面向智能配电的异构融合网络无线资源管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、双向、集成的通信系统是智能配电网实现动态、实时信息和电力交互的基础。智能配电网通信系统的薄弱环节在接入网部分,目前尚无一种单一网络能够满足该部分通信业务对于服务质量的工业化需求。异构网络的融合是新一代无线通信系统发展的主要特征,其通过多种无线接入技术重叠覆盖的方式提供安全、可靠、实时的通信服务,非常适合应用在智能配电自动化系统的接入网部分。由于彼此之间资源形式和管控机制各异,异构网络间的协同和融合并不是对多种无线接入技术之间简单的叠加,而是对异构网络资源的高效整合和利用。因此,无线资源管理是实现异构融合网络有序组织和高效利用的关键。在上述背景下,本文紧紧围绕智能配电通信业务的QOS需求,建立了一种面向智能配电的异构融合网络模型,进而对异构模型中的无线资源管理关键技术展开研究,旨在为构建高效稳定的智能配电通信网络和可靠实时的业务服务机制提供一种新思路。
     在对异构融合网络互联互通架构、智能配电网对通信系统的要求以及智能配电通信业务分类及需求分析等研究的基础上,提出了一种面向智能配电的异构融合网络模型。该模型突破了传统配电网接入层单一网络覆盖的现状,支持多种无线接入技术重叠覆盖,为智能配电通信业务的实现提供更加可靠和安全的保障。在该异构融合网络的功能架构中采用环境感知网络的概念,对异构网络间的信息交互和资源协同管理提供可行的支持,对配电终端提供透明的服务,支撑高效的异构无线网络资源管理优化决策。
     针对异构融合网络中配电通信业务接入网络的选择问题,首先从网络性能的客观角度,提出基于熵权法和灰色关联分析接入选择算法。算法根据接收信号强度、剩余可用资源和当前业务阻塞率构造判决矩阵,通过规范化处理和灰色关联计算得到反映各接入网性能指标水平的灰色关联矩阵,采用熵权法获得各性能的权重,结合关联矩阵得到各异构网络性能排序,按照排序结果将终端接入到最优网络;其次,综合考虑网络性能和业务需求,提出基于粗糙集理论和层次分析法的接入选择算法,该算法以QOS最优化为目标确定能代表网络性能的属性量,利用粗糙集理论和层次分析法分别从网络性能和业务偏好角度确定判决指标的主客观权重,并通过最小二乘法进行折中,动态地为不同属性分配权值,更加合理地评价网络的综合性能,为终端的接入做出最优的选择。
     对于异构融合网络的负载均衡问题,首先,从业务的准入控制角度,研究一种基于多目标优化控制的负载均衡算法,算法以业务占用网络资源最少、网络间负载最均衡和业务阻塞率最低构建多目标优化模型,选用高斯和戒上型组合隶属度函数对目标函数进行模糊化处理,通过遗传算法求得业务准入最优方案。其次,从重载网络业务转移的角度,研究基于效用函数和模糊逻辑系统的负载均衡算法,该算法从网络的有效带宽、RT业务的阻塞率和NRT业务的平均传输时间三个方面,设计不同的效用函数,并通过模糊逻辑系统综合考虑网络性能,实现有效地业务转移。
     在上述研究的基础上,综合考虑业务的准入控制和重载网络的业务转移,研究智能配电异构融合网络中的混合负载均衡问题。首先,提出基于资源预留与强占机制的混合负载均衡算法,其利用三角模融合算子来进行网络实时负载水平的衡量,对于重载网络转移适量的业务至轻载网络进行服务;并通过基于资源预留和强占优先的准入控制策略对不同类型的新业务按照业务优先级进行服务,保证在网络忙闲时均能使网络间的负载趋于均衡,在保证高优先级的业务得到可靠、高效服务的同时也适当降低了低优先级业务的阻塞率。其次,提出基于0/1规划模型与遗传算法的混合动态负载均衡算法,该算法首先根据异构融合网络中各无线接入网的实时负载水平动态调节重载网络与轻载网络之间的业务量;其次对新产生的配电通信业务,依据业务优先级和QoS需求,构造基于0/1规划的数学模型来描述业务准入控制优化问题,并采用遗传算法求得最优解来为业务分配合理的网络资源,从而有效地控制各接入网络之间的负载均衡。
A communication system with the characteristics of high-speed, bidirectional and integrated is a stable basis for the implementation of the interaction between dynamic real-time information and electric power in smart distribution grid (SDG). The weak link of communication system in SDG is the access network, and there is no single network that is able to meet the industrial grade requirements of the quality of service (QoS) for the communication services in SDG at present. The integration of heterogeneous network is one of the main features in the development of the new generation of wireless communication system. Heterogeneous integrated network can provide safe and reliable real-time communication services through overlapping a coverage with a variety of wireless access technologies, which is promising for application to the access network in SDG Owning to the differences of control mechanisms and resource forms among the heterogeneous networks, it is not a simple superposition of the various wireless access technologies, but an effective integration and utilization of resources in the coordination and integration of the heterogeneous networks. Therefore, wireless resource management is the crux to realize the orderly organization and efficient use of heterogeneous integrated networks. Under the above background and centring on the QoS requirements of communication services in SDG, a heterogeneous network model oriented to SDG is presented and the key technologies of radio resource management of this model are researched in this paper, which is intended to provide a novel mentality of building an efficient stable communication network and reliable real-time business service mechanism in SDG.
