甘蓝SRK-SCR相互作用研究及作用强度与酵母生长关系模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自交不亲和性(Self-incompatibility, SI)是植物防止自体受精,促进远缘杂交的一种遗传机制。甘蓝自交不亲和性中,花粉和柱头相互识别特异性受一个带有复等位基因的多态性S位点(S-locus)所控制。在S位点有3个高度多态性基因,即S-受体激酶(S receptor kinase, SRK)编码基因、S-富含半胱氨酸蛋白(S cystine rich,SCR)编码基因和S-糖蛋白(S glycoprotein, SLG)编码基因。其中,SRK和SCR分别为自交不亲和的雌雄决定因子,SLG是SRK识别SCR的辅助受体。
     受粉时,同一S单倍型的SRK与SCR相互结合导致自交不亲和性的发生。SRK胞外S结构域编码区(eSRK)负责与SCR相互识别,但eSRK与SCR的之间识别强度、识别模体及在此基础上的分子作用机制等目前还不清楚。对此,本研究以高度自交不亲和性结球甘蓝D3、B3、E1、A1、H1、230、240、243、N1和G1为材料,克隆了全部雌决定因子和部分雄性决定因子,利用巢式RT-PCR、酵母双杂交技术深入研究了SRK与SCR相互作用,主要研究内容和结果如下。1.SRK胞外域的克隆及其生物信息学分析
     采用巢式RT-PCR,以甘蓝D3、B3、E1、A1、H1、230、240、243、N1和G1的柱头和花粉cDNA为模板扩增了甘蓝的SRK胞外域序列(eSRK)。序列分析表明:eSRK D3和eSRK240的cDNA序列皆为1 303bp,分别编码434个氨基酸的蛋白;eSRK230, eSRK243, eSRKE1, eSRKGl和eSRKNl的cDNA序列都为1 309bp,分别编码436个氨基酸的蛋白;eSRK A1, eSRK B3和eSRK H1的cDNA序列皆为1312bp,分别编码437个氨基酸的蛋白。甘蓝eSRK蛋白氨基酸序列呈高度多态性,有三个高变区,但其中12个半胱氨酸高度保守。生物信息学分析表明,不同材料eSRK的二级结构富含p-折叠和无规则卷曲,其三级结构皆相似。克隆的eSRK皆含有信号肽,并且都含三个明显的保守结构域,分别为B-Lectin结构域,SLG结构域以及PAN_APPLE结构域。甘蓝eSRK的进化速度快,不同S单倍型的eSRK遗传分支时间差异大。
     2.SCR基因的克隆及其生物信息学分析
     通过SCR信号肽保守氨基酸和mRNA的ploy A区设计引物,利用巢式PCR,以甘蓝cDNA为模板,克隆了3种甘蓝D3、E1和G1的SCR基因的部分cDNA序列,长度分别为319bp、311bp和377bp,包含3'-UTR区。三者分别编码1个58,58和55个氨基酸的SCR蛋白。D3和E1的SCR分别与SCR3和SCR7的序列一致,而甘蓝G1的SCR为一个新的S单倍型基因。三者皆是SCR的成熟肽编码区。三种蛋白的三维结构近似,都有一个α螺旋和3个β折叠,高变区富含碱性氨基酸。三者都有潜在的磷酸化位点。在核苷酸和氨基酸水平上,SCRG1与SCRD3的相似性分别为69.5%和63.8%,与SCRE1的相似性分别为53.4%和46.6%。SCRD3与SCRE1间分别有55.7%和48.3%的相似性。G1与D3的SCR在演化过程中分支时间较晚,而二者与E1的SCR在进化上分支时间较早。3.S受体激酶识别SCR的生物信息学分析
     以S3、S7、S8、S12、S13、S24、S29、S39和S64单倍型eSRK和SCR为材料,利用蛋白质遗传进化图和作用位点预测等方法分析了SRK中SCR识别位点。结果表明,eSRK与相应S单倍型SCR的遗传进化图很相似;HVⅠ、HVII和HVIII作为整体的遗传进化图与eSRK的遗传进化图高度相似。单独的高变区的遗传进化图与eSRK的遗传进化图相差比较大,其中HVC相差最大。表明eSRK的高变区(HVⅠHVⅡ和HVⅢ)是SCR的识别位点。在线预测表明,所有的eSRK的HVⅠ皆有蛋白质作用位点,而N端亚结构域(B-lectin结构域)没有任何蛋白质作用位点。进一步说明高变区是SCR的识别区域。不同S单倍型蛋白作用位点不同,氨基酸种类也不同,但其中Glu、Arg和Trp出现的概率最大。预测结果为实验研究提供了理论基础。
     4.利用酵母双杂交法检测甘蓝SCR与SRK之间的相互作用
     以具有典型自交不亲和性的甘蓝D3和E1为材料,利用巢式PCR分别扩增SRK胞外域(eSRK)和SCR,通过酵母双杂交检测二者之间的相互作用。并利用同源重组技术分别将eSRK与GAL4报告基因DNA活化域融合(pGADT7eSRK)以及SCR分别与GAL4报告基因DNA结合域融合(pGBKT7SCR)。重组质粒(pGADT7eSRKD3)和(pGADT7eSRKE1)分别转化酵母Y187,重组质粒(pGBKT7SCR D3)和(pGBKT7SCR E1)分别转化酵母Y2HGold。转化酵母皆未出现自激活现象。融合的二倍体酵母(pGADT7eSRKD3xpGBKT7SCR D3)和(pGADT7eSRK E1xpGBKT7SCR E1)均能在选择性固体培养基(SD/-Ade/-His/-Leu/-Trp/X-a-Gal/AbA)上生长,并且菌落呈蓝色。但融合的二倍体酵母(pGADT7eSRKD3xpGBKT7SCR E1)和(pGADT7eSRK E1xpGBKT7SCR D3)均不能在SD/-Ade/-His/-Leu/-Trp/X-a-Gal/AbA培养基上生长。结果表明,eSRK D3与SCR D3蛋白之间以及eSRK E1与SCR E1蛋白之间能够相互结合,但eSRK E1与SCR D3蛋白之间以及eSRK D3与SCR El蛋白之间不相互结合,为深入研究eSRK-SCR作用位点成功建立了一个技术平台。
     5.S受体激酶SCR识别模体的研究
     以甘蓝D3为材料,系统地克隆了eSRK的不同亚结构域,并利用同源重组技术分别将eSRK的不同亚结构域与酵母表达载体pGADT7连接,记为pGADT7eSRKn(n=1,2......15),重组质粒pGADT7eSRKn分别分别转化酵母Y187,转化酵母皆未出现自激活现象。所有的二倍体酵母(pGADT7eSRKnxpGBKT7SCRD3)均能在SD/-Ade/-His/-Leu/-Trp固体培养基上生长,但以X-gal为底物检测时,二倍体酵母(pGADT7eSRK5xpGBKT7SCR D3)、(pGADT7eSRK6xpGBKT7SCR D3)、(pGADT7eSRK7xpGBKT7SCR D3)和(pGADT7eSRK10xpGBKT7SCR D3)不显蓝色。结果表明,SCR的结合域是eSRK的高变II区和III区。为了验证酵母双杂交的结果,以甘蓝D3为材料,克隆了eSRK的高变区(HVII+HVIII)亚结构域(eSRKv)和SCR,并分别与原核表达载体pGEX-6P-3和pET-22b (+)连接。IPTG能够诱导融合蛋白eSRKv-GST和SCR-HIS的表达,并且eSRKv-GST与SCR-HIS在体外能够相互作用。进一步证实了HVII和HVIII参与结合SCR, HVII和HVIII为相互作用的模体。
     6.蛋白质作用强度与酵母生长的关系
     以二倍体酵母:(eSRKD3×SCRD3)、(eSRK2×SCRD3)、(eSRK3×SCRD3)、(eSRK4×SCRD3)、(eSRK8×SCRD3)、(eSRK9×SCRD3)、(eSRK11×SCRD3)、(eSRK12×SCRD3)、(eSRK13×SCRD3)、(eSRK14×SCRD3)、(eSRK15×SCRD3)和(eSRKE1×SCRE1)为材料,分析了酵母生长与eSRK-SCR作用强度的关系。构建了3种SRK-SCR作用强度与酵母生长的关系模型。第一种模型为:SRK-SCR作用强度与酵母生长之间呈正向显著相关。该模型为构建二者的定量关系模型奠定了基础。第二种模型为:以SRK-SCR作用强度为自变量时,模型为:Y=0.0358+0.011X更为合理。该模型为以后实验提供了依据。第三种模型为:以酵母生长量为自变量时,模型为:Y=-11.929+60.387X更为合理。该模型构建不但可以降低实验成本,而且建立了芸苔属自交不亲和性的全新测定方法。
Self-incompatibility (SI) is a general concept for several genetic mechanisms in angiosperms, which prevent self-fertilization and encourage outcrossing. Self-incompatibility in Brassica species is controlled by a single S locus with multiple alleles, and it involves three highly polymorphic genes, S receptor kinase(SRK), S cystine rich(SCR) and S glycoprotein (SLG). The SRK and the SCR are the female determinant and the male determinant of the self incompatibility respectively.
