太赫兹频段扩展互作用振荡器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波是介于远红外与毫米波之间的一种电磁辐射,有非常重要的学术和应用价值。本论文研究了一种太赫兹波扩展互作用振荡器(EIO)辐射源,进行了详细地理论研究和模拟研究以及实验研究,取得了令人满意的结果。
     本论文的主要工作和创新之处:
     一、提出一种适合于太赫兹波段的新型慢波结构——矩形重入耦合腔,作为太赫兹EIO的慢波谐振系统。
     二、在理论上详细研究了该慢波系统的特性。分别采用导体微扰原理和脊波导的等效电路参数,研究了矩形重入谐振腔的频率和电路参数。接着采用等效电路模型研究矩形重入耦合腔慢波系统的色散特性。同时选择0.12THz和0.225THz两个频段,进行了相应的计算。
     三、太赫兹波EIO的注-波互作用理论研究。在小信号的情况下,详细推导了电子注在各个间隙和漂移区中的运动方程、效率、电子归一化电导和起振电流等。利用大信号的电子圆盘模型,推导了各个电子圆盘在各个间隙和漂移区中的工作方程和在交界处的衔接方程。同时,采用MATLAB编制相应程序,在太赫兹频段中详细计算和讨论了以上这些参数,并确定了最佳工作距离。
     四、通过理论研究确定的结构尺寸,分别采用CST和MAGIC电磁模拟软件对慢波系统的场分布、模式、色散特性进行了模拟研究,计算了耦合阻抗和特征阻抗。对特定结构的色散特性,理论结果和模拟结果取得了很好的一致,表明理论研究所采取的模型和参数是准确的。然后,采用MAGIC粒子模拟软件对特定系统下的EIO进行了粒子模拟,对于圆形电子通道0.12THz、0.225THz和矩形电子通道0.215THz EIO,输出峰值功率分别为512W、44W和200W,研究表明EIO具有很宽的工作电压。
     五、结合国内的加工技术,尝试加工了0.11THz和0.22THz的慢波谐振系统。采取验证性实验方案,从8mm波段入手研制EIO整管,选择折叠波导作为慢波系统,以熟悉工艺和积累经验为目的,为今后的太赫兹EIO的研制奠定基础。设计了整管结构,采用圆柱状平板电子枪、线圈型脉冲磁场,进行了相应的整管实验研究,测试了阴极和电子枪性能测试、输出功率和频率,取得了初步的结果。这些实验研究获得了EIO工作的直观经验,为下一步进行太赫兹EIO的实验研究奠定了基础。
Terahertz (THz) wave, electromagnetic radiation between far infrared and millimeter wave, has very important academic and application value. One kind of THz radiation source, extended interaction oscillator (EIO), is presented in this dissertation. The theoretical, simulation and experimental studies have been carried out in detail.
     The main work includes as the following:
     1. A novel slow wave structure (SWS) of rectangular reentrance coupled-cavity suitable for THz wave has been proposed as the SWS of THz EIO.
     2. The cold cavity characteristic of the SWS has been theoretically studied in detail. The frequency and the circuit parameters of a rectangular reentrance resonant cavity have been studied by the unperturbed theory and the principle of the equivalent circuit of a ridged waveguide, respectively. The circuit model and the dispersion characteristic of the SWS have been studied by adopting the equivalent circuit method.
     3. The beam-wave interaction in THz wave EIO has been studied. With the electrons motion equation, the beam-wave interaction efficiency and the normalized electron conductance as well as the staring current have been calculated in detail. From the concept of large signal based on electron disk model, each electron disk operating equations in each gap and drift zone and the matching equation at the boundary between the gap and the drift zone have been obtained. These parameters in THz wave region have been calculated and discussed in detail by programming. The optimal period number has been calculated.
     4. With CST and MAGIC software, the filed distribution, and the dispersion characteristic of the operating mode of the SWSs obtained by theoretical study have been simulated. The coupled impedance and characteristic impedance of the SWSs have been computed. The dispersion characteristic of the SWSs obtained by theoretical study agrees well with that by the simulation study. The beam-wave interaction of THz EIOs has been carried out by PIC (particle in cell) code. Simulation results have shown that the EIO output peek power are 512W, 44W and 200W at 0.12THz and 0.225THz with round beam tunnel and at 0.215THz with rectangular beam tunne, respectively. The study shows that THz EIOs can operate in very wide voltage.