     On the basis of variable studies of the heterogeneous integrated network interconnection architecture, the requirements of the communication system in SDG and the QoS demand of various types of communication services, a heterogeneous network model oriented to SDG is presented. This model supports to overlap a coverage with a variety of wireless access technologies, breaking through the current situation that there is only one network on the access layer in traditional distribution grid,thus provides more reliable and safer security for the realization of communication services in SDG. The functional architecture of heterogeneous integrated networks that adapts the concept of Ambient Network(AN) is able to provide feasible support of information interaction and collaborative resource management among the heterogeneous networks, afford transparent service for distribution terminals, as well as sustain efficient heterogeneous wireless network resource management optimization decisions.
     Two access selection algorithms are proposed to deal with the problem of selecting a suitable network for a distribution communication service in heterogeneous integrated networks. First of all, from the objective perspective of network performance, the entropy-weight and grey relational analysis (E-GRA) based access selection algorithm is presented.A judgment matrix is constructed of the received signal strength, the remaining available resources and the current business blocking rate, and we can get the gray relational matrix reflecting the level of performance of each access network through standardized processing and gray relational calculation. Further, the entropy weight method is adopted to calculate the weight of each parameter reasonably. Combining with the correlation matrix we can get the sort of each heterogeneous network performance. The optimal network will be picked up according to the results of the sort when distribution terminal requests network access or switch. Secondly, by synthesizing network performances and service requirements, a rough set(RS) and analytic hierarchy process(AHP) based access network selection algorithm is discussed. On the basis of satisfying the multi-attribute judgment, the RS theory and AHP are respectively used to determine the subjective and objective weights of network selection indexes. Meanwhile, the least square method is adopted to acquire the compromised weight of each performance index justifiably. The comprehensive performance level of networks and user preferences are both considered in order to improve the accuracy and reasonability of the selection.
     Aiming at working out the problem that existing load balancing(LB) algorithms failed to consider the requirements of different types of services sufficiently in heterogeneous integrated networks, two new load balance scheduling algorithms are proposed. In the first place, a multi-objective optimal based service admission control algorithm is proposed, which can be applied in balancing the load rate of heterogeneous networks. An optimized multi-objective control model adopting improved membership function is designed, in which the minimum total occupied resources of distribution services, the minimum service blocking rate and the maximum network load balancing degree of each candidate network are taken as objective functions. The objective membership function, composed of gaussian and upper limit functions, is used to fuzz each objective function, then the fuzzy satisfaction maximum-minimum technique is adopted to reformulate this multi-objective optimization problem into a single objective nonlinear programming problem, and the optimal service access strategy is obtained by the genetic algorithm. In the second place,from the point of service transformation, the needs of different services combined with the actual performance of each available network in heterogeneous environment are taken into account, and proper utility functions and fuzzy logic based load balancing algorithm are developed. Three utility functions are designed to reflect three implementation-specific aspects of network performance, including the effective bandwidth, real-time (RT) calls blocking rate and the average non-real-time (NRT) calls transmission time. Further, a fuzzy logic system is adopted to fulfill the fuzzy decision values of three utility functions. Finally, the load of each network is adjusted according to the fuzzy decision value to achieve equilibrium.