     Binding of SCR to SRK then would elicit a signaling cascade in the papillar cell, leading to the rejection of self-pollen. The extracellular domain of SRK(eSRK) is responsible for SCR binding. However, The molecular mechanism of SRK-SCR action. is not well known up to now.
     For further study on the issue, the eSRK were amplified by nested PCR using Brassica oleracea L. D3, B3, E1, A1, H1,230,240,243, N1 and G1 with the trait of typical SI, while SCR were amplified by nested PCR from Brassica oleracea L. D3, E1 and G1. The interactions between eSRK and SCR were detected by the yeast two-hybrid system.
     The main contents are as the followings:
     1. Cloning and bioinformatics analysis of eSRK
     The cDNA from stigma and pollen of Brassica oleracea L. D3, B3, E1, A1, H1, 230,240,243, N1 and G1 were used as templates for PCR amplification of eSRK. Sequence analysis showed that eSRKs of D3 and 240 are both 1303 nucleotides long and encodes a peptides of 434 amino acids respectively.The eSRKs of 230,243, E1, G1 and N1 all contain 1309 bp, which encodes a protein 436 amino acid respectively. The determined nucleotide and deduced amino acid sequences of eSRK A1, eSRK B3 and eSRK H1 are both 1312 bp and 437 amino acids, respectively. All eSRK proteins contain B-Lectin, SLG domain and PAN_APPLE domain. The a-helix and B-sheets of eSRK's Secondary Structure are rich. The eSRK is highly polymorphic and composed of three hyper-variable regions, but contain the twelve conserved cysteine residues. The eSRK is quick evolution and genetic branching period of the eSRK had great difference in different S haplotypes.
     2. Cloning and bioinformatics analysis of SCR
     Total RNA was extracted from D3, E1 and G1, and their corresponding cDNAs were obtained through reverse transcription. Primers were designed to amplify SCR using 5'-end conserved amino acids and 3'-ploy(A). These cDNA sequences were 319 bp,311 bp and 377 bp in length respectively, containing 3'UTR, and could be translated into protein with 58,58, and 55 amino acids in the reading frame. SCRs of D3 and E1 have same sequences as SCR3 and SCR7. SCR of G1 is a new S-Haplotype. The gene and protein sequences of SCR-G1 and SCR-D3 have 69.5% and 63.8% similarity, respectively. SCRG1 and SCRE1 show 53.4% nucleotide similarity and 46.6% protein similarity. SCRD3 and SCRE1 show 55.7% nucleotide similarity and 48.3% protein similarity. The results showed that SCRGland SCRD3 are evolutionarily closely linked, whereas the SCR of G1, D3 and the SCR of E1 are more distant relatives. All three proteins have similiar structure and potential phosphorylation sites, contain one a-helix and three B-sheets, and are full of basic amino acids in hypervariable region.
     3.Bioinformatics analysis of recognition site of SCR in SRK
     The eSRK and SCR sequences from Brassica. S3, S7, S8, S12, S13, S24, S29, S39 and S64 were used for domain analysis and binding recognition site analyses. The results showed that the phylogenetic tree of eSRK was similar to that of SCR. The HVⅠ, HVⅡand HVⅢof eSRK as a whole, whose phylogenetic tree was high similarity to that of eSRK. But as far as individual hypervariable region, the similarity ends there, especially HVC. The results showed that the hypervariable region of eSRK is the ecognition site of SCR. All HVI of eSRKs have binding sites of SCR, but no binding site in theβ-lectin domain.Different S-haplotypes eSRK have different binding site and amino acids, but Glu, Arg and Trp have the maximum probability in existence.
     4.Detection of Interactions between SCR and SRK in Brassica oleracea L. by Yeast Two-Hybrid System.
