假基因Cripto-3在人大肠癌发生发展中作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:由于与功能基因的紧密相关性以及在基因组进化过程中的重要性,假基因功能已引起了国内外学者的广泛注意。我们前期研究发现Cripto-1基因在许多恶性肿瘤中高表达,且呈现出大肠癌器官特异性肝转移的特性,但是其假基因Cripto-3(Cr-3)在大肠癌中的作用和机制尚不清楚。本研究首先观察并初步了解假基因Cripto-3在人大肠癌发生发展中的作用,并探讨Cripto-3表达对大肠癌细胞生长、克隆形成及侵袭的影响。并进一步从基质金属蛋白酶角度探讨了Cr-3调控癌细胞生物学行为的分子机制。
     方法:1,收集人大肠癌和正常大肠黏膜组织,采用荧光实时定量PCR方法检测组织中mRNA水平,并分析其表达水平与淋巴结转移、临床分期的相关性。培养大肠癌细胞株,采用荧光实时定量PCR方法检测各细胞株中mRNA不同表达水平,并选择Cripto-3表达最高者SW-620细胞和最低者HCT-116细胞为下一步研究对象。
     2,构建Cr-3真核表达质粒和Cr-3小干扰RNA(siRNA)。HCT-116细胞分为3组:空白对照组(Con-A)、空载质粒对照组(Con-B)和Cr-3过表达质粒组(Cr-3),其中,Cr-3组以Cr-3真核表达质粒转染处理。分别用MTT法和平板克隆试验检测各组癌细胞生长能力,以Transwell方法检测癌细胞侵袭能力,并作统计学处理。
     3,构建并用化学方法合成Cr-3siRNA。SW-620细胞分为3组:空白对照组(con-a)、空载质粒对照组con-b和Cr-3siRNA组(siRNA),其中,siRNA组以Cr-3siRNA转染处理。分别用MTT法和平板克隆试验检测各组癌细胞生长能力,以Transwell方法检测癌细胞侵袭能力,并作统计学处理。
     4,为进一步深入探讨Cr-3在大肠癌发生发展中的作用和分子机制,本课题组进一步采用荧光实时定量PCR方法和蛋白质印迹方法检测2、3各实验组基质金属蛋白酶家族中MMP-2, MMP-7和MMP-9基因mRNA和蛋白水平。
     结果:1,在政策大肠黏膜组织中,Cr-3mRNA水平极低,在大肠癌组织中,Cr-3mRNA呈高表达,统计学分析,差异十分显著(P<0.01);Cr-3mRNA高表达与癌细胞侵袭和淋巴结转移密切相关,而与组织类型无关;在4株大肠癌细胞株中,Cr-3mRNA均有不同程度的表达,其中HCT-116中Cr-3mRNA最低,SW-620细胞中最高;
     2,以Cr-3真核表达质粒转染Cr-3低表达者大肠癌HCT-116细胞株,MTT结果显示,72h Con-A、Con-B和Cr-3组相对增值率分别为0.761±0.026、0.764±0.034和0.848±0.008(P<0.05);平板克隆结果显示,Con-A、Con-B和Cr-3组分别为75±6、76±5和119±3(P<0.05);Transwell结果显示,Con-A、Con-B和Cr-3组穿膜细胞数分别为444±4、45±5和76±6(P<0.05);
     3,以Cr-3siRNA转染大肠癌SW620细胞株后,MTT结果显示,72h con-a、con-b和siRNA组相对增殖率分别为0.927±0.037、0.922±0.035和0.663±0.018(P<0.05);平板克隆结果显示,con-a、con-b和siRNA组分别为23±3、24±3和12±3(P<0.05);Transwell结果显示,con-a、con-b和siRNA组穿膜细胞数分别为38±4、40±3和8±1(P<0.05);
     4,荧光实时定量PCR和蛋白质印迹结果显示,与大肠癌HCT-116细胞Con-A组比较,Cr-3过表达组MMP-2、MMP-7和MMP-9mRNA和蛋白水平明显升高;,与大肠癌SW620细胞con-a组比较,siRNA转染组MMP-2、MMP-7和MMP-9mRNA和蛋白水平明显均明显下调。
     结论:
     1,假基因Cr-3在大肠癌中过表达,并与癌细胞的侵袭、转移密切相关;
     2, MMPs家族成员MMP-2、-7和-9在Cr-3调控大肠癌细胞侵袭和转移中发挥着重要作用;
     3,假基因Cr-3可能是大肠癌基因诊断和治疗中重要靶点之一,深入探讨其作用和分子机制,将有助于提高转移性大肠癌的综合诊疗水平。
Background and Objective:
     Because of its close correlation with functional gene and the importance in process of human genome evolution, pseudogene function has attracted wide attention of scholars both at home and abroad. Our previous study found that Cripto-1(Cr-1) is highly expressed in colorectal cancer and many other malignancies and is closely related to organ-specific liver metastases. We found that the the Cripto-3(Cr-3), a pseudogene of cripto-1, is highly expressed in colorectal cancer cells, but we do not know its carcinogenesis and mechanisms. in the development of colorectal cancer. Firstly, this study observed and studied the effects of Cr-3in the development of colorectal cancer; Secondly, and the effect of Cr-3expression on the growth, colony formation and invasion of colorectal cancer cells were explored; Thirdly, from the matrix metalloproteinase aspects, the molecular mechanism of regulation of cancer biological behavior of Cr-3cells were furtherly determined.
     Method:
     1. After human colorectal normal tissues and colorectal tumoral tissues were collected, the mRNA levels of these tissues were determined by real time PCR. Furthermore, the correlations of its expression level to the lymph node metastasis and the clinical stage were analyzed. Colorectal cancer cell lines were cultivated and the different expression levels of mRNA in each cell line were detected by real time PCR,respectively. The SW-620cell line with the highest expression of Cr-3and the HCT-116cells with the lowest expression of Cr-3were selected for further study.
     2. Cr-3eukaryotic expression plasmid and Cr-3small interfering RNA (siRNA) were built. The HCT-116cells were classified into three groups:blank control group (Con-A), the empty plasmid group (Con-B) and Cr-3over-expression plasmid group (Cr-3). Among them, the Cr-3group was transfected with Cr-3eukaryotic expression plasmid. The cell viability of each group was measured by MTT assay and plate cloning, respectively. The invasion ability was evaluated by Transwell method.All the above were for statistical analysis.
     3. Cr-3siRNA were built and synthesized by using chemical methods. The SW-620cells were classified into three groups:blank control group (con-a), the empty plasmid group (con-b) and Cr-3siRNA group (siRNA). Among them, the siRNA group was transfected with Cr-3siRNA. The cell viability of each group was measured by MTT assay and plate cloning, respectively. The invasion ability was evaluated by Transwell method.All the above were for statistical analysis.
     4. To further explore the role and molecular mechanism of Cr-3in the development of colorectal cancer, the mRNA and protein levels of MMP-2,MMP-7,MMP-9in2,3above each experimental group were determined by real time PCR and Western blot, respectively.
     Result:
     1. The expression level of Cr-3mRNA was significantly low in normal colon mucosa and adjacent tissues, while was significantly high in colorectal tumoral tissues(P<0.01). The high expression of Cr-3mRNA was closely correlated to the cancer cell invasion and lymph node metastasis, but had nothing to do with the tissue types. In the four colorectal cancer cell lines, Cr-3mRNA was expressed in different degrees, in which the HCT-116cells in the lowest while the SW-620cells in the highest.
     2. After Cr-3low expression of HCT-116cell line was transfected by Cr-3eukaryotic expression plasmid, the results of the MTT assay showed that the relative proliferation rates of Con-A, Con-B and Cr-3group in72h were0.761±0.026,0.764±0.034and0.848±0.008(OD), respectively (P<0.05); the results of the plate cloning showed that the relative proliferation rates of Con-A,Con-B and Cr-3group in72h were75±6,76±5and119±3, respectively (P<0.05); the results of the Transwell showed that the membrane cell number of Con-A, Con-B and Cr-3group were44±4,45±5and76±6respectively(P<0.05).