     On the basis of the above research, considering the combination of load transfer scheme and call admission control scheme of heterogeneous integrated networks in SDG, two hybrid LB algorithms are discussed. Firstly,based on resource reservation and preemptive priority, the hybrid LB algorithm is proposed. An adequate number of ongoing services can be transferred from overload cells into the overlapping ones with light workload according to the load rate of each cell and terminal mobility.New calls with different priorities are differentially served by means of resource reservation and preemptive priority based admission control strategy. Simulation results show that the algorithm can guarantee the system resource utilization and the QoS of real time and non-real time services, as well as decrease the system call blocking probability and handover rate effectively compared to the reference algorithms.Scondly, we present a0/1programming model and GA based dynamic LB algorithm. Services are dynamically transferred from overload networks into ones with light workload according to the load rate and QoS assurance degree of real time and non-real time services of each candidate networks. The0/1planning based mathematical model is structured to describe the admission control optimization problem of the new power distribution communication services. The genetic algorithm is adopted to obtain the optimal solution to rationally allocating the network resources for the services, so as to effectively control load rates of different access networks.
引文
[1]Xi F, Satyajayant M, Guoliang X, et al. Smart Grid-The New and Improved Power Grid:A Survey[J]. IEEE Communications surveys & tutorials,2012, 14(4):944-980
    [2]余贻鑫,栾文鹏,智能电网述评[J].中国电机工程学报,2009,29(34):1-8
    [3]European Commission. European smart grids technology platform:vision and strategy for Europe's electricity networks of the future [EB/OL]. (2008-10-10). http://ec.europa.eu/research/energy/pdf/smartgrids_e n.pdf
    [4]汤奕,Manisa Pipattanasomporn,邵盛楠,等.中国与美国和欧盟智能电网之比较研究[J].电网技术,2009,33(15):7-15
    [5]倪敬敏,何光宇,沈沉等.美国智能电网评估综述[J].电力系统自动化,2010,34(8):9-13,66
    [6]刘振亚.智能电网技术[M].北京:中国电力出版社,2010
    [7]胡婧.坚强智能电网的战略跃升[J].国家电网,2011(1):25
    [8]卢永,甘德强,John N J.美国智能电网和分布式发电重点方向的调研分析[J].电力系统自动化,2010,34(9):12-16
    [9]陆一鸣,刘东,柳劲松,等.智能配电网信息集成需求及模型分析[J].电力系统自动化,2010,34(8):1-4,96
    [10]吴国沛,刘育权.智能配电网技术支持系统的研究与应用[J].电力系统保护与控制,2010,38(21):162-166,172
    [11]Agustion Z, Alex V, Josep M S, et al. Heterogeneous communication architecture for smart grid[J]. IEEE Network,2011,25(5):30-37
    [12]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化,2009,33(17):38-41,55
    [13]孟昭勇,梁军,李仁俊,等.基于地理信息的配电网SCADA系统的研究[J].继电器,1998,26(5):18-21
    [14]高鸣燕,陆军.电网SCADA/EMS/DMS平台建设技术[J].电力系统自动化,1999,23(14):41-44
    [15]张岚.配电网自动化通信方式综述[J].电力系统通信,2008,29(186):42-46
    [16]蔺丽华,刘健.配电自动化系统的混合通信方案[J].电力系统自动化,2001,25(23):52-55
    [17]孙伟.基于QoS的智能配电通信无线传感器网络应用研究[D].合肥:合肥工业大学,2012
    [18]张东华,阮玉,黄晓方.电力配电自动化系统光通信网络设计[J].激光与光电子学进展,1999(S9),41-43
    [19]吴福保,徐石明,赵勇,等.CDPD在配电自动化系统中的应用[J].电力系统自动化,2001,25(10):45-46
    [20]高锋,董亚波.低压电力线载波通信中信号传输特性分析[J].电力系统自动化,2000,24(9):36-40
    [21]林功平,王开斌.光纤通信技术在配电网自动化系统中的应用[J].电力系统自动化,1998,22(8):64-66
    [22]何海波,周拥华,吴听,等.低压电力线载波通信研究与应用现状[J].继电器,2001,29(7):12-16
    [23]赵洪山,刘力丰,杨奇逊.低压电力线扩频载波通信方案[J].电力系统自动化,2001,26(12):49-52