     For further study on mechanism of the mutual recognition between SRK and SCR in Brassica, the eSRK and SCR were amplified by nested PCR using Brassica oleracea L.'D3'and'El'with the trait of typical self-incompatibility (SI), and the interactions between eSRK and SCR was detected by the yeast two-hybrid system. Then the full-length eSRK and the SCR were fused to the Ga14 DNA activation domain (designated pGADT7eSRKD3 and pGADT7eSRKDE1) and the Ga14 DNA binding domain (designated pGBKT7SCRD3 and pGBKT7SCRE1) by the gene homologous recombination technique respectively. Then the pGADT7eSRKD3 and pGADT7eSRKDE1 plasmid were transformed into the Y187 yeast strain respectively, whereas pGBKT7SCRD3 and pGBKT7SCRE1 were transformed into the Y2HGold yeast strain respectively. The four transformed yeast strains did not exhibit autoactivation. The diploids pGADT7eSRKD3xpGBKT7SCR D3 and pGADT7eSRK E1xpGBKT7SCR E1, which were fused by the transformed Y2HGold yeast strain and the transformed Y187 yeast strain, grew on selective agar plates (SD/-Ade/-His/-Leu/-Trp/X-a-Gal/AbA), and the resulting colonies were blue, which strongly indicated that eSRK and SCR could combine with each other. Whereas the diploids pGADT7eSRKD3xpGBKT7SCR E1 and pGADT7eSRK E1xpGBKT7SCR D3 could not grow on the same selective agar plates. The results showed that the SCR could bind to the ectodomain of its cognate "self" SRK and not bind nor activate "non-self" SRK.
     5. Study on the recognizing motif of SCR in SRK
     Many short eSRKs from different subdomains were amplified using Brassica oleracea L.'D3'. The multiple short eSRKs were fused to the Ga14 DNA activation domain (designated as pGADT7eSRKn(n=1,2......15)), then be transformed into the Y187 yeast strain respectively. All transformed yeast strains did not exhibit autoactivation. The diploids pGADT7eSRKnxpGBKT7SCRD3, which were fused by the transformed Y2HGold yeast strain and the transformed Y187 yeast strain, grew on selective agar plates (SD/-Ade/-His/-Leu/-Trp). When theβ-galactosidase were assayed by colony-lift filter using X-gal, the colonies pGADT7eSRK5xpGBKT7SCRD3,pGADT7eSRK6xpGBKT7SCRD3,pGADT7eSRK7 xpGBKT7SCRD3 and pGADT7eSRK10xpGBKT7SCRD3 were white. The results showed that HVⅡand HVⅢof eSRK have direct interaction with SCR. In order to test the result, HVⅡand HVⅢof eSRK was expressed in E. coli (BL21) using the expression vector pGEX-6P-3 (including a GST-tag), SCRD3 was expressed using vector pET-22b(+) (including a His-tag). Result by Western blot showed that SCR-His could combine with SRK-HVⅡ-HVⅢ-GST in vitro.
     6.Connection of interaction intensity between eSRK and SCR with yeast growth
     Three modules were estabolished about connection of SRK-SCR interaction with yeast growth using the diploids eSRKD3×eSCRD3, eSRK2×eSCRD3, eSRK3×eSCRD3, eSRK4×eSCRD3, eSRK8×eSCRD3, eSRK9×eSCRD3, eSRK11×eSCRD3, eSRK12×eSCRD3, eSRK13×eSCRD3, eSRK14×eSCRD3, eSRK15×eSCRD3 and eSRKE1×eSCRE1. Module 1:There was a significantly positive correlation between SRK-SCR interaction with yeast growth. Module 2:The module Y=0.0358+0.011X was very reasonable with SRK-SCR interaction as the independent variable. Module 3:The moduleY=-11.929+60.387X was very reasonable with yeast growth as the independent variable. The third model could reduce the cost of research, moreover, it might establish a new measuring method for Self-incompatibility of Brassica.
引文
[1]deNettancourt,D.Incompatibility and incongruity in wild and cultivated plants.2ed.Springer Verlag,Berlin.2001.
    [2]蓝兴国,解莉楠,李玉花.芸苔属自交不亲和细胞信号转导的研究进展.植物学通报,2004,21(4):461-470.
    [31芦岩,李玉花.芸薹属中自交不亲和反应的信号转导.植物生理学通讯,2005,41(4):547-552.
    [4]朱墨.孢子体自交不亲和的雌雄S决定子及显隐性关系.首都师范大学学报(自然科学版),2005,26(2):63-68.
    [51乌云塔娜,黄曙光,谭晓风.植物自交不亲和基因研究进展.生命科学研究,2004,6:59-64.
    [6]吴华清,张绍铃,王洪涛,屈海泳,刘招龙.高等植物自花花粉的识别与拒绝.西北植物学报,2005,25(3):593-607.
    [7]卢军,李乐玉,陈晓丹,朱利泉,王小佳.芸薹属自交不亲和功能因子及分子机制研究进展.广西农业科学,2007,38(6):601-605.
    [8]Bateman,A.J. Self-incompatibility systems in angiosperms.Ⅲ. Cruciferae. Heredity,1955,9: 52-68.
    [9]Coner J A,Cooner P,Nasrallah J B. Comparative mapping of the Brassica S locus region and its homology in Arabidopsis:implications for the evolution of mating systems in the Brassicaceae. Plant Cell,1998,10:801-812.
    [10]牛义,王志敏,汤青林,宋 明,朱利泉,王小佳.甘蓝自交不亲和细胞信号转导的功能基因研究进展.西南农业学报.2006,19(5):956-960.
    [11]刘东,朱利泉,王小佳.芸薹属植物自交不亲和分子机制的研究进展.遗传,2003,25(2):241-244.
    [12]薛勇彪,孟金陵.高等植物自交不亲和性的分子生物学.生物工程进展,1995,15(1):32-42
    [13]Watanabe M,Takayama S,Isogai A,Hinata K.Rccent Progresses on Self-incompatibility research in Brassica species. Breeding Science,2003,53:199-208.
    [14]Darwin,C.Effects of cross- and self-fertilization in the vegeta-ble kingdoms.New York, Appleton.1876.
    [15]Darwin,C.Different forms of flowers on plants of the same species. Londonjohn Murray.1877.
    [16]Takayama S,Isoga A.self-incompatibility tibility in plants. Annual Review of Plant Biology, 2005,56:467-489.
    [17]Higashiyama T. Peptide Signaling in Pollen-Pistil Interactions. Plant Cell Physiol. 2010,51(2):177-189.
    [18]Franklin2Tong V E,Franklin C H.Self2incompatibility in B rassica:The elusive pollen S gene is identified. Plant Cell,2000,12:305-308.
    [19]Fobis-Loisy I,Miege C,Gaude T.Molecular evolution of the S locus controlling mating in the Brassicaceae.Plant Biol,2004,6:109-18.
    [20]Franklin-Tong VE,Franklin FC.Gametophytic If-incompatibility inhibits pollen tube growth using different mechanisms.Trends Plant Sci.2003,8:598-605.
    [21]Hiscock SJ,McInnis SM.Pollen recognition and rejection during the sporophytic self-incompatibility response:Brassica and beyond. Trends Plant Sci,2003,12:606-13.
