中国汉族北方母系起源的遗传学初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汉族是世界上人口最多的民族,也是中国的主体民族,对于汉族的起源一直是历史学家、考古学家、人类学家以及遗传学家关注的重点。通常认为,汉族起始于活跃在中原地区的华夏族,后者经过与其他民族融合之后,至汉代初步形成以汉族为称谓的民族,此后又不断与周边民族发生融合,最终形成现代汉族。然而,汉族的发展过程异常复杂,现有研究还不足以全面了解它的详细过程,古DNA研究可以直接探寻汉族的前身华夏族以及每个历史时期的汉族人群的遗传结构,从而构建汉族发展的时空网络,了解汉族群体演变过程中遗传结构的变化情况,为阐明汉族发展历程提供重要的遗传学依据。本研究通过对三处遗址的人类遗骸——山西横北村西周时期古代人群、宁夏彭阳东周时期古代人群、青海陶家寨东汉魏晋时期古代人群的线粒体DNA进行研究,结合中国现代人群以及其他北方古代人群的线粒体DNA研究结果,以遗传学的视角对汉族的母系起源作了初步探索。
     第一、成功从68例横北村古代人类遗骸中获得52个真实可靠的线粒体高可变Ⅰ区序列,归属于46个单倍型,13个单倍型类群,分别为A、B、C、D、F、G、M7、M8、M9、M10、M*、N9a以及Z。单倍型类群频率分析表明,横北村古代人群各种频率分布与现代汉族人群相类似。主成份分析显示横北村古代人群与北方汉族紧密聚类在较小的区域内。共享序列分析表明在中国人群当中,与横北村古代人群共享个体数所占比例最高的是现代北方汉族,同样,在横北村古代人群中有最多的个体与北方汉族共享同一单倍型。分子差异度分析显示横北村古代人群与现代北方汉族的Fst值最小,甚至为负值,P值远大于0.05,两者表现出特别近的遗传关系。人群混合度分析中,以横北村古代人群和古代匈奴人群作为祖先人群、现代北方汉族作为后代人群进行分析,横北村古代人群对现代北方汉族的人群混合度数值都比较大,达到了0.709134(MBE)和0.8290(MRH),分别以横北村古代人群和古代匈奴人群作为祖先人群、北方少数民族作为后代人群进行分析和以横北村古代人群和南方少数民族作为祖先人群、现代南方汉族作为后代人群进行分析,横北村古代人群对北方少数民族和现代南方汉族的人群混合度数值都较小,说明横北村古代人群与现代北方汉族的遗传关系比横北村古代人群与北方少数民族和南方汉族的遗传关系较近。所有遗传学分析结果都一致表明横北村古代人群同现代北方汉族的遗传结构非常相似,暗示3,000年前的中原地区居民对现代北方汉族具有母系遗传贡献。另外,虽然横北村古代人群中存在多种葬俗,人群也可分为有殉人的墓主、无殉人的墓主和殉人三大类,但是各种遗传分析显示横北村古代人群内部不存在明显的母系遗传结构差异。
     第二、成功从6例宁夏彭阳古代人类遗骸中获得真实可靠的线粒体高可变Ⅰ区序列,归属为6个单倍型,3个单倍型类群,分别为C、D4和M10。为了研究本样本的单倍型在现代人群中的分布,在东亚和北亚人群已经发表的线粒体数据库中搜索了共享序列,结果这6个样本均找到了相应的共享个体。总体来看,这些样本的共享个体大多来自于北方游牧畜养民族起源的北亚人群和中国北方少数民族。进一步通过中介网络分析探讨彭阳古代人群的种族归属问题,单倍型类群C中,北方现代汉族个体大多聚集在一个聚类簇上,样本PW4与现代北亚人群、中国北方少数民族以及古代游牧畜养人群聚类在一起。单倍型类群D中,所选用的几个人群大都混合在一起,很难将他们清晰的分辨开来,但比较明显的是,样本PZ2与PW6只与中国北方少数民族和北亚人群共享同一节点。单倍型类群M10中,没有古代游牧畜养人群。样本PW7与北亚人群及北方汉族共享同一节点。总的看来,这6个样本的共享人群在北亚人群和中国北方少数民族中均有发现,而且有些个体的共享人群只来源于或多数来源于游牧畜养起源的民族中,这些结果表明邻近中原地区的彭阳古代人群可能来自于北方游牧畜养民族。
     第三、成功从46个青海陶家寨古代人类遗骸中得到了43个真实可靠的线粒体高可变Ⅰ区序列,归属为24个单倍型,8个单倍型类群,分别为A、B、D、F、M10、M*、N9a和Z。基于线粒体单倍型类群频率分析,陶家寨古代人群与现代北方汉族及藏缅人群具有较近的遗传关系。主成份分析图中,陶家寨古代人群可以与北方汉族划分为一个聚类簇,同时也与一少部分藏缅人群距离非常近。中介网络图中,无论在北方主导的单倍型类群还是南方主导的单倍型类群中,陶家寨人群总是与大多数的藏缅人群和汉族聚集在一起。分子差异分析表明陶家寨人群与藏缅人群的Fst最小,甚至为负值(-0.00095),P值远大于0.05,另外,陶家寨人群与北方汉族、南方汉族的Fst分别为0.00359和0.00406,P值都大于0.05,说明他们之间差异不显著。这些结果表明陶家寨古代人群与藏缅人群和汉族具有较近的遗传关系。由于古代氐羌人群是藏缅人群的主要母系来源之一,陶家寨又地处古代氐羌人群聚居地,该墓葬群属于同时期的汉文化,由此推测古代氐羌人群是汉族人群的一个母系基因贡献者。
     第四、对各种古代人群线粒体DNA分析表明,在所选的古代人群中同现代北方汉族遗传结构最为相似的是3,000年前居住于中原地区的横北村古代人群,而其他古代人群包括青海陶家寨古代人群和宁夏彭阳古代人群,相对于横北村古代人群来说,他们与现代北方汉族遗传关系略远一点,但是他们或多或少都与现代汉族存在着单倍型共享的情况。
     基于以上分析结果,结合历史记载,我们得出如下汉族发展历程假设:远古时期,若干氏族部落相互融合,逐渐在中原地区形成华夏族,后者又不断与周边民族融合,至汉代形成以汉族为称谓的民族,此后又继续向外扩张并与周边民族融合,最终形成现代汉族。由于农耕文化远远先进于周边地区的游牧渔猎文化,华夏族及其后裔的人口数量远远多于其他人群,以后的民族融合中,汉族群体一直占据主导地位,这使得其遗传结构基本保持稳定。后期汉族大规模向南方地区迁徙,并与南方土著民族发生融合,母系基因结构发生了一定变化,最后形成了北方汉族和南方汉族在母系方面存在一定差异的局面。
Han Chinese is the largest single ethnic group in China and in the world. Recently, it has attracted extensive interest among scientists such as historian, archaeologist, anthropologist, paleoanthropologist and geneticist, regarding where it originated and how it developed. In general, Han Chinese can trace its origins to Huaxia who formed in the central plain. Following admixture with neighboring natives, Han Chinese became much the largest of the 56 officially recognized ethnic populations in China. Further research should be conducted, however, because Han Chinese formed through a long history and a complex process. The study of ancient DNA may be better to present the Han's evolution, immigration and even expansion of Han culture because of the directly tracking temporal genetic changes. In this study, ancient people from Hengbei site (West Zhou period), Pengyang site (East Zhou period) and Taojiazhai site (East Han period) were analyzed in maternal Lineage. We have attempted to explore the origin of the Han Chinese.
