业大学学报,2004,26(2):170-173,178.
    
    [86] 陈英燕,赵惠林.改进颗粒平均粒径计算方法的讨论[J].泥沙研究.1997(3):89-94.
    
    [87] 李晋生,马吉利,刘玉升.河北省两熟制农田小麦保护性耕作实践经验、问题与对策[C].农业部农业机械化管理司中加可持续农业发展项目[C].中加保护性耕作论坛论文集[EB/OL].Http://www.ccag.com.cn/chinese/technical_info/tech_crop/CA_Forum_2006/CAForum_main_cn-2.htmL,2008-04-28.
    
    [88] 赵宏亮,侯立白,张雯,等.彰武县保护性耕作防治土壤风蚀效果监测[J].西北农业学报,2006,15(2):159-163.
    
    [89] 尚润阳.地表覆盖对土壤风蚀影响机理及效应研究[D].北京林业大学,2007,40-50.
    
    [90] 海春兴,刘宝元,赵烨.土壤湿度和植被盖度对土壤风蚀的影响[J].应用生态学报,2002,13(8):1057-1058.
    
    [91] 刘灵娣.水分胁迫对不同铃重基因型棉花源库协调性的影响[D].河北农业大学,2006,10-20.
    
    [92] 马海莲.转Bt基因抗虫杂交棉优化结铃模式及其生长发育与生理特征研究[D].河北农业大学,2003,11-37.
    
    [93] 雷咏雯,王娟,郭金强,等.一种基于图像分析提取作物冠层生物学参数的??方法与验证[J].西北农业学报,2006,15(6):45-49.
    
    [94] 游珍,李占斌,袁琼,等.干旱区植被覆盖度的建设阈值分析[J].水土保持研究,2005,12(3):88-90.
    
    [95] 李军.EPIC模型中土壤侵蚀量的数学模拟[J].Http://www.paper.edu.cn.[EB/OL].2007-05-05.
    
    [96] 鹿洁忠.根据表层数据估算深层土壤水分[J].农业气象,1987,8(3):60-62.
    
    [97] 李红,周连第,张有山.北京郊平原粮田土壤水分垂直变异特征[J].华北农学报,2002,17(2):82-87.
    
    [98] 樊引琴.作物蒸发蒸腾量的测定与作物需水量计算方法的研究[D].西北农林科技大学,2001,6.
    
    [99] 肖新华.冬小麦—夏玉米轮作下灌溉农田水氮平衡的定量评价[D].中国农业大学,2004,32-33.
    
    [100] 高凤莲.农田土壤水分时空变异特征及水量平衡分析[D].中国农业大学,2004,42-44.
    
    [101] 于婵,朝伦巴根,高瑞忠,等.无水分胁迫下行作蒸发散与双涌源能量分配的交换关系[J].应用生态学报,2006,17(5):839-844.
    
    [102] 任红瑞,罗毅,谢贤群.几种常用净辐射计算方法在黄淮海平原应用的评价[J].农业工程学报,2006,22(5):140-146.
    
    [103] 康绍忠,刘晓明.熊运章,等.土壤—植物—大气连续体水分传输理论及其应用[M].水利电力出版社,1994.18.
    
    [104] 杨晓光,B.A.M.Bouman,张秋平,等.华北平原旱稻作物系数试验研究[J].农业工程学报,2006,22(2):37-41.
    
    [105] 雷志栋,罗毅,杨诗秀,等.利用常规气象资料模拟计算作物系数的探讨[J].农业工程学报,1999,15(3):119-122.
    
    [106] 张喜英,陈素英,裴冬,等.秸秆覆盖下的夏玉米蒸散、水分利用效率和作物系数的变化[J].地理科学进展,2002,21(6):583-592.
    
    [107] 慕彩芸,马富裕,郑旭荣,等.覆膜滴灌棉田蒸散量的模拟研究[J].农业工程学报,2005,21(4):261-268.
    
    [108] 张新军.冬小麦不同密度下两品种混合群体效应的研究[D].河北农业大学,2007,10-29.
    
    [109] 张海林.华北平原麦玉两熟区覆盖免耕土壤—作物系统农田耗水与调控[D].中国农业大学,2001,39-42.
    
    [110] 韩秋成.不同耕作方式对棉花生长发育及衰老特性的影响[D].河北农业大学,2007,18-25.
    
    [111] 臧英.保护性耕作防止土壤风蚀的试验研究[D].中国农业大学,2003,35-62.
    
    [112] 王云超.河北坝上农牧交错区不同下垫面土壤风蚀监测及研究[D].河北农业大学,2006,11-23.
    
    [113] 肖 寒,欧阳志云.森林生态系统服务功能及其生态价值评估初探[J].应用??生态学报,2000,11(4):481-484.
    
    [114] 何文清,陈源泉,高旺盛,等.农牧交错带风蚀沙化区农业生态系统服务功能的经济价值评估[J].应用生态学报,2004,23(4):49-53.
    
    [115] 金民,贾志清,卢 琦.浑善达克沙地防沙治沙综合治理模式及效益评价—以多伦县为例[J].林业科学研究,2006,19(3):321-325.
    
    [116] 宋春梅.农作系统养分平衡的研究—以河北省曲周县为例[J].林业科学研究,2004,53.
    
    [117] 高安,吴诗怡.黄淮海平原沙地风蚀的研究[J].土壤学报,1996,33(2):183-191.
    
    [118] 岳德鹏,刘永兵,王计平,等.河流冲积沉积沙地风蚀规律及植被防风蚀效应—以北京市永定河沙为例[J].生态学报,2006,26(9):2948-2956.
    
    [119] 安月改,刘学锋,张梅.京津冀区域沙尘暴气候变化特征分析[J].环境科学研究,2004,17(3):21-24.
    
    [120] 北京大学地理系,中科院自然资源综合考察委员会,中科院兰州沙漠所,等.毛乌素沙区自然条件及利用[M].北京:科学出版社,1983,1-18.
    
    [121] 张新时.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报,1994,18(1):1-16.
    
    [122] 高琼,董学军,梁宁.基于土壤水分平衡的沙地最优覆盖率的研究[J].生态学报,1996,16(1):33-40.
    
    [123] Gao Qiong. A model of ranfall redistribution in terraced sandy grassland landscapes[J]. Environmental and Ecological Statistics, 1997,4: 205-218.
    
    [125] 河北省人民政府办公厅,河北省统计局.河北农村统计年鉴[M].北京:中国统计出版社,1998-2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700