    [22]Kachroo A, Nasrallah ME, Nasrallah JB. Self-incompatibility in the Brassicaceae: receptor-ligand signaling and cell-to-cell communication. Plant Cell,2002.14 (Suppl.):S227-S38.
    [23]Kao T-h,Tsukamoto T.The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell,2004,16(Suppl.):S72-S83.
    [24]McCubbin AG, Kao T-h. Molecular recognition and response in pollen and pistil interactions. Annu.Rev.Cell Dev.Biol,2000.16:333-64.
    [25]Silva NF,Goring DR.Mechanisms of self-incompatibility in flowering plants. Cell.Mol.Life Sci,2001.58:1988-2007.
    [26]Takayama S,Isogai A. Molecular mechanism of self-recognition in Brassica self-incompatibility. J.Exp.Bot,2003,54:149-56.
    [27]华志明.植物自交不亲和分子机理研究的一些进展.植物生理学通讯,1999,35(1):77-82.
    [28]Nou IS,Watanabe M,Isogai A,Hinata K.Comparison of S-alleles and S-glycoproteins between two wild populations of Brassica campestris in Turkey and Japan.Sex. Plant Reprod,l993,6:79-86.
    [29]Ockendon DJ.The S-allele collection of Brassica oleracea.Acta Hort.2000,539:25-30.
    [30]Nishio,T.and k.Hinata Analysis of S-specific proteins in stigma of Brassica oleracea L. by isoelectric focusing. Heredity,1977,38:391-396.
    [31]Kandasamy,M.K.,D.J.Paolillo,C.D.Faraday,J.B.Nasrallah and M.E.Nasrallah The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae.Dev. Biol,1989,134:462-472.
    [32]Kishi-Nishizawa,N.,A.Isogai,M.Watanabe,K.Hinata,S.Yamakawa, S. Shojima and A.Suzuki. Ultrastructure of papilla cells in Brassica campestris revealed by liquid helium rapid-freezing and substitution-fixation method.Plant Cell Physiol,1990,31:1207-1219.
    [33]Takayama,S.,A.Isogai,C.Tsukamoto,Y.Ueda,K.Hinata,K.Okazaki and A.Suzuki. Sequences of S-glycoproteins,products of Brassica campestris self-incompatibility locus Nature,1987,326: 102-105.
    [34]Nasrallah,J.B.,T.-h.Kao,C.-H.Chen,M.L,Goldberg and M.E.Nasrallah. Amino-acid sequence of glycoproteins encoded by three alleles of the S locus of Brassica oleracea Nature,1987,326: 617-619.
    [35]Takasak i T,Hatakeyama K,Suzuk i G,W atanabeM,IsogaiA,H inata K. The S receptor kinase determines self-incompat ibility in Brassica stigma. Nature,2000,403:913-916.
    [36]Walker,J.C.and R.Zhang. Relationship of putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica.Nature,1990,345:743-746.
    [37]Stein,J.C.,B.Howlett,D.C.Boyes,M.E.Nasrallah and J.B.Nasrallah. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea.Proc.Natl.Acad.Sci. USA,1991,88:8816-8820.
    [38]Fujimoto R,Sugimura T,Nishio T.Gene conversion from SLG to SRK resulting in self-compatibility in Brassica rapa.FEBS Letters,2006,580:425-430.
    [39]何余堂,涂金星,傅廷栋,陈宝元.芸薹属自交不亲和基因的分子生物学及进化模式.植物学通报,2003,20(5):513-521.
    [40]Watanabe,M.,T.Takasaki,K.Toriyama,S.Yamakawa,A.Isogai,A.Suzuki and K.Hinata. A high degree of homology exists between the protein encoded by SLG and the S receptor domain encoded by SRK in self-incompatible Brassica campestrisL. Plant Cell Physiol,1994,35:1221-1229.
    [41]Hatakeyama,K.,T.Takasaki,M.Watanabe and K.Hinata High sequence similarity between SLG and the receptor domain of SRK is not necessary involved in higher dominance relation-ships in stigma in self-incompatible Brassica rapa L.Sex.Plant Reprod.,1998,11:292-294.
    [42]Hinata,K.,M.Watanabe,S.Yamakawa,Y.Satta and A.Isogai.Evolutionary aspects of the S related genes of the Brassica self-incompatibility system:synonymous and nonsynonymous base substitutions.Genetics,1995,140:1099-1104.
    [43]Kusaba,M.,T.Nishio,Y.Satta,K.Hinata and D.J.Ockendon.Striking sequence similarity in inter-and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris:implications for the evolution and recog-nition mechanism.Proc.Natl.Acad.Sci. USA,1997,94:7673-7678.
    [44]Suzuki,G.,M.Watanabe,A.Isogai and K.Hinata. Highly conserved 5'-flanking regions of two self-incompatibility genes,SLG9 and SRK9. Gene,1997,191:123-126
    [45]Nasrallah,J.B.,T.Nishio and M.E.Nasrallah. The self-incompatibility genes of Brassica: expression and use in genetic ablation of floral tissues. Annu.Rev.Plant Physiol.Plant Mol.Biol.,1991,42:393-422.
    [46]Hatakeyama,K.,T.Takasaki,M.Watanabe and K.Hinata.Molecular characterization of S locus genes, SLG and SRK in a pollen-recessive self-incompatibility haplotype of Brassica rapa L.Genetics,1998,149:1587-1597.
    [47]Hatakeyama,K.,M.Watanabe,T.Takasaki,K.Ojima and K.Hinata.Dominance relationships between S alleles in self-incompatible Brassica campestris L.Heredity,1998,80:241-247.
    [48]Shiba,H.,K.Hinata,A.Suzuki and A.Isogai.Breakdown of self-incompatibility in Brassica by the antisense RNA of the SLG gene.Proc.Jpn.Acad.,1995,71B:81-83.
    [49]Takasaki,T.,K.Hatakeyama,M.Watanabe,K.Toriyama,K.Hinata.Homology-dependent suppression of stigma phenotype by an antisense S-locus glycoprotein (SLG) gene in Brassica rapa L.Breed.Sci.,2001,51:89-94.
    [50]Nasrallah,M.E.,M.K.Kandasamy and J.B.Nasrallah. A genetically defined trans-acting locus regulates S-locus function in Brassica.Plant J.,1992,2:497-506.
    [51]Goring,D.R.,T.L.Glavin,U.Schafer,S.J.Rothstein.An S receptor kinase gene in self-compatible Brassica napus has 1-bp deletion.Plant Cell,1993,5:531-539.