     Firstly,52 reproducible mtDNA HVRI fragments were obtained from 68 ancient Hengbei people, and they were attributed to 46 haplotypes which belong to 13 haplogroups such as A, B, C, D, F, G, M7, M8, M9, M10, M*, N9a and Z. The frequency of haplogroups in ancient Hengbei people is similar to that in the northern Han Chinese. In the plotting of PCA,Hengbei ancient people clustered with northern Han Chinese in a small district. Sharing population analysis showed that there were the most number of northern Han individuals among Chinese ethnics who shared same haplotypes with ancient Hengbei people. Likewise, the frequency of people who shared same haplotypes with northern Han Chinese is highest in ancient Hengbei people. According to the analysis of molecular variance approach, the Fst between ancient Hengbei people and northern Han Chinese was the lowest (-0.00244). and p value was more than 0.05, indicating the close relationship between ancient Hengbei people and northern Han Chinese. The relative contribution of the two parental populations (ancient Hengbei people and Egyin Gol Valley ancient people, ancient Hengbei people and Egyin Gol Valley ancient people, ancient Hengbei people and southern minorities) in three populations (northern Han Chinese, northern minorities, southern Han Chinese) was estimated by two different statistics (MBE and MRH). The results showed that the ancient Hengbei people contribution to the northern Han Chinese was much higher than that to the northern minorities and southern Han Chinese. Over all. the ancient Hengbei population was close to the northern Han Chinese in maternal Lineage, indicating a stable maternal genetic structure in northern Han Chinese since 3,000 years ago. Again, there was no distinct difference between owners of the tombs with Immolated people, owners of the tombs without immolated people and immolated people.
     Secondly,6 reproducible mtDNA HVRI fragments were obtained from 6 ancient Pengyang people, and they were attributed to 6 haplotypes which belong to 3 haplogroups such as C, D and M10. To understand the geographic distribution of the sharing populations, the six haplotypes from our study were used as queries to search for sharing populations in the published data of modern people across East Asia and Siberia. The result showed that most of people who shared with ancient Pengyang people were northern Asians and northern minorities of China who can trace their origins to nomads. According to network analysis, in haplogroup C, the Han Chinese originating from the farming people are concentrated in one group. Meanwhile. PW4 is clustered into another group with minorities in northern China, northern Asians and ancient nomads. In haplogroups D4 and M10, the ancient Pengyang people consistently occupy the same nodes as northern Asians, northern minorities of China and ancient nomads. All analysis showed that ancient Pengyang people, living near the central plain area, may originate from nomads.