    [24]刘落飞,韩水保.关于建立华中电力调度系统数据网络的技术探讨[J].电力系统自动化,1996,20(12):50-54
    [25]徐正山,石玉衡,刘铁铮.华北电网电能计费系统概要及今后发展[J].电力系统自动化,1995,19(9):49-42
    [26]吴福保,朱金大,白义传.PSTN在农网调度自动化中的应用[J].电力系统自动化,2004,28(22):91-94
    [27]李惠宇,罗小莉,于盛林.一种基于GPRS的配电自动化系统方案[J].电力系统自动化,2003,27(24):63-66
    [28]李海滨,冯杏心,冯守沛.GPRS技术在配电变压器通信中的应用[J].电力系统通信,2010,31(211):32-35
    [29]ZhiXin T, ZhaoQing W. GPRS-based Fault Monitoring For Distribution Grid [C]. 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, New York:IEEE Press,2010:99-102
    [30]黄兵,吴成东,曾乃鸿.一个国外已运行的配电自动化系统[J].电力系统自动化,1999,23(18):39-41
    [31]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化,2009,33(17):38-41,55
    [32]余贻鑫.面向21世纪的智能配电网[J].南方电网技术研究,2006,2(6):14-16
    [33]ITU-T Recommendation Y. NGN Overview:General overview of NGN function and characteristics[R]. Geneva:ITU-T Study Group,2001
    [34]ITU-T Y. General principles and general reference model for Next Generation Networks[R]. Geneva:ITU-T Study Group,2004
    [35]杨放春.下一代网络中的关键技术[J].北京邮电大学学报,2003,26(1):1-8
    [36]3GPP TS 22.228 v10.2.0. Service requirements for the Internet Protocol (IP) multimedia core network subsystem[S]. New York USA:3GPP Organizational Partners,2009
    [37]3GPPTS 23.228 v10.1.0. IP Multimedia Subsystem (IMS) [S]. New York USA: 3GPP Organizational Partners,2010
    [38]IST World [EB/OL]. http://www.ist-world.org
    [39]EU BRAIN Project [EB/OL]. http://www.brain-project.org
    [40]IST-BRAIN Deliverable D2.2.BRAIN architecture specifications and models, BRAIN functionality and protocol specification[R]. March.2001
    [41]Dell U L, Scarrone E. The path toward the 4G network and services:the WINE GLASS vision[C]. The European Personal Mobile Communications Conference, Italy:IEEE Conference Publications 2003:169-175
    [42]MOBY DICK Project [EB/OL]. http://www.ist-world.org
    [43]EVEREST Project [EB/OL]. http://www.ist-world.org
    [44]AROMA Project [EB/OL]. http://www.ist-world.org
    [45]Ambient networks [EB/OL]. http://www.ambient-networks.org
    [46]IST-2005-027714 Project E2R II(End-to-End Reconfigurability phase2) [EB/OL]. http://e2r2.motlabs.com
    [47]E2R Deliverable 3.3. Performance Enhancements through Reconfiguration Enabled Radio Resource Efficiency Enhancing Schemes[R].2007
    [48]E2R Project [EB/OL]. http://www.e2r.motlabs.com
    [49]E3 Deliverables D5.1.Overview of Support for Heterogeneous Standards Research Approaches and Plans[R].2008
    [50]EVANS Project[EB/OL]. http://www.fp7-evans.eu
    [51]曹淑敏.走向宽带泛在的无线移动通信[J].世界电信,2009,22(12):43-45
    [52]Ismail M, Weihua Z.Decentralized Radio Resource Allocation for Single-Network and Multi-Homing Services in Cooperative Heterogeneous Wireless Access Medium[J]. IEEE Transactions on Wireless Communications, 2012,11(11):4085-4095
    [53]Ronan S, Michael B, William K, et al. The common RRM approach to admission control for converged heterogeneous wireless networks[J]. IEEE Wireless Communications,2007,14(2):48-56
    [54]李军.异构无线网络融合理论与技术实现[M].北京:电子工业出版社,2009
    [55]3GPP TR 25.881 V5.0.0, Technical Specification Group Radio AccessNetwork; Improvement of RRM across RNS and RNS/BSS,Release 5[S]. New York USA:3GPP Organizational Partners,2002
    [56]3GPP TR 25.891 V0.3.0, Technical Specification Group Radio Access Network; Improvement of RRM across RNS and RNS/BSS, Release 6[S]. New York USA:3GPP Organizational Partners,2003