    [52]Watanabe,M.,T.Ono,K.Hatakeyama,S.Takayama,A.Isogai andK.Hinata. Molecular characterization of SLG and S-related genes in a self-compatible Brassica campestris L.var. yellow sarson.Sex.Plant Reprod.,1997,10:332-340.
    [53]Okazaki,K.,M.Kusaba,D.J.Ockendon and T.Nishio. Characterization of S tester lines in Brassica oleracea:polymorphism of restriction fragment length of SLG homologous and isoelec-tric points of S locus glycoproteins. Theor.Appl.Genet,1999,98:1329-1334.
    [54]Suzuki,G.,M.Watanabe and T.Nishio. Physical distance be-tween S-locus genes in various S haplotypes of Brassica rapa and B.oleracea. Theor.Appl.Genet.,2000,101:80-85.
    [55]Suzuki,G.,T.Kakizaki,Y.Takada, H.Shiba, S.Takayama,A. Isogai,M.Watanabe. The S haplotypes lacking SLG in the genome of Brassica rapa. Plant Cell Rep.,2003,21:911-915.
    [56]Takasaki,T.,K.Hatakeyama,K.Ojima,M.Watanabe,K.Toriyama,K.Hinata.Factors influencing Agrobacterium-mediated transformation of Brassica rapa L.Breed.ScL,1997,47:127-134.
    [57]Conner,J.A.,T.Tantikajana,J.C.Stein,M.K.Kandasamy,J.B.Nasrallah,M.E.Nasrallah.Transgene-in duced silencing of S locus genes and related genes in Brassica.Plant J,1991,11:809-823.
    [58]Stahl,R.J.,M.A.Amoldo,T.L.Glavin,D.R.Goring,S.J.Rothstein.The self-incompatibility phenol-type in Brassica altered by the transformation of a mutant S locus receptor kinase.Plant Cell,1998,10:209-218.
    [59]Takasaki,T.,K.Hatakeyama,M.Watanabe,K.Toriyama,A.Isogai,K.Hinata.Introduction of SLG (S-locus glycoprotein) alters the phenotype of endogenous S-haplotype, but confers nonew S-haplotype specificity in Brassica rapa Plant Mol.Biol.,1999,40:659-668.
    [60]Takasaki,T.,K.Hatakeyama,G.Suzuki,M.Watanabe,A.Isogai,K.Hinata.The S receptor kinase determines self-incompatibility in Brassica stigma.Nature,2000,403:913-916.
    [61]Dixit,R.,M.E.Nasrallah,J.B.Nasrallah.Post-transcriptional maturation of the S receptor kinase of Brassica correlates with co-expression of the S-locus glycoprotein in the stigmas of two Brassica strains and in the transgenic tobacco plants.Plant Physiol.,2000,124:297-311.
    [62]Cui,Y.,Y.-M.Bai,N.Brugiere,M.A.Arnoldo and S.J.Rothstein.The S locus glycoprotein and the S receptor kinase are sufficient for self-pollen rejection in Brassica.Proc.Natl.Acad.Sci.USA, 2000,97:3713-3717.
    [63]Hinata,K.,M.Watanabe,K.Toriyama and A.Isogai.A review of recent studies on homomorphic self-incompatibility.Inter.Rev. Cytol.,1993,143:257-296.
    [64]Watanabe,M.,G.Suzuki,K.Toriyama,S.Takayama,A.Isogai,K.Hinata. Two anther-expressed genes downstream of SLG9:identification of novel S-linked gene specifically expressed in anthers at the uninucleate stage of Brassica campestris (syn. rapa).Sex.Plant Reprod.,1999,12:127-134.
    [65]Watanabe,M.,K.Hatakeyama,Y.Takada and K.Hinata.Molecular aspects of self-Incompatibili-ty in Brassica species.PlantCell Physiol.,2001,42:560-565.
    [66]Doughty,J.,F.Hedderson,A.McCubbin and H.G.Dickinson. Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility)-locus-specific glycoproteins.Proc.Natl.Acad. Sci.USA,l993,90:467-471.
    [67]Doughty;J.,S.Dixon,S.J.Hiscock,A.C.Willis,I.A.P.Parkin,H.G.Dickinson.PCP-Al,adefensin-like Brassica pollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression.Plant Cell,1998,10:1333-1347.
    [68]Toriyama,K.,K.Hanaoka,T.Okada and M.Watanabe.Molecular cloning of a cDNA encoding a pollen extracellular protein as a potential source of a pollen allergen in Brassica rapa.FEBS Lett,1998,424:234-238.
    [69]Takayama,S.,H.Shiba,M.Iwano,K.Asano,M.Hara,F.-S.Che,M.Watanabe,K.Hinata and A.Isogai. Isolation and char-acterization of pollen coat proteins of Brassica campestris thatinteract with S-locus-related glycoprotein 1 involved in pollen-stigma interaction. Proc.Natl.Acad. Sci. USA,2000,97:3765-3770.
    [70]Stephenson,A.G.,J.Doughty,S.Dixon,C.Elleman,S.Hiscock,H.G.Dickinson.The male determi-nant of self-incompatibility in Brassica oleracea is located in the pollen coating. Plant J.,1997,12: 1351-1359.
    [71]Suzuki,G.,M.Watanabe, K.Toriyama,A.Isogai and K.Hinata.Direct cloning of the Brassica S locus by using a Pl-derived artificial chromosome(PAC)vector. Gene,1997,199:133-137.
    [72]Suzuki,G.,N. Kai,T.Hirose,K.Fukui,T.Nishio,S.Takayama,A.Isogai, M.Watanabe and K.Hinata. Genomic organization of the S locus:identification and characterization of genesin SLG/SRK region of an S9 haplotype of Brassica campestris(syn. rapa).Genetics,1999,152:391-400.
    [73]Takayama,S.,H.Shiba,M.Iwano,H.Shimosato,F.-S.Che,N.Kai,M.Watanabe,G.Suzuki, K. Hinata and A.Isogai. The pollen determinant of self-incompatibility in Brassica campestris. Proc.Natl.Acad.Sci. USA,2000,97:1920-1925.
    [74]Sato K, Nishio Ta,Kimura R,Kusaba M, Suzuki T,Hatakeyama K, Ockendon D J,Yoko Satta.Coevolution of the S-Locus Genes SRK,SLG and SP11/SCR in Brassica oleracea and B.rapa.Genetics,2002,162:931-940.
    [75]Watanabe,M.,A.Ito,Y.Takada,C.Ninomiya,T.Kakizaki,Y.Takahata,K.Hatakeyama,K.Hinata,G.S uzuki,T.Takasaki,Y.Satta,H.Shiba,S.Takayama and A.Isogai.Highly divergent sequences of the pollen self-incompatibility(S)gene in class-I S haplotypes of Brassica campestris(syn. rapa)L.FEBS Lett.,2000,473:139-144.