     Thirdly,43 reproducible mtDNA HVR-I fragments were obtained from 46 ancient Taojiazhai people, and they were attributed to 24 haplotypes which belong to 8 haplogroups such as A. B, D, F. M10, M*,N9a, and Z. The ancient Taojiazhai people are close to the Han Chinese and some Tibeto-Burman populations in terms of the frequencies of mtDNA haplogroups. The ancient Taojiazhai population pooled into the northern Han Chinese group and was also close to a few Tibeto-Burman populations in plotting of PCA. In the Maximum Parsimony trees, most of Taojiazhai samples were always nearby the Tibeto-Burman populations and Han Chinese. AMOVA was used to evaluate maternal genetic differentiation between ancient Taojiazhai people and other populations. The Fst between Taojiazhai people and Tibeto-Burman population was the lowest (-0.00095), and P value was more than 0.05. In addition, ancient Taojiazhai people and Han Chinese (including northern Han and southern Han) were also not significantly different (Fst value:0.00359 and 0.00406, P:0.05). All studies showed that the ancient Taojiazhai people bore a very high similarity to the Han Chiese and those Tibeto-Burman populations who had high contribution of the Di-Qiang populations. Together with the geographic location and culture of Taojiazhai site, it means that the ancient Di-Qiang populations may be one of the genetic contributors to the Han Chinese people.
     Lastly, according to the comparison among Han Chinese and the ancient populations in this study and previous studies, ancient Hengbei people was closer to the northern Han Chinese than other retrieved populations in maternal Lineage. However, besides ancient Hengbei people, there were many individuals from other ancient populations shared same haplotypes with northern Han Chinese, indicating that neighouring populations had assimilate into Han Chinese.
     In conclusion, according to the results maintioned above, we proposed a development process of Han Chinese. Following the confluences of many ancient tribes, Huaxia had formed in central plain. Then, Huaxia people migrated to peripheral area and assimilated neighboring populations as well as absorbed many other cultures. Until Han Dynasty, Huaxia civilization developed into a tribe known as Han Chinese. Like Huaxia, Han still integrated with numerous tribes or ethnic groups gradually following its expansion. Because of its advanced agriculture, technology, and culture, number of Huaxia (or Han Chinese) people was more than that of neighouring population. So, Huaxia (or Han Chinese) played a predominant role in the mixture of populations, which leads to a stable maternal genetic structure in northern Han Chinese since 3,000 years ago. When Han Chinese migrated from the central plain to the southern China and mixed with southern natives, which shapes a differenation between northern Han Chinese and southern Han Chinese in maternal Lineage.
引文
[1]Du R, Yip VF, eds. Ethnic groups in China[M]. Beijing:Science Press; 1993.
    [2]吕思勉.中华民族源流史[M].北京:九洲出版社;2009.
    [3]吕振羽.中国民族简史[M].北京:人民出版社;2009.
    [4]罗贤佑.中国民族史纲要[M].北京:中国社会科学出版社;2009.
    [5]费孝通.中华民族多元一体格局[M].北京:中央民族大学出版社;2003.
    [6]何光岳.炎黄源流史[M].南昌:江西教育出版社;1992.
    [7]翁独健.中国民族关系史纲要[M].北京:中国社会科学出版社;2001.
    [8]WOLPOFF MH, Wu XZ, Thorne AG. Modern Homo sapiens origins:A general theory of mominid evolution involving the fossil evidence from east Asia[M]. New York:Academic Press; 1984.
    [9]Lahr MM. The Multiregional Model of modern human origins:A reassessment of itsmorphological basis[J]. Journal of Human Evolution 1994;26:33.
    [10]吴新智.从中国晚期智人颅牙特征看中国现代人起源[J].人类学学报1998;17:6.
    [11]Jin L, Su B. Natives or immigrants:modern human origin in east Asia[J]. Nat Rev Genet 2000; 1:126-33.
    [12]沈冠军,王镇,王谦,等.广西柳江土博咐前洞的铀系年代[J].人类学学报2001;20:238-43.
    [13]刘先琴.”许昌人”头骨化石意义重大[N].光明日报2008.2.18.
    [14]中国文明起源研究要览[M].北京:文物出版社;2003.
    [15]赵辉.以中原为中心的历史趋势的形成[J].文物2000:41-8.
    [16]李模.论华夏文明的起源[J].中原文物1996:17-22.
    [17]蔡凤书.中华文明起源”新说”驳议[J].文史哲1988:12-5.
    [18]薛志强.红山诸文化与中华文明[M].北京:中国文史出版社;1995.
    [19]穆鸿利.中华北方古老文明之摇篮------红山文化探论[J].社会科学辑刊1997:88-92.
    [20]张博泉.对辽西发现五千年前文明曙光的历史蠡测[J].辽海文物学刊1987:96-102.
    [21]苏秉琦.中国文明起源新探[M]:三联书店;1999.
    [22]童明康.进一步探讨中国文明的起源---------苏秉琦关于辽西考古新发现的谈话[J].史学情报1987:29-35.
    [23]向一尊.不能以”中原中心论”否定江南古文明[J].江淮论坛1984:112-6.
    [24]李伯谦.长江流域文明的进程[J].考古与文物1997:12-8.
    [25]王玉哲.中华远古史[M].上海:上海人民出版社;1995.
    [26]盛桂莲,赖旭龙,王颁.分子人类学与现代人的起源[J].遗传2004;26:721-8.
    [27]Protsch R. The absolute dating of Upper Pleistocene subSaharan fossil hominids and their place in human evolution[J]. Journal of Human Evolution 1975;4:297-322.
    [28]Howells WW. Explaining modern man:Evolutionists Versus migrationists[J]. Journal of Human Evolution 1976:5:477-96.
    [29]Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution[J]. Nature 1987;325:31-6.
    [30]Stringer CB, Andrews P. Genetic and fossil evidence for the origin of modern humans[J]. Science 1988;239:1263-8.