     5. Combined with the domestic machining technique, high frequency circuits of 0.11THz EIO and 0.22THz EIO have been fabricated. The experiment of the EIO at 8mm band with U-shaped folded waveguide SWS has being carried out. The 8mm EIO tube has been designed including the SWS, the transferring waveguide, the electronic gun and the magnet. The preliminary experiments have been carried out, including the performance of the cathod and the electronic gun and the measurement of the output power and the operating frequency.
引文
[1] 刘盛纲.太赫兹科学技术的新发展.第270次香山科学会议.北京,2005,6-30
    [2] 刘盛纲.太赫兹科学技术的新发展.中国基础科学,2006,(1):7-12
    [3] Nichols E J, Tera J D. Joining the infrared and electronic wave spectra. Astro. Phys., 1925, 61 (1): 17-37.
    [4] Fleming J W. High-Resolution Submillimeter-Wave Fourier-Transform Spectrometry of Gases. IEEE Trans. MTT, 1974, 22 (12): 1023-1025
    [5] Liu S G. The possible contributions of vacuum electronics to terahertz radiation sources. 4~(th) IEEE Int. Conf. Vacuum Electronics, 2003, 1: 357
    [6] Zhang X C, Hu B B, Darrow J T, et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. J. Appl. Phys., 1990, 56(11): 1011-1013
    [7] Siegel P H. Terahertz Technology. IEEE Trans. MTT, 2002, 50(3): 910-928
    [8] Siegel P H. Terahertz Technology in Biology and Medicine. IEEE Trans. MTT, 2004, 52(10): 2438-2447
    [9] Dekorsy T, Auer H, Waschke C, et al. Emission of Submillimeter Electromagnetic Waves by Coherent Phonons. Phys. Rev. Lett., 1995, 74 (5): 738-741
    [10] Nagatsuma T. Exploring sub-terahertz waves for future wireless communication. Joint Int. Conf. 31st Infrared Millimeter Waves and 14th Teraherz Electronics, 2006: 4
    [11] 曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,2003,9(2):111-117
    [12] Faist J, Capasso F, Sivco D C, et al. Quantum Cascade Laser. Science, 1994, 264(5157): 553-556
    [13] Citrin D S. High-field electron-hole wavepacket dynamics and THz emission in semiconductor quantum wells. Opt. Commun., 1998, 148 (3): 187-196.
    [14] Tredicucci A, Khler R, Beltral F, et al. Low-Dimensional Systems and Nanostructures Terahertz quantum cascade lasers. Phys. E, 2004, 21 (3): 846-851.
    [15] Khanna S P, Chakraborty S, Lachab M, et al. Terahertz frequency quantum cascade lasers: growth and measurement. Int. J. Terahertz Science and Technology, 2008, 1(1): 22-27
    [16] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature, 2002,417(6885): 156-159
    [17] Liu H C, Wachter M, Ban D, et al. Quantum-well infrared photodetector with voltage-switchable quadratic and linear response . Appl. Phys. Lett. , 2006, 88 (5):1-3
    [18] Cao J C, Liu H C, Lei X L, et al. Simulation of negative-effective-mass terahertz oscillators. J. Appl. Phys., 2000,87 (6) :2867-2873
    [19] Auston D H, Smith P R. Generation and detection of millimeter waves by picosecond photoconductivity. Appl. Phys. Lett. , 1983,43 (7) :631
    [20] NEIL G R. High power subpicosecond THz and IR production. Joint Int.Conf. 29th Infrared and Millimeter Waves and 12th Terahertz Electronics,2004:593-594
    [21] Roser H P. Heterodyne Spectroscopy for Submillimeter and far Infrared Wavelengths. Infrared Phys., 1991, 32(5): 385-407
    [22] Auston DH, Cheung K P, Valdmanis J A, et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett., 1984, 53 (16): 1555-1558