    [76]Schopfer,C.R., M.E.Nasrallah and J.B.Nasrallah.The male determinant of self-incompatibility in Brassica.Science,1999,286:1697-1700.
    [77]Shiba,H.,S.Takayama,M.Iwano,H.Shimosato,M.Funato,T.Nakagawa,F.-S.Che,G.Suzuki,M.Wat anabe,K.Hinata and A.Isogai.A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol.,2001,125:2095-2103.
    [78]Takayama, S.,H.Shimosato,H.Shiba,M.Funato,F.-S.Che,M.Watanabe, M.Iwano and A.Isogai Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature, 2001,413:534-538.
    [79]Iwano,M.,H.Shiba,M.Funato,H.Shimosato,S.Takayama,A.Isogai. Immunohistochemical studies on translocationof pollen S-haplotype determinant in self-incompatibility of Brassica rapa Plant Cell Physiol,2003,44:428-436.
    [80]Kimura,R.,K.Sato,R.Fujimoto,T.Nishio. Recognition specificity of self-incompatibility maintained after the diver-gence of Brassica oleracea and Brassica rapa. Plant J.,2002,29: 215-223.
    [81]Shiba,H.,M.Iwano,T.Entani,K.Ishimoto,H.Shimosato,F.-S.Che,Y.Satta,A.Ito,Y.Takada,M.Wata nabe,A.Isogai,S.Takayama.The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level.Plant Cell,2002,14:491-504.
    [82]Suzuki,G.,M.Watanabe,N.Kai,N.Matsuda,K.Toriyama,S.Takayama,A.Isogai and K.Hinata. Three members of the S multigene family are linked to the S locus of Brassica. Mol.Gen.Genet., 1997,256:257-264.
    [83]Kachroo,A.,C.R.Schopfer,M.E.Nasrallah and J.B.Nasrallah.Allele-specific receptor-ligand interactions in Brassica self-incompatibility.Science,2001,276:1564-1566.
    [84]Castric V, Vekemans X. Evolution under strong balancing selection:how many codons determine specificity at the female self-incompatibility gene SRK in Brassicaceaei BMC Evol Biol. 2007,7:132-136.
    [85]Edh K, Widen B, Ceplitis A. Unequal segregation of SRK alleles at the S locus in Brassica cretica.Genet Res.2008,90(3):223-228.
    [86]Takayama S, Shimosato H, Shiba H. Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature,2001,413:534-538.
    [87]Schpofer C R, Nasrallah J B. Self-incompatibility, prospect for a novel putative peptide-signaling molecule. Plant Phsiol,2000,124:935-940.
    [88]Chookajorn T, Kachroo A, Ripoll D, Clark A G, Nasrallah J B. Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. PNAS,2004,101(4):911-917.
    [89]Kachroo A, Schopfer C R, Nasrallah M E, Nasrallah J B. Allele-specific receptor-ligand interactions in Brassica self-incompatibility.Science,2001,293:1824-1826.
    [90]Kemp B P, Doughty J. S cysteine-rich (SCR) binding domain analysis of the Brassica self-incompatibility S-locus receptor kinase. New Phytol,2007,175:619-629.
    [91]Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che F S,Watanabe M, Isogai A, Takayama S. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell,2007,19:107-117.
    [92]Kusaba M T, Nishio Y, Satta K, Hinata K, Ockendon D. Striking sequence similarity in inter-and intra-specific comparisons of class ISLG alleles from Brassica oleracea and Brassica campestris:implication foe the evolution and recognition mechanism. PNAS,1997,94:7673-7678.
    [93]Fujimoto R, Sugimura, Nishio T. Gene conversion from SLG to SRK resulting in self-incompatibility in Brassica rapa. FEBS Letter,2006,580:425-430.
    [94]Okamoto S, Odashima M, Fujimoto R, Sato Y, Kitashiba H, Nishio T. Self-compatibility in Brassica napus is caused by independent mutations in S-locus genes. Plant J.2007,50(3): 391-400.
    [95]Cabrillac D, Cock J M, Dumas C. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature,2001,410:220-223.
    [96]Goring DR and Walker JC. Self-rejection, A new kinase connection. Science,2004,303: 1474-1475.
    [97]Nasrallah JB, Cell-Cell signaling in the self-incompatibility response. Current Opinion in Plant Biology,2000,3:368-373.
    [98]吴志聪,王一飞.酵母双杂交系统.生物技术,2003,13(5):43-44.
    [99]朱静仪.酵母双杂交技术的发展.中山大学研究生月刊,2003,23(2):44-51.
    [100]卢柏松,黄培堂.酵母双杂合系统.生物技术通讯,1995,6(3):138-140.
    [101]冯道荣,叶长明,于 嵋,李宝健.双杂交系统及其应用.生物技术,1988,8(1):37-38.
    [102]Oender K, Niedermayr P, Hintner H, Richter K, Koller L, Trost A, Bauer J W, Hundsberger H. Relative quantitation of protein-protein interaction strength within the yeast two-hybrid system via fluorescence β-galactosidase activity detection in a high-throughput and low-cost manner. ASSAY Drug Dev Techn,2006,4:709-719
    [103]Fields S,Song O.A novel genetic system to detect protein-protein interactions. Nature,1989, 340:245-246.
    [104]Causier B,Davies B.Analysing protein-protein interactions with the yeast two-hybrid system.Plant Molecular Biology,2002,50:855-870.
    [105]张莉,黄偼.酵母双杂交系统的改进与研究进展.海洋湖沼通报,2006,1:108-116.
    [106]Golemis,E.A.and Brent,R.Fused protein domains inhibit DNA binding by LexA. Mol. Cell Biol. 1992,12:3006-3014.
    [107]Henn M L, Gibson N, Panisko E. Applications of the Yeast Two-Hybrid System. METHODS,1999,19,330-337.
    [108]Vidal M,Brachmann RK,Fattaey A,et al.Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci USA,1996,93(19): 10315-10320.
    [109]Vidal M,Legrain P,Yeast forward and reversen-hybrid systems. Nucleic Acids Res,1999, 27(4):923-924.
    [110]Vidal M,Endoh H.Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol,1999,17(9):374-381.
    [111]Li JJ,Herskowitz Ⅰ. Isolation of ORC6,a component of the yeast origin recognition complex by a one-hybrid system.Science,1993,262:1870-1873.
    [112]Liu JD,Wilson TF,Milbrandt J,Johnston M. Identifying DNA-binding sites and analyzing DNA-binding domains using a yeast selection system. Methods,1993,5:125-137.
    [113]梁琳慧,韩忠朝.蛋白质相互作用的研究方法.生命的化学,2005,25(3):255-257.