    [31]刘武,Mbua E,吴秀杰,等.中国与非洲近代-现代人类某些颅骨特征的对比及其意义--中国与非洲人类头骨特征对比之二[J].人类学学报2003;22:89-104.
    [32]Krings M, Stone A, Schmitz RW, et al. Neandertal DNA sequences and the origin of modern humans[J]. Cell 1997;90:19-30.
    [33]Currat M, Excoffier L. Modern Humans Did Not Admix with Neanderthals during Their Range Expansion into Europe[J]. PLoS BIOLOGY 2004; 12:2264-74.
    [34]Underhill PA, Shen P, Lin AA, et al. Y chromosome sequence variation and the history of human populations[J]. Nat Genet 2000;26:358-61.
    [35]Ke Y. Su B, Li H, et al. Y-chromosome evidence for no independent origin of modern human in China[J]. Chinese Science Bulletin 2001;46:935-7.
    [36]Ke Y, Su B, Song X, et al. African origin of modern humans in East Asia:a tale of 12,000 Y chromosomes [J]. Science 2001;292:1151-3.
    [37]Chu JY Huang W, Kuang SQ, et al. Genetic relationship of populations in China[J]. Proc Natl Acad Sci U S A 1998;95:11763-8.
    [38]Eyre-Walker A, Smith NH, Smith JM. Can Mitochondrial Clocks Keep Time?[J] Proc R Sco lond B 1999;266:477-8.
    [39]Hawks JD, Oh S, Hunley K, et al, M W. An Austrlasian test of the recent African origin theory using the WLH-50 calvarium[J]. Journal of Human Evolution 2000;39:1-22.
    [40]Zsurka G, Kraytsberg Y, Kudina T, et al. Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy[J]. Nat Genet 2005;37:873-7.
    [41]Guo X, Liu S, Liu Y. Evidence for recombination of mitochondrial DNA in triploid crucian carp[J]. Genetics 2006;172:1745-9.
    [42]Kraytsberg Y, Schwartz M, Brown TA, et al. Recombination of human mitochondrial DNA[J]. Science 2004;304:981.
    [43]Adcock GJ, Dennis ES, Easteal S, et al. Mitochondrial DNA sequences in ancient Australians:Implications for modern human origins[J]. Proc Natl Acad Sci U SA2001;98:537-42.
    [44]Bakalar N. Did Early Humans First Arise in Asia, Not Africa?[J] National Geographic News 2005.12.27.
    [45]Giles RE, Blanc H, Cann HM, et al. Maternal inheritance of human mitochondrial DNA[J]. Proc Natl Acad Sci U S A 1980;77:6715-9.
    [46]Pakendorf B, Stoneking M. Mitochondrial DNA and human evolution[J]. Annu Rev Genomics Hum Genet 2005;6:165-83.
    [47]Meyer S, Weiss G, von Haeseler A. Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions Ⅰ and Ⅱ of human mtDNA[J]. Genetics 1999;152:1103-10.
    [48]Torroni A, Schurr TG, Cabell MF, et al. Asian affinities and continental radiation of the four founding Native American mtDNAs[J]. Am J Hum Genet 1993;53:563-90.
    [49]Torroni A, Lott MT, Cabell MF, et al. mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region[J]. Am J Hum Genet 1994;55:760-76.
    [50]Torroni A, Miller JA. Moore LG, et al. Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude[J]. Am J Phys Anthropol 1994;93:189-99.
    [51]Richards MB, Macaulay VA, Bandelt HJ, et al. Phylogeography of mitochondrial DNA in western Europe[J]. Ann Hum Genet 1998;62:241-60.
    [52]Soodyall H, Jenkins T. Mitochondrial DNA polymorphisms in Khoisan populations from southern Africa[J]. Ann Hum Genet 1992;56:315-24.
    [53]Bandelt HJ, Forster P. The myth of bumpy hunter-gatherer mismatch distributions[J]. Am J Hum Genet 1997;61:980-3.
    [54]Watson E, Forster P, Richards M, et al. Mitochondrial footprints of human expansions in Africa[J]. Am J Hum Genet 1997;61:691-704.
    [55]Chen YS, Olckers A, Schurr TG, et al. mtDNA variation in the South African Kung and Khwe-and their genetic relationships to other African populations[J]. Am J Hum Genet 2000;66:1362-83.
    [56]Pereira L, Macaulay V, Torroni A, et al. Prehistoric and historic traces in the mtDNA of Mozambique:insights into the Bantu expansions and the slave trade [J]. Ann Hum Genet 2001;65:439-58.
    [57]Salas A, Richards M, De la Fe T, et al. The making of the African mtDNA landscape[J]. Am J Hum Genet 2002;71:1082-111.
    [58]Kivisild T. Reidla M, Metspalu E, et al. Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears[J]. Am J Hum Genet 2004;75:752-70.
    [59]Graven L, Passarino G, Semino O, et al. Evolutionary correlation between control region sequence and restriction polymorphisms in the mitochondrial genome of a large Senegalese Mandenka sample[J]. Mol Biol Evol 1995;12:334-45.
    [60]Rando JC, Pinto F, Gonzalez AM, et al. Mitochondrial DNA analysis of northwest African populations reveals genetic exchanges with European, near-eastern, and sub-Saharan populations[J]. Ann Hum Genet 1998;62:531-50.