    [57]Perez-Romero J, Ferrus R, Salient O, et al. RAT selection in 3GPP-based cellular heterogeneous networks:from theory to practical implementation[C]. IEEE Wireless Communications and Networking Conference, Kowloon China:Institute of Electrical and Electronics Engineers, 2007:2117-2122
    [58]张永靖.端到端可重配置系统中的联合无线资源管理研究[D].北京:北京邮电大学,2007
    [59]Palacios E G, Abdelghani M, Hussain A, et al. Assessing capacity in WLAN-UMTS integreated networks[C]. Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-Learning on Telecommunications Workshop AICT/SAPIR/ ELETE 2005. Lisbon Portugal:Institute of Electrical and Electronics Engineers Computer Society,2005:189-194
    [60]Pahlavan K, Krishnamurthy P, Hatami A, et al. Handoff in hybrid mobile data networks[J]. IEEE Personal Communication,2000,7(2):34-37
    [61]Qian Z, Chuanxiong G, Zihua G, et al. Efficient mobility management for vertical handoff between WWAN and WLAN[J]. IEEE Communication Magazine,2003,14(11):102-108
    [62]Al-Gizawi T, Peppas K, Axiotis D I, et al. Interoperability criteria,mechanisms, and evaluation of system performance for transparently interoperating WLAN and UMTS-HSDPA Networks[J]. IEEE Network,2005,19(4):66-72
    [63]IEEE Std 1900.4TM-2009, IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks[S]. New York USA:IEEE Standards Coordinating Committee,2009
    [64]Demestrichas P, Vivier G, El-Khazen K, et al. Evolution in wireless systems management concepts:from composite radio environments to reconfigurability[J]. IEEE Communication Magazine,2004,42(5):90-98
    [65]Buljore S, Harada H, Filin S, et al. Architecture and enablers for optimized radio resource usage in heterogeneous wireless access networks:The IEEE 1900.4 Working Group[J]. IEEE Communications Magazine,2009,47(1): 122-129
    [66]Chungang Y, Jiandong L. Dynamic resource management mechanism design for heterogeneous networks under IEEE 1900.4 framework:a network utility maximization perspective[C]. IEEE International Conference on Wireless Communications, Networking and Information Security.333-337
    [67]Filin S, Harada H, Murakami H, et al. IEEE 1900.4 generic procedures to realize Dynamic Spectrum Access use cases[C]. IEEE EUROCON2009.St. Petersburg Russia:IEEE Computer Society,2009:1910-1914
    [68]Soodesh B, Paul H, Oliver H, et al. Architecture and enablers for optimized radio resource usage in heterogeneous wireless access networks:the IEEE 1900.4 working group. IEEE Communications Magazine,2009,47(1):122-129
    [69]Wei Y F, Guanqun T, Mei S, et al. Cooperative radio resource management architecture and implementation in multi-radio access environments[C]. IET Conference on Wireless, Mobile and Sensor Networks 2007. Shanghai, China: IET Conference Publications,2007:318-321
    [70]Norbert N, Andeas S, Jens Z, et al. Ambient Networks Co-operaitve Mobile Networking for the Wireless World[M]. Wiley:2007
    [71]Fodor G, Funuskar A, Lundsjo J. On access selection techniques in always best connected networks[C]. ITC Specialist Seminar on Performance Evaluation of Wireless and Mobile System. St Petersburg Russia:IEEE Computer Society. 2004:174-180
    [72]Shen W, Zeng Qing-an. Cost-Function-based network selection strategy in integrated wireless and mobile networks[J]. IEEE Transactions on Vehicular Technology,2008,57(6):3778-3788