    [114]Bartel P L,Fields S.Analyzing protien2protein interactions using the two-hybrid system Methods Enzymol,1995,254:241-263.
    [115]Clontech MATCHMA KER one-hybrid system user manual(PT103121):3.
    [116]Nishiyama C,Takahashi K,Ohtake Y,Yokota T,Okumura K,Ogawa H,Ra C. Analysis of transactivation region of EIf-1 byusing a yeast one-hybrid system. Biosci Biotechnol Biochem,2002,66:1105-1107.
    [117]Wei Z, Angerer RC, Angerer LM.Identification of a new seaUrchinets protein, SpEts4, by yeast one-hybrid screening withthe hatching enzyme promoter. Mol Cell Biol,1999,19: 1271-1278.
    [118]sieweke M.Detection of transcription factor partners with a yeast one hybrid screen.Methods Mol Biol,2000,130:59-77.
    [119]Huang J,Hou C H,Qian R L.Screenmg of genes related to theexpression of human epsilon-globin Gene by using yeast one-hvbrid system.Shengwu huaxue yu shengwu Wuli xuebao,2001,33:246-250.
    [120]Liao MX,Liu DY,Zuo J,Fang FD.Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-tranferasc P enhanccr I.Biomed Environ Sci,2002,15:36-40.
    [121]Wilson TE.Day ML,Pexton T,Padzett KA,Johnston M, Milbrandt J. In vivo mutational analysis of the NGFI-A zinc Fingers J Biol chem,1992,267:3118-3724.
    [122]SenGupta D J,Zhang B,Kraemer B,et al. A three-hybrid system to detect RNA-protein interactions in vivo.Proc Natl Acad Sci USA,1996,93(8):8496-8501.
    [123]SenGupa DJ,Zhang BL,Kraemer B,et al. A three-hybrid system to detect RNA-protein interaction in vivo. Proc Natl Acad Sci USA,1996,93(8):496-501.
    [124]Rho SB,Martinis SA.The b14 group 1 intron binds directly to botbb its protein splicing partners.a Trna synthetase and maturase to facilitate RNA,2000,6(8):82-94.
    [125]Lee EL,Linial ML.Yeast three-hybrid screening of Rous S arcoma vims mutants with randomly mutagenized minimal packaging signals reveals regions important for Gag interactions Jvirol,2000,74(19):9167-9174.
    [126]Sonoda J,Wharton RP.Recruitment of nanos to bounchback mRNA by pumilio. Genes Dev,1999,13(20):2704-1712.
    [127]Long RM.GU W,Lorimer E,et al. Shep is a novel RNA-binding protetein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J,2000,19 (23):6592-601.
    [128]林建宏,邹柯,审岩.酵母三杂交系统:一种在真核细胞水平研究RNA-蛋白质相互作用的有效方法.医学分子生物学杂志,2005,2(3):181-184.
    [129]Brachmann RK,Boeke JD.Tag games in yeast.The two-hybrid system and beyond Current opinion in Biotechnology,1997,8(5):561-568.
    [130]Zhang J,Lautar S.A yeast three-hybrid method to clone ternary protein complex component sAnal Biochem,1996,242:68272.
    [131]Osborne MA,Dalton S,Kochan J P.The yeast tribrid system-genetic detection of trans-phosphorylated ITAM-SH2-interaction. Biotechnology,1995,13(13):1474-1478.
    [132]Putz U,Skehel P,Kuhl D.A trihybrid system for the analysis and detection of RNA-protein interactions.Nucleic Acids Res,1996,24(23):4838-4840.
    [133]Ozenberger B A,Young K H.Functional interaction of ligands and receptors of the hematopoietic superfamily in yeast.Mol Endocrinol,1995,9:1321-1329.
    [134]Licit ra E J,Liu J O.A three-hybrid system for detecting small ligand-protein receptor interactions.Proc Natl Acad Sci USA,1996,93:12817-12821.
    [135]Belshaw P J,Ho S N,Crabt ree G R,et al.Cont rolling protein association and subcelluar localization with a synthetic ligand that induces heterodimerization of proteins Pro Natl Acad Sci USA,1996,93:4604-4607.
    [136]Aronheim A,Zandi E,Hennemann H,et al.Isolation of an AP21 repressor by a novel method for detecting protein-protein interaction.Mol Cell Biol,1997,17(6):3094-3102.
    [137]Dang C V,Barrett J,Villa-Garcia Metal.Int racellular leucine zipper interactions suggest c-Myc hetero-oligomerization.Mol Cell Biol,1991,11:954-962.
    [138]McMahon SB, Van Buskirk HA Dugan KA,Copeland TD,ColeM D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins.Cell,1998, 94(3):363-374.
    [139]Operana T N, Tukey R H. Oligomerization of the UDP-glucuronosyltranferase 1A proteins: homo-and heterodimerization analysis by fluorescence resonance energy transfer and co-immunoprecipitation J Biol Chem,2007,282(7):4821-4829.
    [140]Walker C bottger S low B. Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. AmJ Pathol,2006,168(5):1526-1530.
    [141]SchaererM T,Kannenberg K,Hunziker P,Baumann SW,Sigel E. Interaction between GABA(A) receptor beta subunits and the multifunctional protein gClq-R. J.Biol. Chem., 2001,276(28):26597-26604.
    [142]Smith G P.Filamentous Fusion phage:novel expression vector that display cloned antigens on the viron surface.Science,1985,228(4705):1315-1317. [143]Scott J K,Smith G P.Searching for peptide ligands with an epitop library. Science, 1990,249(4967):386-390.
    [144]丁淑燕,苗向阳,朱瑞良,高玲美,邵建军.噬菌体表面展示技术.中国生物工程杂志,2003,7:28-31
    [145]王桂云,朱筱娟,王 丽.噬菌体展示外源多肽的免疫原性研究.东北师大学报,2001,33(3):101-104.
    [146]Tordsson I M,Ohlsson L G,Ilbrahmsen L B,et al. Phage-selected primate antibodies fused to superantigen for immunotherapy of malignant melanoma. Cancer Immunol Immunother,2000, 48(12):691-702.
    [147]Dennis M S,Eigenbiot C,Skelton N J, et al.Peptide exoxite inhibitors of factor Ⅶa as anticogulant s.Nature,2000,404(6777):465-470.
    [148]刘相叶,邓洪宽,吴秀萍,王学林,于中业,于艳玲,刘明远.噬菌体展示技术及其应用.动物医学进展,2008,29(1):60-63.
    [149]Winter G,Griffiths A D,Hawkins RE.Making antibodies by phage display technology.Annu Rev Immunol,1994,(12):433-455.