    [61]Rosa A, Brehm A, Kivisild T, et al. MtDNA profile of West Africa Guineans: towards a better understanding of the Senegambia region[J]. Ann Hum Genet 2004;68:340-52.
    [62]Stevanovitch A, Gilles A, Bouzaid E, et al. Mitochondrial DNA sequence diversity in a sedentary population from Egypt[J]. Ann Hum Genet 2004;68:23-39.
    [63]Mishmar D, Ruiz-Pesini E, Golik P, et al. Natural selection shaped regional mtDNA variation in humans[J]. Proc Natl Acad Sci U S A 2003;100:171-6.
    [64]Maca-Meyer N, Gonzalez AM, Larruga JM, et al. Major genomic mitochondrial lineages delineate early human expansions [J]. BMC Genet 2001;2:13.
    [65]Tanaka M, Cabrera VM, Gonzalez AM, et al. Mitochondrial genome variation in eastern Asia and the peopling of Japan[J]. Genome Res 2004;14:1832-50.
    [66]Derbeneva OA, Starikovskaia EB, Volod'ko NV, et al. Mitochondrial DNA variation in Kets and Nganasans and the early peoples of Northern Eurasia[J]. Genetika 2002;38:1554-60.
    [67]Comas D, Plaza Sp, Wells RS, et al. Admixture, migrations, and dispersals in Central Asia:evidence from maternal DNA lineages[J]. Eur J Hum Genet 2004;12:495-504.
    [68]Quintana-Murci L, Chaix R, Wells RS, et al. Where west meets east:the complex mtDNA landscape of the southwest and Central Asian corridor[J]. Am J Hum Genet 2004;74:827-45.
    [69]Shriver MD, Kittles RA. Genetic ancestry and the search for personalized genetic histories[J]. Nat Rev Genet 2004;5:611-8.
    [70]Betty DJ, Chin-Atkins AN, Croft L, et al. Multiple independent origins of the COII/tRNA(Lys) intergenic 9-bp mtDNA deletion in aboriginal Australians [J]. Am J Hum Genet 1996;58:428-33.
    [71]Horai S, Murayama K, Hayasaka K, et al. mtDNA polymorphism in East Asian Populations, with special reference to the peopling of Japan[J]. Am J Hum Genet 1996:59:579-90.
    [72]Nishimaki Y, Sato K, Fang L, et al. Sequence polymorphism in the mtDNA HV1 region in Japanese and Chinese[J]. Leg Med (Tokyo) 1999:1:238-49.
    [73]Tsai LC, Lin CY, Lee JC, et al. Sequence polymorphism of mitochondrial D-loop DNA in the Taiwanese Han population[J]. Forensic Sci Int 2001;119:239-47.
    [74]Kivisild T, Tolk HV. Parik J, et al. The emerging limbs and twigs of the East Asian mtDNA tree[J]. Mol Biol Evol 2002; 19:1737-51.
    [75]Oota H, Kitano T. Jin F, et al. Extreme mtDNA homogeneity in continental Asian populations [J]. Am J Phys Anthropol 2002;118:146-53.
    [76]Yao YG Kong QP, Bandelt HJ, et al. Phylogeographic differentiation of mitochondrial DNA in Han Chinese[J]. Am J Hum Genet 2002:70:635-51.
    [77]Yao YG, Kong QP, Man XY, et al. Reconstructing the evolutionary history of China:a caveat about inferences drawn from ancient DNA[J]. Mol Biol Evol 2003;20;214-9.
    [78]Wen B, Li H, Lu D, et al. Genetic evidence supports demic diffusion of Han culture[J]. Nature 2004;431:302-5.
    [79]Chen F, Wang SY, Zhang RZ, et al. Analysis of mitochondrial DNA polymorphisms in Guangdong Han Chinese[J], Forensic Sci Int Genet 2008;2:150-3.
    [80]Gan RJ, Pan SL, Mustavich LF, et al. Pinghua population as an exception of Han Chinese's coherent genetic structure[J]. Journal of human genetics 2008:53:303-13.
    [81]Wang WZ, Wang CY, Cheng YT, et al. Tracing the origins of Hakka and Chaoshanese by mitochondrial DNA analysis[J]. Am J Phys Anthropol 2010;141:124-30.
    [82]Kong QP, Sun C, Wang HW, et al. Large-scale mtDNA screening reveals a surprising matrilineal complexity in east asia and its implications to the peopling of the region[J]. Mol Biol Evol 2010;28:513-22.
    [83]Jobling MA, Tyler-Smith C. Fathers and sons:the Y chromosome and human evolution[J]. Trends Genet 1995; 11:449-56.
    [84]Rozen S, Skaletsky H, Marszalek JD, et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes[J]. Nature 2003;423:873-6.
    [85]Hughes JF, Skaletsky H, Pyntikova T, et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content[J]. Nature 2010;463:536-9.
    [86]Karafet TM, Mendez FL, Meilerman MB, et al. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree[J]. Genome Res 2008;18:830-8.
    [87]Su B, Xiao J, Underhill P, et al. Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age[J]. Am J Hum Genet 1999;65:1718-24.
    [88]Ding YC, Wooding S, Harpending HC, et al. Population structure and history in East Asia[J]. Proc Natl Acad Sci U S A 2000;97:14003-6.
    [89]Su B, Xiao C, Deka R, et al. Y chromosome haplotypes reveal prehistorical migrations to the Himalayas[J]. Hum Genet 2000; 107:582-90.