    [23] Wu L, Zhang X C, Auston D H. Terahertz Beam Generation by Femtosecond Optical Pulses in Electro-optic Materials. Appl. Phys. Lett., 1992, 61(15):1784
    [24] Brown E R, Smith F W, McIntosh K A. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors. Appl.Phys., 1993, 73 (3) :1480-1484
    [25] Khurgin J. Comparison of different optical methods of THz generation. Proc. SPIE ,1999,3624:128-139
    [26] Matsuura S, Tani M, and K. Sakai, Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett., 1997, 70 (5) : 559-561
    [27] Aggarwal R, Lax B, Fetterman H R, et al. CW generation of tunable narrow-band far infrared radiation. J. Appl. Phys., 1974,45 (9):3972-3974
    [28] Sasaki Y, Yuri A, Kawase K, et al. Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO_3 crystal.Appl. Phys. Lett., 2002, 81 (18):3323-3325
    [29] Zernike F, Berman P R, Generation far-infrared as difference frequency. Phys. Rev. Lett., 1964, 15 (26): 999-1001
    [30] Shikata J, Kawase K, Karino K, et al. Tunable THz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals. IEEE Trans. MTT, 2000, 48 (4): 653-661
    [31] Weiss C, Torosyan G, Avetisyan Y, et al. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate. Opt. Lett., 2001, 26 (8): 563-565
    [32] Weiss C, Torosyan G, Meyn J P, et al. Tuning characteristic of narrow band THz radiation generated via optical rectification periodically poled lithium niobate. Opt. Exp., 2001, 8 (9): 497-502
    [33] Zhang X C, Jin Y, Ma X F. Coherent Measurement of THz Optical Rectification from Electro-optic Crystals. Appl. Phys. Lett., 1992, 61(23): 2764
    [34] Li Y M, Wu Y R, Zhang K S, et al. Influence of the randomly varying domain length of quasi-phase-matched crystals on quadrature squeezing performance. Chin. Phys., 2002, 11 (8): 790-794
    [35] Lin X C, Li R N, Yao A Y, et al. Period and temperature tuning of cascaded optical parametric oscillator based on periodically poled LiNbO_3. Chin. Phys., 2003, 12 (5): 514-517
    [36] Lee Y S, Meade T, Perlin V, et al. Generation of narrow-band THz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate, Appl. Phys. Lett., 2000, 76 (18): 2505-2507
    [37] Lee Y S, Meade T, DeCamp M, et al. Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate. Appl. Phys. Lett., 2000, 77 (9): 1244-46
    [38] Lee Y S, Meade T, Norris T B. Tunable narrow-band terahertz generation from periodically poled lithium niobate. Appl. Phys. Lett., 2001, 78 (23): 3583-3585
    [39] 刘锐,顾春明,贺莉蓉,等.ZnTe晶体中光学整流产生的THz辐射及其电光探测研究.物理学报,2004,53(4):1217-1222
    [40] 张开春,刘盛纲.周期极化铌酸锂中光整流THz波辐射.物理学报,2007,56(9):5258-5261
    [41] 张开春,吴振华,刘盛纲.周期极化非线性晶体中太赫兹波辐射研究.强激光与粒子束,2007,19(5):799-802
    [42] Avetisyan Y, Weiss C, Torosyan G, et al, Generation of narrowband THz radiation by surface-emitted optical rectification in periodically poled lithium niobate. Proc. SPIE., 2001, 4490: 134-142
    [43] Theuer M, Torosyan G, Beigang R, et al. Terahertz radiation from a MgO: LiNbO_3 crystal using a femtosecond pumped enhancement cavity. Joint Int. Conf. 30st Infrared Millimeter Waves and 13th Teraherz Electronics, 2005: 636-637
    [44] Ding Y J, Khuurgin J B. A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically poled lithium niobate. Opt. Comm., 1998, 148 (3): 105-109