    [150]Hufton S E,Moerkerk P T,Meulemans E V,et al. Phage display of cDNA repertoires:the pⅥ display system and its applications for the selection of immunogenic ligands.J Immuno Methods,1999,10:231(1-2):39-51.
    [151]Rigaut G,Shevchenko A,Rutz B,et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol,1999,17(10):1030-1032.
    [152]陈谋通,刘建军.蛋白质相互作用的研究方法.生物技术报,2009,1:50-68.
    [153]洪奇华,陈安国.串联亲和纯化技术及其应用.细胞生物学杂志,2006,28:694-69.
    [154]Krogan N,Cagney G,Yu H,et al.Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.Nature,2006,440(7084):637-643.
    [155]Tasto J J,Carnahan R H,McDonald W H,et al.Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast,2001,18(7):657-662.
    [156]Zeghouf M,Li J,Butland G,et al. Sequential peptide affinity (SPA)system for the identification of mammalian and bacterial protein complexes.J Proteome Res,2004,3(3):463-468.
    [157]Cheeseman I M, Desai A.A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE,2005(266):11.
    [158]Burckstummer T,Bennett K L,Preradovic A,et al.An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells.Nat Methods,2006,3(12):1013-1019.
    [159]姜 茜,贾凌云.蛋白质相互作用研究的新技术与新方法.中国生物化学与分子生物学报,2008,24(10):974-979.
    [160]孙宇,贾凌云,任军.蛋白质相互作用的研究方法.分析学,2007,5:760-766.
    [161]Wheeler M J, Graaf B H J, Hadjiosif N, Perry R M, Poulter N S, Osman K. Identifi cation of the pollen self-incompatibility determinant in Papaver rhoeas. Nature,2009,459:992-995.
    [162]Nasrallah J B, Yu S M, Nasrallah M E. Self-incompatibility genes of Brassica oleracea: expression, isolation and structure. Proc Nat Acad Sci USA,1988,85:5551-5555.
    [163]Naithani S, Chookajorn T,Ripoll D R, Nasrallah J B. Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. PNAS,2007,104(29): 12211-12216.
    [164]萨姆布鲁克、拉威尔著作,黄培堂等译.分子克隆实验指南(第三版),2002.
    [165]Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res,1994,22:4673-4680.
    [166]Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot. Engng,1997,10:1-6.
    [167]Schwede T, Kopp J, Guex N,et al. SWISS-MODEL:an automated protein homology-modeling server. Nucleic Acids Res,2003,31(13):3381-3385.
    [168]Guex N, PeitschMC. SWISS-MODELand the Swiss-PdbViewer:An environment for comparative protein modeling. Electrophoresis,1997,18(15):2714-2723.
    [169]Perriere, G. and Gouy, M. WWW-Query:an on-line retrieval system for biological sequence banks. Biochimie,1996,78:364-369.
    [170]Whitehouse HLK. Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. Annals of Botany,1950,14:199-216.
    [171]赵永斌,朱利泉,王小佳.甘蓝MLPK基因的克隆与序列分析.作物学报,2006,32(1):46-50
    [172]Schopfer C R, Nasrallah M E, Nasrallah J B et al. The male determinant of self-incompatibility in Brassica. Science,1997,286:1697-1700.
    [173]Schopfer CR, Nasrallah J B. Self-incompatibility:Prospects for a novel putative peptide-signal molecule. Plant Physiol,2000,124(3):935-940.
    [174]Vanoosthuyse V, Miege C, Dumas C, Cock J. M. Two large Arabidopsis thaliana gene families are homologous to the Brassica gene superfamily that encodes pollen coat proteins and the male component of the self-incompatibility response. Plant Molecular Biology,2001,16:17-34.
    [175]Mishima M, Takayama S, Sasaki K, Jee J G, Kojima C,Isogai A, Shirakawa M. Structure of the Male Determinant Factor for Brassica Self-incompatibility. J. Biol. Chem.,2003,278(38): 36389-36395.
    [176]Sainudiin R, Wong WSW, Yogeeswaran K, Nasrallah JB, Yang ZH,Nielsen R. Detecting site-specific physicochemical selective pressures:Applications to the class IHLA of the human major histocompatibility complex and the SRK of the plant sporophytic selfincompatibility system. Journal of Molecular Evolution,2005,60:315-326.
    [177]Goh C.S., Bogan A.A., Joaehimiak M., Walthe D., Cohen F.E.Co-evolution of Proteins with their interaction Partners.J Mol Biol,2000,299:283-293.
    [178]Goh, C.S., Cohen, EE. Co-evolutionary analysis reveals insights Into Protein-Protein interactions. J Mol Biol,2002,324:177-192.
    [179]Nasrallah J B, Nasrallah M E. Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell,1993,5:1325-1335.
    [180]Bower M S, Matias D D, Fernandes C E, Mazzurco M, Gu T, Rothstein S, Goring D R. Two members of the thioredoxinh family interact with the kinase domain of a Brassica S locus receptorkinase.Plant Cell,1996,8:1641-1650.
    [181]Gu T, Mazzurco M, Matias D D, Sulaman W, Goring D R. Binding of a novel arm repeat protein to the kinase domain of the S locus receptor kinase. Proc Natl Acad Sci USA,1998,95: 382-387.
    [182]Mazzurco M, Sulaman W, Helen E, Cock J M, Goring D R. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Mol Biol,2001,45:365-376.
    [183]Nasrallah M E, Liu P, BroylesS. S,Boggs N A, Nasrallah J B. Natural variation in expression of self-incompatibility in Arabidopsis thaliana:Implications for the evolutionof self ing. Proc Natl Acad Sci USA,2004,101:16070-16074.
    [183]Kemp BP, Doughty J. Just how complex is the Brassica S-receptor complex? Journal of Experimental Botany,2003,54:157-168.
    [184]Nishio T, Kusaba M. Sequence diversity of SLG and SRK in Brassica oleracea L. Annals of Botany,2000,85:141-146.
    [185]Sato Y, Okamoto S, Nishio T. Diversification and alteration of recognition specificity of the pollen ligand SP11/SCR in selfincompatibility of Brassica and Raphanus. Plant Cell,2004,16: 3230-3241.
    [186]Brewbaker J L. Biology of the angiosperm pollen grain. Indian J. Genet. Plant Breed 1959,19,121-133.
    [187]安莉,吕嘉枥,李旭华.氨基酸与牛乳复合对保加利亚乳杆菌生长的影响.陕西科技大学学报,2009,1:65-68.
    [188]Kuchar M, Fajkus J. Interactions of putative telomere-binding proteins in Arabidopsis thaliana:identification of functional TRF2 homolog in plants. FEBS Letters,2004,578:311-315.
    [189]Szewczyk K W, Warsaw. A model for baker's yeast growth. Bioprocess Engineering,1989, 4:261-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700