    [90]Karafet T, Xu L, Du R, et al. Paternal population history of East Asia:sources, patterns, and microevolutionary processes[J]. Am J Hum Genet 2001;69:615-28.
    [91]Deng W, Shi B, He X, et al. Evolution and migration history of the Chinese population inferred from Chinese Y-chromosome evidence[J]. Journal of human genetics 2004;49:339-48.
    [92]Shi H, Dong YL, Wen B, et al. Y-chromosome evidence of southern origin of the East Asian-specific haplogroup O3-M122[J]. Am J Hum Genet 2005;77:408-19.
    [93]Xue Y, Zerjal T, Bao W, et al. Male demography in East Asia:a north-south contrast in human population expansion times[J]. Genetics 2006;172:2431-9.
    [94]Zhong H, Shi H, Qi XB, et al. Extended Y chromosome investigation suggests postglacial migrations of modern humans into East Asia via the northern route[J]. Mol Biol Evol 2010;28:717-27.
    [95]Yogo Y, Sugimoto C, Zheng HY, et al. JC virus genotyping offers a new paradigm in the study of human populations [J]. Rev Med Virol 2004;14:179-91.
    [96]Sugimoto C, Kitamura T, Guo J, et al. Typing of urinary JC virus DNA offers a novel means of tracing human migrations [J]. Proc Natl Acad Sci U S A 1997;94:9191-6.
    [97]Guo J, Sugimoto C, Kitamura T, et al. Four geographically distinct genotypes of JC virus are prevalent in China and Mongolia:implications for the racial composition of modern China[J]. Journal of General Virology 1998;79:2499-505.
    [98]Cui X, Wang JC, Deckhut A, et al. Chinese strains (Type 7) of JC virus are afro-asiatic in origin but are phylogenetically distinct from the Mongolian and Indian strains (Type 2D) and the Korean and Japanese strains (Type 2A)[J]. J Mol Evol 2004;58:568-83.
    [99]Paabo S. Ancient DNA:extraction, characterization, molecular cloning, and enzymatic amplification [J]. Proc Natl Acad Sci U S A 1989;86:1939-43.
    [100]Paabo S, Poinar H, Serre D, et al. Genetic analyses from ancient DNA[J]. Annu Rev Genet 2004;38:645-79.
    [101]Alonso A, Martin P, Albarran C, et al. Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies[J]. Forensic Sci Int 2004; 139:141-9.
    [102]Cooper A, Poinar HN. Ancient DNA:do it right or not at all[J]. Science 2000;289:1139.
    [103]Pakendorf B, Wiebe V, Tarskaia LA, et al. Mitochondrial DNA evidence for admixed origins of central Siberian populations[J]. Am J Phys Anthropol 2003;120:211-24.
    [104]Torroni A, Sukernik RI, Schurr TG, et al. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans[J]. Am J Hum Genet 1993;53:591-608.
    [105]Kolman CJ, Sambuughin N, Bermingham E. Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders [J]. Genetics 1996;142:1321-34.
    [106]Berger W, Meindl A, van de Pol TJ, et al. Isolation of a candidate gene for Norrie disease by positional cloning[J]. Nat Genet 1992;2:84.
    [107]Pruvost M, Schwarz R, Correia VB, et al. Freshly excavated fossil bones are best for amplification of ancient DNA[J]. Proc Natl Acad Sci U S A 2007;104:739-44.
    [108]Rasmussen M, Li Y, Lindgreen S. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo[J]. Nature 2010;463:757-62.
    [109]Higuchi R, Bowman B, Freiberger M, et al. DNA sequences from the quagga, an extinct member of the horse family [J]. Nature 1984;312:282-4.
    [110]Paabo S. Molecular cloning of Ancient Egyptian mummy DNA[J]. Nature 1985;314:644-5.
    [111]Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction[J], Methods Enzymol 1987; 155:335-50.
    [112]Paabo S, Gifford JA, Wilson AC. Mitochondrial DNA sequences from a 7000-year old brain[J]. Nucleic Acids Res 1988;16:9775-87.
    [113]Jaenicke-Despres V, Buckler ES, Smith BD, et al. Early allelic selection in maize as revealed by ancient DNA[J]. Science 2003;302:1206-8.
    [114]Krause J, Dear PH, Pollack JL, et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae[J]. Nature 2006;439:724-7.
    [115]Rompler H, Rohland N, Lalueza-Fox C, et al. Nuclear gene indicates coat-color polymorphism in mammoths [J]. Science 2006;313:62.
    [116]Green RE, Krause J, Ptak SE, et al. Analysis of one million base pairs of Neanderthal DNA[J]. Nature 2006;444:330-6.
    [117]Poinar HN, Schwarz C, Qi J, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA[J]. Science 2006;311:392-4.
    [118]Noonan JP, Hofreiter M, Smith D, et al. Genomic sequencing of Pleistocene cave bears[J]. Science 2005;309:597-9.
    [119]Li C, Li H, Cui Y, et al. Evidence that a West-East admixed population lived in the Tarim Basin as early as the early Bronze Age[J]. BMC Biol 2010;8:15.
    [120]王贵海,陆传宗.长沙汉墓古尸肝脏中核酸的分离与鉴定[J].生物化学与生物物理进展1981;39:70-5.