    [45] Taniuchi T, Shikata J, Ito H. Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator. Elec. Lett., 2000, 36 (16): 1414-1416
    [46] Sasaki Y, Yuri A, Kawase K, et al. Terahertz-wave surface emitted difference frequency generation in slant-stripe- type periodically poled LiNbO3 crystal. Appl. Phys. Lett., 2002, 81 (18): 3323-3325
    [47] 张显斌,碇智文,陈颍丽,等.高性能85mm短腔光学参变振荡器的THz电磁波输出特性分析.光学学报,2006,26(4):616-620
    [48] Shikata J, Kawase K, Karino K, et al. Tunable THz-wave parametric oscillators using LiNbO_3 and MgO: LiNbO_3 crystals. IEEE Trans. MTT, 2000, 48 (4): 653-661
    [49] 薛挺,于建,杨天新,等.周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析.物理学报,2002,51(11):2528-2535
    [50] 薛挺,华勇,杨德伟,等.周期极化铌酸锂THz波产生理论分析.光子学报,2004,33(10):1180-1186
    [51] 陈云琳,袁建伟,闫卫国,等.准相位匹配PPLN倍频理论研究与优化设计.物理学报,2005,54(5):2079-2083
    [52] Ma G H, Tang S H. Terahertz generation in Czochralski-grown periodically poled Mg: Y: LiNbO_3 by optical rectification. J. Opt. Soc. Am. B, 2006, 23 (1): 81-89
    [53] 姚建铨.准相位匹配PPLN、PPKTP、PPRTA光学参量振荡器及其应用.中国计量学院学报,2001,12(2):42-46
    [54] 张百钢,姚建铨,王鹏,等.周期极化晶体倍频的允许极化周期的研究.光电子激光,2002,13(4):405-408
    [55] Zhang B G, Yao J Q, Zhang H, et al. Temperature Tunable Infrared Optical Parametric Oscillator with Periodically Poled LiNbO3. Chin. Phys. Lett., 2003,20 (7): 1077-1080
    [56] Agusu L, Idehara T, Mori H, et al. Design of a CW 1THz Gyrotron using a 20T superconducting magnet. Int. J. Infrared and Millimeter Waves, 2007,28(3):315-328
    [57] Siegel P H, Fung A, Manohara H, et al. Nanoklystron: A monolithic tube approach to THz power genertation. 12th International Conference on THz Technology. 2001,12 (1) :81-90
    [58] Gruner G. Millimeter and Submillimeter Wave Spectroscopy of Solids. Appl. Phys.,1998, 74(1):51-109
    [59] Bllattaeharjee S, Kory CL, Lee W J. Comprehensive Simulation of Compact THz Radiation Sources Using Microfabricated Folded waveguide TWTs. IEEE Int. Conf.Vacuum Electronics, 2002:26-27
    [60] Bllattaeharjee S, Booske J H, Kory C L, et al. Investigation of Folded waveguide TWT Oscillators for THz Radiation. IEEE Int. Conf. Vacuum Electronics,2003:317-318
    [61] Bhattacharjee S, Booske J H, Kory C L, et al. Folded waveguide traveling-wave tube sources for terahertz radiation. IEEE Trans. Plasma Science, 2004,32(3) :1002-1014
    [62] McMillan R W, Trussell C W, Bohlander R A, et al. An experimental 225GHz Pulsed coherent radar. IEEE Trans. MTT, 1991, 39(3):555-562
    [63] Dave B, Peter H, Mark H, et al. Extended interaction klystron for submillimeter applications. Conf. 30th Infrared and Millimeter Waves and 13th Terahertz Electronics, 2005:84
    [64] Albert R, Peter H, Mark H, et al. Extended interaction klystron for submillimeter applications. IEEE Int. Conf. Vacuum Electronics, 2006:191
    [65] Albert R, Dave B, Mark H, et al. Sub-Millimeter Waves from a compact, low voltage Extended Interaction Klystron, Conf. 32th Infrared and Millimeter Waves and 15th Terahertz Electronics, 2007:892-894
    [66] Bratman V L, Dumesh B S, Fedotov A F. Broadband Orotron operation at millimeter and submillimeter waves. Int. J. Infrared and Millimeter Waves, 2002, 23(11): 1595-1601
    [67] 张开春,祝大军,刘盛纲.非磁化等离子体和磁化等离子体的电磁辐射特定研究.原子与分子物理学报.2007,24(5),789-893