    [73]Vanem E, Svaet S, Paint F. Effects of multiple access alternatives in hetero-geneous wireless networks[C]. IEEE Wireless Communications and Networking Conference.2003:1696-1700
    [74]Enrique S N, Wong V W S. Comparison between vertical handoff decision algorithms for heterogeneous wireless networks[C]. IEEE 63rd Vehicular Technology Conference. Melbourne Australia:IEEE Conference,2006:947-951
    [75]李军,房雅丁,宋梅,等.异构网络中一种基于灰度关联的动态接入选择策略[J].北京邮电大学学报,2006,29(增刊):174-177
    [76]Song W, Jiang H, Zhuang W, et al. Resource management for QoS support in cellular/WLAN interworking[J]. Network Magazine IEEE,2005,19(5):12-18
    [77]Wang H J, Katz R H, Giese J. Policy-enabled handoff across heterogeneous wireless Networks[C].2nd IEEE Workshop on Wireless Mobile Computing System and Applications. New Orleans LA United states:IEEE Computer Society,1999:51-60
    [78]Pillekeit A, Derakhshan F, Jugl E, et al. Force-based load balancing in colocated UMTS/GSM networks[C]. Vehicular Technology, IEEE Conference, VTCFall,2004,6:4402-4406
    [79]Murray K, Mathur R, Pesch D. Intelligent network access and inter-system handover control in heterogeneous wireless networks for smart space environments[C].1 st International Workshop on Management of Ubiquitous Communications and Services. Mauritius:IEEE Conference Publications, 2003:66-70
    [80]Dusit N, Ekram H. A Noncooperative Game-Theoretic Framework for Radio Resource Management in 4G Heterogeneous Wireless Access Networks[J]. IEEE Transactions on mobile computing,2008,7(3):332-345
    [81]Dusit N, Ekram H. Dynamics of Network Selection in Heterogeneous Wireless Networks:An Evolutionary Game Approach[J]. IEEE Transactions on vehicular technology,2009,58(4):2008-2017
    [82]Zhiyong F, Li T, Wei L, et al. Reinforcement Learning Based Dynamic Network Self-Optimization for Heterogeneous Networks[C]. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. Victoria BC Canada:Institute of Electrical and Electronics Engineers,2009:319-324
    [83]Jiang Q, Xu M, Tang L, et al. Research on load balancing Based on Multi-agent in Ubiquitous Networks[C].2010 International Conference on Intelligent Computation Technology and Automation. Changsha China:IEEE Intelligent Computation Society,2010:10-13
    [84]Leonard B, Gjergji M, TakuI, et al. Performance Evaluation and Comparison of Fuzzy-based Intelligent CAC Systems for Wireless Cellular Networks[C].2010 International Conference on Intelligent Networking and Collaborative Systems. Thessaloniki Greece:IEEE Computer Society,2010: 177-184
    [85]石文孝,范绍帅,王柟,等.基于模糊神经网络的异构无线网络接入选择算法[J].通信学报,2010,31(9):151-156
    [86]石文孝,范绍帅,王柟,等.基于PSO糊神经元的异构无线网络接入选择[J].北京邮电大学学报,2011,34(2):58-62
    [87]Hua J, Rappaport S S. CBWL:A New Channel Assignment and Sharing Method for Cellular Communication Systems[J]. IEEE Transactions on vehicular technology,1994,42(2):313-322
    [88]李希金,纪红.基于认知的异构无线网络信道借用策略[J].北京邮电大学 学报,2009,32(5):20-23
    [89]Velayos H, Aleo V,Karlsson G. Load balancing in overlapping wireless LAN cells[C]. IEEE International Conference on Communications. Paris France: IEEE Communications Society,2004,7:3833-3836
    [90]朱光喜,宁国勤,王洪亚.异构分层无线网络中基于逗留时间的动态流量均衡算法研究[J].通信学报,2006,27(4):29-36,41
    [91]宁国勤,朱光喜,彭烈新,等.异构分层无线网络中的混合动态流量均衡算法研究[J].通信学报,2007,28(1):75-81,86.