    [121]Oota H, Saitou N, Matsushita T, et al. Molecular genetic analysis of remains of a 2,000-year-old human population in China-and its relevance for the origin of the modern Japanese population[J]. Am J Hum Genet 1999;64:250-8.
    [122]Wang L, Oota H, Saitou N, et al. Genetic structure of a 2,500-year-old human population in China and its spatiotemporal changes[J]. Mol Biol Evol 2000;17:1396-400.
    [123]万诚,周慧,崔银秋,等.河北阳原县姜家梁遗址新石器时代人骨DNA研究[J].考古2001;7:654-61.
    [124]朱泓,周慧,林雪川.老山汉墓女性墓主人的种族类型、DNA分析和颅像复原[J].吉林大学社会科学学报2004:21-7.
    [125]赖旭龙,杨淑娟,唐先华,等.仰韶文化人类遗骸古DNA的初步研究[J].中国地质大学学报2004;29:15-20.
    [126]王海晶,常娥,葛斌文,等.饮牛沟墓地古人骨线粒体DNA的研究[J].吉林大学学报(理学版)2005;43:847-52.
    [127]Wang HJ, Liu WQ, Fu YQ, et al. Molecular Biological Analysis of Remains from Jiangjungou Cenmetery in Inner Mongolia[J]. Progress in Nature Science 2006; 16:727-31.
    [128]付玉芹,许雪莲,王海晶,等.内蒙古砧子山墓地古人的线粒体DNA多态性分析[J].东北师大学报(自然科学版)2006;38:122-5.
    [129]Gao SZ, Yang YD, Xu Y, et al. Tracing the genetic history of the Chinese people:mitochondrial DNA analysis of aneolithic population from the Lajia site[J]. Am J Phys Anthropol 2007;133:1128-36.
    [130]赵欣,葛斌文,张全超,等.从分子生物学角度看河北蔚县三关墓地古代居民的遗传结构[J].文物2009;1:3-8+33.
    [131]Xu Z, Zhang F, Xu BS, et al. Mitochondrial DNA evidence for a diversified origin of workers building First Emperor of China[J]. PLos One 2008;3:e2375.
    [132]李胜男,赵永斌,高诗珠,等.陶家寨墓地M5号墓主线粒体DNA片段分析[J].自然科学进展2009;19:1159-63.
    [133]Zhao YB, Li HJ, Li SN, et al. Ancient DNA evidence supports the contribution of Di-Qiang people to the han Chinese gene pool[J]. Am J Phys Anthropol 2011;144:258-68.
    [134]山西省考古研究所,运城市文物工作站,绛县文物局.山西绛县横水西周墓发掘简报[J].文物2006;8:4-18.
    [135]谢晓亭.晋南地区西周墓葬研究[D].长春:吉林大学博士学位论文;2010.
    [136]吉琨璋,宋建忠,田建文.山西横水西周墓地研究三题[J].文物2006;8:45-9.
    [137]彭阳王大户墓地浮现的千古之谜[N].华兴时报2007.9.13第十二版.
    [138]宁夏彭阳县春秋战国墓地浮现历史悬疑[EB/OL]. (2007-09-13) http://news.163.com/07/0913/12/3O95HHVT0001124J.html 2007.
    [139]韩康信,谭婧译.宁夏古人类学研究报告集[M].北京:科学出版社;2009.
    [140]许淑珍.西宁陶家寨汉墓清理简报[J].青海考古学会会刊1984:34.
    [141]崔永红,张得祖,杜常顺.青海通史[M].西宁:青海人民出版社;1999.
    [142]张敬雷.青海省西宁市陶家寨汉晋时期墓地人骨研究[D].长春:吉林大学博士学位论文;2008.
    [143]Shinoda K, Adachi N, Guillen S, et al. Mitochondrial DNA analysis of ancient Peruvian highlanders[J]. Am J Phys Anthropol 2006;131:98-107.
    [144]Umetsu K, Tanaka M, Yuasa I, et al. Multiplex amplified product-length polymorphism analysis for rapid detection of human mitochondrial DNA variations [J]. Electrophoresis 2001;22:3533-8.
    [145]Hofreiter M, Serre D, Poinar HN, et al. Ancient DNA[J]. Nat Rev Genet 2001;2:353-9.
    [146]Gilbert MT, Bandelt HJ, Hofreiter M, et al. Assessing ancient DNA studies[J]. Trends Ecol Evol 2005;20:541-4.
    [147]Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA[J]. Nat Genet 1999;23:147.
    [148]Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies[J]. Mol Biol Evol 1999;16:37-48.
    [149]Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data [J]. Genetics 1992; 131:479-91.
    [150]Bertorelle G, Excoffier L. Inferring admixture proportions from molecular data[J]. Mol Biol Evol 1998; 15:1298-311.
    [151]Wang J. Maximum-likelihood estimation of admixture proportions from genetic data[J]. Genetics 2003; 164:747-65.
    [152]Roberts DF, Hiorns RW. Methods of Analysis of the Genetic Composition of a Hybrid Population[J]. Hum Biol 1965;37:38-43.
    [153]杨圣敏.丁宏.中国民族志[M].北京:中央民族大学出版社;2008.
    [154]陈公柔.先秦两汉考古学论丛[M].北京:文物出版社;2005.
    [155]林沄.戎狄非胡论.金景芳九五庭辰纪念文集[M].长春:吉林文史出版社:1996.