     3. After colorectal cancer SW620cell line was transfected by Cr-3siRNA, the results of the MTT assay showed that the relative proliferation rates of con-a, con-b and Cr-3group in72h were0.927±0.037、0.922±0.035and0.663±0.018(OD) respectively (P<0.05); the results of the plate cloning showed that the relative proliferation rates of con-a, con-b and Cr-3group in72h were23±3、24±3and12±3respectively (P<0.05); the results of the Transwell showed that the membrane cell number of con-a, con-b and Cr-3group were38±4、40±3and8±1respectively (P<0.05).
     4. The results of the real time PCR and Western blot showed that, the mRNA and protein levels of MMP-2, MMP-7and MMP-9of the Cr-3over-expression group increased significantly when compared with the HCT-116Con-A group. Conversely, the mRNA and protein levels of MMP-2, MMP-7and MMP-9of the SW-620were down-regulated significantly.
     Conclusion:
     1. Pseudogene Cr-3was over-expression in colorectal cancer and was closely related to invasion and metastasis of cancer cells.
     2. MMPs family members:MMP-2,-7and-9might playe an important role in the Cr-3regulation of invasion and metastasis of colorectal cancer cells.
     3. Pseudogene Cr-3might be one of the important targets in the gene diagnosis and treatment of colorectal cancer. Exploring its role and molecular mechanism further, will help raise the level of comprehensive diagnosis and treatment of metastatic colorectal cancer.
引文
[1]Zheng D, Gerstein M. The ambiguous boundary between genes and pseudogenes:the dead rise up, or do they? [J]. Trends Genet,2007,23(5):219-224.
    [2]Hirotsune S, Yoshida N, Chen A, et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene[J]. Nature,2003,423(6935): 91-96.
    [3]Balasubramanian S, Zheng D, Liu Y J, et al. Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes[J]. Genome Biol,2009,10(1):R2.
    [4]Zou M, Baitei EY, Alzahrani AS, et al. Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors[J].Neoplasia,2009,11(1):57-65.
    [5]Bier A, Oviedo-Landaverde I, Zhao J, et al. Connexin43 pseudogene in breast cancer cells offers a novel therapeutic target[J]. Mol Cancer Ther,2009,
    [6]Tam O H, Aravin A A, Stein P, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes[J].Nature,2008,453(7194):534-538.
    [7]Poliseno L, Salmena L, Zhang J,et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology[J]. Nature,2010,465(7301):1033-1038.
    [8]Scognamiglio B, Baldassarre q Cassano C, et al. Assignment of Human Teratocarcinoma Derived Growth Factor (Tdgo Sequences to Chromosomes 2q37,3q22,6p25 and 19q 13.1[J]. Cytogenet Cell Genet,1999,84 (3-4):220-224.
    [9]Sun C, Orozco O, Olson DL, et al. Cripto3, a Presumed Pseudogene, Is Expressed in Cancer[J]. Biochem Biophys Res Commun,2008,377(1):215-220.
    [10]Bianco C, Salomon DS. Targeting the embryonic gene Cripto-1 in cancer and Beyond[J]. Expert Opin Ther Pat,2010,20(12):1739-1749.
    [11]de Castro NP, Rangel MC, Nagaoka T, et al. Cripto-1:an embryonic gene that promotes tumorigenesis[J]. Future Oncol,2010,6(7):1127-1142.
    [12]Wu Z, Li G, Wu L, Weng D, Li X, Yao K. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma. BMC Cancer,2009,9:315.
    [13]Mallikarjuna K, Vaijayanthi P, Krishnakumar S. Cripto-1 expression in uveal melanoma: an immunohistochemical study. Exp Eye Res,2007,84(6):1060-1066.
    [14]范钰,张尤历,吴莺等.大肠癌组织畸胎瘤衍生生长因子1蛋白表达及临床意义[J].中华消化内镜杂志,2007,15(33):3484-3488.
    [15]Hentschke M, Kurth I, Borgmeyer U, Hubner CA. Germ cell nuclear factor is a repressor of CRIPTO-1 and CRIPTO-3[J].J Biol Chem.2006,281(44):33497-33504.
    [16]Livak KJ,Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods,2001,25:402-408.