    [92]冯志勇,张平,张永靖,等.可重配置系统中的联合负载控制及其终端选择算法[J].电子与信息学报,2009,81(4):893-896
    [93]邴红艳.异构无线网络的联合资源管理技术[D].上海:上海交通大学,2008[94]蒋青,吉莉莉,唐伦,等.异构无线网络负载均衡研究[J].计算机应用研究,2010,27(11):4248-4253
    [95]Wei S, Weihua Z, Yu C. Load Balancing for Cellular/WLAN Integrated Networks[J]. IEEE Network,2007,21(1):27-33
    [96]Jeounglak H, JiYeon K, Jin-Up K, et al. Dynamic Load balancing Architecture in Heterogeneous Wireless Network Environment[C].9th International Symposium on Communications and Information Technology. Icheon Korea: IEEE Computer Society,2009:248-253
    [97]Hyukmin S, Sanghoon L, Soo-Chang K, et al. Soft load balancing over heterogeneous wireless networks [J]. IEEE Transactions on Vehicular Technology,2008,57(4):2632-2638
    [98]孙卓,刘铁军,张倩倩,等.异构无线分组网络中的接入选择机制[J].系统仿真学报,2008,20(10):2762-2769
    [99]石文孝,李斌,刘妍,等.IP流分流的异构无线网络负载均衡[J].应用科学学报,2010,28(6):567-572
    [100]秦立军,马其燕.智能配电网及其关键技术[M].北京:中国电力出版社,2010
    [101]Norbert N, Andreas S, Jens Z,等.环境网络:支持下一代无线业务的多域协同网络[M].北京:机械工业出版社,2009
    [102]贺昕,李斌.异构无线网络切换技术[M].北京:北京邮电大学出版社,2008
    [103]Buddhikot M M, Chandranmenon G, Han S, et al. Design and implementation of a WLAN/CDMA2000 interworking architecture[J]. IEEE Communications Magazine,2003(11):90-100
    [104]Chi-hsiang Y.ACENET:Architectures and Protocols for High Throughput, Low Power, and QoS Procisioning in Next-Generation Mobile Communications [C]. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communicaitons. IEEE PIMRC,2002,9:779-786
    [105]雷煜卿,李建岐,侯宝素.面向智能电网的配用电通信网络研究[J].电网技术,2011,35(12):14-19
    [106]国家电网公司.Q/GDW382-2009配电自动化技术导则[S].北京:中国电力出版社,2009
    [107]国家电网公司.Q/GDW513-2010配电自动化主站系统功能规范[S].北京:中国电力出版社,2010
    [108]国家电网公司.Q/GDW514-2010配电自动化终端/子站功能规范[S].北京:中国电力出版社,2010
    [109]王成山.李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14,23
    [110]黄盛.智能配电网通信业务需求分析及技术方案[J].电力系统通信,2010,31(212):10-12,17
    [111]郭创新,彭明伟,刘毅.多数据源信息融合的电网故障诊断新方法[J].中国电机工程学报,2009,29(31):1-7
    [112]黄益庄,李树军.配电网智能监控管理远程抄表一体化系统[J].电力系统保护与控制,2010,38(21):83-86,90
    [113]林添顺.基于GPRS的新型配电网自动化通信系统设计及实用性分析[J].电 力系统保护与控制,2008,36(19):44-47
    [114]Fatna B, Roch G, Rachida D. Ambient network composition[J]. IEEE Network, 2008,22(14):6-12
    [115]Norbert N, Andreas S, Henrik A, et al. Ambient networks:an architecture for communication networks beyond 3G[J]. IEEE Wireless Communications, 2004,11(2):14-22
    [116]Prieto A G, Stadler R, Kersch P, et al. Distributed management in ambient networks[C]. Mobile and Wireless Communications Summit.Budapest Hungary:IEEE Conference Publications,2007:1-5
    [117]李斌,薄志谦.智能配电网保护控制的设计与研究[J].中国电机工程学报,2009,29(Supplement):1-6
    [113]Chan P M L, Sheriff R E, HuYF, et al. Mobility management incorporating fuzzy logic for a heterogeneous IP environment [J]. Communications Magazine IEEE,2001,39(12):42-51
    [119]Agusti R, Salient O, Perez-Romero J, et al. A fuzzy-neural based approach for joint radio resource management in a beyond 3G framework[C]. The 1st International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks. Dallas TX United states:IEEE Computer Society, 2004:216-224
    [120]Zhang W. Handover decision using fuzzy MADM in heterogeneous networks [C]. IEEE Wireless Communications and Networking Conference. Atlanta GA United states:IEEE Conference Publications,2004:653-658