    [68] 张开春,祝大军,刘盛纲.等离子体微波辐射简介和研究进展.大学物理,2006,25(8):3-6
    [69] Sheng Z M, Mima K, Zhang J, et al. Laser-Energy Transfer and Enhancement of PlasmaWaves and Electron Beams by Interfering High-Intensity Laser Pulses. Phys Rev. E., 2004, 69(1): 016407
    [70] B rookhaven. High power rerahertz Radiation from Relativistic Electronics. Nature, 2002, 420(6912): 153-156
    [71] 谢家麟,赵永翔.速调管群聚理论.北京:科学出版社,1966,2-5
    [72] 谢家麟,赵永翔.速调管群聚理论.北京:科学出版社,1966,251-255
    [73] Chodorow M, Wessed-Berg T. A High-Efficiency Klystron with Distributed Interaction. IRE Trans. ED, 1961, 8 (1): 44-55
    [74] Guo H Z, Luo W R, Chen L M, et al. A Novel Highly Accurate Synthetic Technique for Determination of the dispersive Characteristics in Periodic Slow Wave Circuits, IEEE Trans. MTT, 1992, 40(11): 2086-2084
    [75] T. Wessel-Berg. A General Theory of Klystrons with Arbitrary Extended Interaction Fields. Microwave Lab. Stanford University, Tech Rept., 1957: 376
    [76] Day W R, Noland J A. The Millimeter-Wave Extended Interaction Oscillator. IEEE Proc., 1966,. 54(4): 539-543,
    [77] Chen L M, Guo H Z, Chen H Y, et al, An Extended Interaction Oscillator Based on a Complex Resonator Structure. IEEE Trans. Plasma Science, 2000, 28(3): 626-632
    [78] Butterworth J C. A High Power Coherent 95 GHz Radar (HIPCOR-95). IEEE MTT Digest, 1987: 499-502
    [79] Robert E M, Narayanan R M, James B M, et al. Design and Performance of a 215 GHz Pulsed Radar System. IEEE Trans. MTT, 1988, 36(6): 994-1001
    [80] James B M, Robert E M. A 225 GHz Polarimetric Radar. IEEE Trans. MTT, 1990, 38(9): 1252-1258
    [81] 张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2001,293-298
    [82] 吕善伟.微波工程基础.北京:北京航空航天大学出版社,1995,141-143
    [83] 张昭洪,吴鸿适.耦合腔慢波结构特性研究.电子学报,1986,14(1):7-15
    [84] Curnow H J. A General Equivalent Circuit for Coupled Cavity Slow-Wave Structures. IEEE Trans. MTT, 1965, 13(5): 671-675
    [85] Allen M A, Kino G S. On the Theory of Strongly Coupled Cavity Chains. lRE Trans. MTT, 1960, 8(3): 362-372
    [86] Carter R G, Liu S K. Method for calculating the properties of coupled- cavity slow-wave structures from their dimensions. IEE proc., 1986, 133(5): 330-334
    [87] 刘盛纲,李宏福,王文祥,等.微波电子学导论.北京:国防工业出版社,1985,292-295
    [88] Blotekjer K, Grung B. Optimum R. F. Filed Diatribution of Monotron Cavities. J. Elec. Con., 1962: 441-459
    [89] Sloymar L. Extension of the One-dimensional (Klystron) Solution. J. Elec. Con., 1961, 11: 361-383
    [90] Sloymar L. Exact Solusion of the One-dimensional Bunching Problem. J. Elec. Con., 1961, 10: 165-179
    [91] Golde H. Kinematic Electron Bunching by Sinusoidal Travelling and Standing Waves in Short Extended Interaction Regions. J. Elec. Con., 1960: 285-302
    [92] Blotekjer K. Optimization of R. F. Voltage Amplitudes and Gap Spacing of the Generalized Floating Drift-tube Oscillators. J. Elec. Con., 1962, 461-499
    [93] Preist D H, Leidigh W J. Experiments with High-power CW Klystrons Using Extended Interaction Catchers. IEEE Trans. ED, 1963(3): 201-211
    [94] 吴鸿适.微波电子学原理.北京:科学出版社,1987,276-278
    [95] Tien P K, Walker L R, Wolontis V. A large signal theory of TWT-amplifier. IRE Proc., 1955, 43: 260-266
    [96] 谢家麟,赵永翔.速调管群聚理论,北京:科学出版社,1966,180-185
    [97] 数学手册编写组.数学手册.北京:高等教育出版社,1975,689-690