    [156]林沄.柯斯莫《中国前帝国时期的北部边疆》述评[J].吉林大学社会科学学报2003;3:79-85.
    [157]Zhao YB, Li HJ, Cai DW, et al. Ancient DNA from nomads in 2500-year-old archeological sites of Pengyang, China[J]. Journal of human genetics 2010;55:215-8.
    [158]Fedorova SA, Stepanov AD, Adojaan M, et al. Phylogenetic Analysis of Ancient Mitochondrial DNA Lineages of Human Remains Found in Yakutia[J]. Molecular Biology 2008;42:391-8.
    [159]Keyser-Tracqui C, Crubezy E, Ludes B. Nuclear and mitochondrial DNA analysis of a 2.000-year-old necropolis in the Egyin Gol Valley of Mongolia[J]. Am J Hum Genet 2003;73:247-60.
    [160]马保春.山西绛县横水西周倗国大墓的相关历史地理问题[J].考古与文物2007:6:37-43.
    [161]Starikovskaya EB, Sukernik RI, Derbeneva OA, et al. Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of Native American haplogroups[J]. Ann Hum Genet 2005;69:67-89.
    [162]Derenko M, Malyarchuk B, Grzybowski T, et al. Phylogeographic analysis of mitochondrial DNA in northern Asian populations [J]. Am J Hum Genet 2007;81:1025-41.
    [163]Yao YG, Kong QP, Wang CY, et al. Different matrilineal contributions to genetic structure of ethnic groups in the silk road region in china[J]. Mol Biol Evol 2004;21:2265-80.
    [164]Kong QP, Yao YG, Liu M, et al. Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China[J]. Hum Genet 2003;113:391-405.
    [165]Gao S, Cui Y, Yang Y, et al. Mitochondrial DNA analysis of human remains from the Yuansha site in Xinjiang, China[J]. Sci China C Life Sci 2008;51:205-13.
    [166]Fu Y, Zhao H, Cui Y, et al. Molecular genetic analysis of Wanggu remains, Inner Mongolia, China[J]. Am J Phys Anthropol 2007;132:285-91.
    [167]Wang H, Ge B, Mair VH, et al. Molecular genetic analysis of remains from Lamadong cemetery, Liaoning, China[J]. Am J Phys Anthropol 2007;134:404-11.
    [168]Changchun Y, Li X, Xiaolei Z, et al. Genetic analysis on Tuoba Xianbei remains excavated from Qilang Mountain Cemetery in Qahar Right Wing Middle Banner of Inner Mongolia[J]. FEBS Lett 2006;580:6242-6.
    [169]Wallace DC, Brown MD, Lott MT. Mitochondrial DNA variation in human evolution and disease[J]. Gene 1999;238:211-30.
    [170]Bermisheva MA, Kutuev I A, Spitsyn VA, et al. Analysis of mitochondrial DNA variation in the population of Oroks[J]. Genetika 2005;41:78-84.
    [171]Volodko NV, Starikovskaya EB, Mazunin IO, et al. Mitochondrial genome diversity in arctic Siberians, with particular reference to the evolutionary history of Beringia and Pleistocenic peopling of the Americas [J]. Am J Hum Genet 2008;82:1084-100.
    [172]Ingman M, Gyllensten U. Rate variation between mitochondrial domains and adaptive evolution in humans[J]. Hum Mol Genet 2007;16:2281-7.
    [173]Li H, Cai X, Winograd-Cort ER, et al. Mitochondrial DNA diversity and population differentiation in southern East Asia[J]. Am J Phys Anthropol 2007;134:481-8.
    [174]林沄.中国北方长城地带游牧文化带的形成过程[J].燕京学报2003;14:95-145.
    [175]付玉芹,赵晗,许雪莲,等.内蒙古和林格尔东周时期古代人群的分子遗传学分析[J].吉林大学学报(理学版)2006;44:824-8.
    [176]Alzualde A, Izagirre N, Alonso S, et al. Insights into the "isolation" of the Basques:mtDNA lineages from the historical site of Aldaieta (6th-7th centuries AD)[J]. Am J Phys Anthropol 2006; 130:394-404.
    [177]Vernesi C, Caramelli D, Dupanloup I, et al. The Etruscans:a population-genetic study[J]. Am J Hum Genet 2004;74:694-704.
    [178]Yao YG, Nie L, Harpending H, et al. Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity[J]. Am J Phys Anthropol 2002;118:63-76.
    [179]Wen B, Xie X, Gao S, et al. Analyses of genetic structure of Tibeto-Burman populations reveals sex-biased admixture in southern Tibeto-Burmans[J]. Am J Hum Genet 2004;74:856-65.
    [180]高诗珠.中国西北地区三个古代人群的线粒体DNA研究[D].长春:吉林大学博士学位论文;2009.
    [181]张雅军,何驽,张帆.陶寺中晚期人骨的种系分析[J].人类学学报2009;28:363-71.
    [182]王海晶,常娥,蔡大伟,等.内蒙古朱开沟遗址古代居民线粒体DNA分析[J].吉林大学学报(医学版)2007;33:5-8.
    [183]林干.东胡史[M].呼和浩特:内蒙古人民出版社;1989.
    [184]魏坚.内蒙古地区鲜卑墓葬的发现与研究[M].北京:科学出版社;2004.
    [185]田立坤.关于北票喇嘛洞三燕文化墓地的几个问题,辽宁考古文集[M]:辽宁民族出版社;2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700