    [121]Falowo O E, Anthony H A. Fuzzy logic based call admission control for next generation wireless networks[C].3rd International Symposium on Wireless Communication Systems. Valencia Spain:IEEE Conference Publications, 2006:574-578
    [122]Wang Y N, Feng C Y, Xia H L. A Network selection strategy based on dynamic gray multi-attribute decision making in Heterogeneous Networks[J]. Radio Engineering of China,2009,39(11):1-3,40
    [123]刘思峰,郭天榜,党耀国.灰色系统理论及其应用[M].北京:科学出版社,1999
    [124]Shu W X, Fang S S, Wang N, et al. Fuzzy neural network based access selection algorithm in heterogeneous wireless networks[J]. Journal on Communications, 2010,31(9):151-156
    [125]PAWLAK Z. Rough Set[J]. International Journal of Computer Information Sciences,1982,11(5):342-356
    [126]刘国兴,刘启盈,陈剑平.基于AHP负荷预测组合预测方法的权值确定[J].吉林电力,2008,36(3):12-17
    [127]宋光兴,邹平.多属性群决策中决策者权值的确定方法[J].系统工程,2001,19(4):84-89
    [128]唐忠,曹俊月.基于粗糙集属性约简的SVM异常入侵检测方法[J].通信技术,2009,42(1):261-263
    [129]Song Q Y, Jamalipoura A. Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques[J]. IEEE Wireless Communications,2005,12(3):42-48
    [130]Damnjanovic A, Montojo J, WeiYB, et al. A survey on 3GPP heterogeneous networks[J]. IEEE Wireless Communications,2011(6):10-21
    [131]Jie X, Yuming J, Perkis A.Multi-service Load Balancing in a Heterogeneous Network[C]. Proceedings of the Wireless Telecommunications Symposium. America New York:IEEE Communication Society,2011:1-6
    [132]Sorr H, LEE S, Kurt S, et al. Soft load balancing over heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology,2008,57(4): 2632-2638
    [133]Selvakumar A, Vaidehi V, Palanivelu T G. Adaptive load balancing handoff scheme for heterogeneous wireless network[C]. Proceedings of the Third International Conference on Advanced Computing. India Chennai:IEEE Computer Society,2011:327-332
    [134]朱思峰,刘芳,戚玉涛,等.异构无线网络中基于免疫计算的联合会话接纳控制[J].电子学报,2011,39(11):2648-2652
    [135]Yu F, Krishnamurthy V. Optimal joint session admission control in integrated WLAN and CDMA cellular networks with vertical handoff[J]. IEEE Transactions on Mobile Computing,2007,6(1):126-139
    [136]胡国强,贺仁睦.梯级水电站多目标模糊优化调度模型及其求解方法[J].电工技术学报,2007,22(1):154-158
    [137]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社,2004
    [138]Swarup K S, Yamashiro S. Unit commitment solution methodology using genetic algorithm[J]. IEEE Transactions on Power Systems,2002,17(1):87-91
    [139]Dang C Y, Li M Q.Floating-point genetic algorithm for solving the unit commitment problem[J]. European Journal of Operational Research,2007, 181(3):1370-1395
    [140]温斌,林波,刘昀,等.McWiLL宽带无线接入技术及应用[M].北京:人民邮电出版社,2009
    [141]Boucher J. Traffic system design handbook:Timesaving telecommunication traffic tables and programs [M]. American:Wiley-IEEE Press,1993:33-78
    [142]Shakkottai S, Stolyar A L. Scheduling algorithms for a mixture of real-time and non-real-time data in HDR [R]. Bell Laboratories Lucent Technology,2000
    [143]徐锬,王超.基于模糊数学的数字图像模糊度[J].计算机辅助设计与图形学报,2002,14(8):747-749
    [144]李波,吴成柯,李冬.基于预留信道和强占优先相结合的接入策略[J].通信学报,2000,21(3):12-18
    [145]唐良瑞,杨安坤,杨雪.基于信道预留和强占优先的接力切换策略[J].电子学报,2011,39(6):1285-1290
    [146]邢文训,谢金星.现代优化计算方法(第2版)[M].北京:清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700