    [98] 电子管设计手册编辑委员会.大功率速调管设计手册.北京:国防工业出版社,1979,161
    [99] 杨中海,李斌.微波管CAD技术进展.真空电子技术,2002,4:1-9
    [100] Weiland T. On the Numerical Solution of Maxwell' s Equation and Application in the Field of Accelerator Physics. Particle Accelerator, 1984, 15(3): 245-292
    [101] Kantrowitz F, Tammaru I. Three Dimensional Simulations of Frequency Phase Measurements of Arbitrary Coupled-Cavity RF Circuit. IEEE Trans. ED, 1988, 35 (11): 2018-2026
    [102] Carol L K. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics. IEEE Trans. ED, 1998, 4(4)5: 972-976
    [103] Carol L K. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model. NASA Technical Paper, 1997: 4766
    [104] Carol L K. Computational Investigation of Experimental Interaction Impedance obtained by Perturbation for Helical Traveling-Wave Tube Structures. NASA Technical Paper. 1999: 4615
    [105] Carol L K. Three-Dimensional Simulation of Helix Traveling-Wave Tube Cold-Test Characteristics Using MAFIA. IEEE Trans. ED, 1996, 43 (8): 1317-1319
    [106] Carol L K. Novel High-Gain, Improved-Bandwidth, Finned-Ladder V-Band Traveling-Wave Tube Slow-Wave circuit Design. IEEE Trans. ED, 1995, 42 (9): 1686-1692
    [107] Carol L K. Computational Investigation of Experimental Interaction Impedance obtained by Perturbation for Helical Traveling-Wave Tube Structures. IEEE Trans. ED, 1998, 45, (9): 2063-2071
    [108] 张国兴.MAFIA软件模拟三维耦合腔慢波结构.电子学报,1997,25(6):1-5
    [109] 樊孝年.用MAFIA软件计算改进的梳形慢波线的色散特性.真空电子技术,1999,(4):10-13
    [110] 王劲松.用MAFIA软件对行波管慢波电路冷测特性的模拟与应用:[硕士学位论文].北京:北京真空电子技术研究所,2001
    [111] 张开春,吴振华,刘盛纲.Simulation of a 120GHz Rectangular Coupled Cavity EIO in Sub-Terahertz Waves.材料导报,2007,21(11):260-262
    [112] 吴振华,张开春,刘盛纲.0.1THz折叠波导扩展互作用振荡器辐射源研究.材料导报,2007,21 (11):151-153
    [113] 蔡军.W波段折叠波导慢波结构的研究:[博士论文学位].济南:山东大学,2006
    [114] 张兆镗.微波管高频系统的测量.北京:国防工业出版社,1982,151-153
    [115] Mizuno K, Ono S. Comment on "Traveling wave oscillation in the optical region: A theoretical examination". J. Appl. Phys., 1975, 46(5): 1849
    [116] Becket E W, Ehrfeld W, Hagmnn P, et al. Fabrication of microstructures with high aspect ratios and structural heights by synchrotron radiation lithography, galvanoformung, and plastic moulding (LIGA process). Microelectronic Engineering, 1986, 4(1): 35-56
    [117] Ehrfeld W, Lehr H. Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramic. Radiation Physics and Chemistry, 1995, 45(3): 349-365
    [118] Lawtence R I. Microfabrication of high-frequeney vacuum electron devices, IEEE Trans. Plasma Science, 2004, 32(3): 1277-1291
    [119] Shin Y M, So J K, Han S T, et al. Experimental investigation of W-band vacuum Devices using Two-Step LIGA. IEEE Int. Conf. Vacuum Electronics, 2005: 431-436
    [120] Guckel H, Christenson T R, Skrobis K J, et al. Deep X-ray and UV lithographies for micromechanics. 4th IEEE Technical Digest: Solid-State Sensor and Actuator Workshop, 1990: 118-122
    [121] UV-LIGA技术标准工艺.上海交通大学
    [122] UV-LIGA工艺技术规范.华中科技大学
    [123] Ires L, Kory C, Read M, et al. Development of backward-wave oscillators for terahertz applications. Proc. SPIE, 2003, 5070: 71-82
    [124] 赵万生,刘晋春.电火花加工技术.哈尔滨:哈尔滨工业大学出版社,2000,310-315
    [125] 承欢,江剑平.阴极电子学.西安:西北电讯工程学院出版社,1986,19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700