    [17]Chang JT,Chen IH,Liao CT,et al. Areverse transcription comparative real-time PCR method for quantitative detection of angiogenic growth factors in head and neck cancer patients. Clin Biochem,2002,35:591-596.
    [18]陈竺.全国第三次死因回顾抽样调查报告.北京:中国协和医科大学出版社.2008.28-39.
    [19]Jemal A, Siegel R, Ward E, et al. Cancer statistics 2007[J].CA Cancer J Clin.2007,57(1):43-66.
    [20]崔峰,夏家辉.关于假基因的基因进展[J].生命科学研究,1999,3(3):203-209
    [21]Zhang Z,Gerstein Large-scale analysisof pseudogenes in the human genome [J].current opinion in genetics &development,2004,8,14(4):328-35
    [22]WickelgrenI,Molecularbiology[J].Spinning junk into gold, Science,2003,300(5626): 1646-1649
    [23]Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome[J]. Nature Rev Genet,2010,11(8):559-571.
    [24]C.Jacq, J.R.Miller, GGBrownlee. Apseudogene structure in 5S DNA of Xenopuslaevis[J] Cell,1977,12(1):109-120,1977.
    [25]Mighell AJ, Smith NR, Robinson PA, Markham AF. Vertebrate pseudogenes. FEBS Lett. 2000 Feb 25;468(2-3):109-14.
    [26]27 L.Poliaeno, L.Selmena et al.A coding-independent function of gene and pseudogene mRNA regulates tumor biology.Nature,2010 465:1033-1038.
    [27]Ingemarie R.Berger, Maraus Buschbeck. Indentification of a transcriptionally activeHvh-5 pseudogene on 10q22.2[J].Cancer Genetics and Cytogenetics,2005, 159:155-159.
    [28]Y.J.Han, S.F.Ma et al. A transcribed pseudogene of MYLK promotes cell proliferation[J].The FASEB Journal,2011,25(7):2305-2312.
    [29]R.Sasidharan,M,Gerstein. Genomics:protein fossils live on as RNA[J].Nature,2008, 453(7196):729-731.
    [30]D.Ulveling, C.Francastel, F.Hube When one is better than two:RNA with dual functions[J].Biochimie,2011(93):633-634.
    [31]S.A.Korneev, J.H.Park, M.O'Shea. Neuronal expression of neural nitric oxide synthase(nNOS)protein is suppressed by an antisense RNA transcribed from an NOS pseudogene[J].Neurosci.1999,19:711-7720.
    [32]E.Betran, W.Wang, L.Jin, M.Long.Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene[J]. Mol.Biol.Evol,2002,19:654-663.
    [33]Evolution of the NANOG pseudogene family in the human and chimpanzee genomes. Fairbanks DJ, Maughan PJ. BMC Evol Biol.20069;6:12.
    [34]Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells.2009,27(5):993-1005.
    [35]Ibrahim EE, Babaei-Jadidi R, Saadeddin A, Spencer-Dene B, Hossaini S, Abuzinadah M, Li N, Fadhil W, Ilyas M, Bonnet D, Nateri AS.Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1-and TCF-dependent mechanisms. Stem Cells.2012,30(10):2076-2087.
    [36]Uchino K, Hirano G, Hirahashi M, Isobe T, Shirakawa T, Kusaba H, Baba E, Tsuneyoshi M, Akashi K. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells. Exp Cell Res.2012,318(15):1799-1807.
    [37]Yano Y, Saito R, Yoshida N, Yoshiki A, Wynshaw-Boris A, Tomita M, Hirotsune S. Anew role for expressed pseudogenes as ncRNA:regulation of mRNA stability of its homologous coding gene. J Mol Med (Berl).2004,82(7):414-422.
    [38]Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F. Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene.Nature.2003,423(6935):91-96.
    [39]Balakirev ES, Ayala FJ. Pseudogenes:are they "junk" or functional DNA? Annu Rev Genet.2003,37:123-51.
    [40]Piehler AP,Hellum M,Wenzel JJ et al,The human ABC transporter pseudogene family: Evidence for transcription and gene-pseudogene interference[J].BMC Genomics,2008, 9:165.
    [41]Lin H, Shabbir A, Molnar M et al, Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene[J]. Biochem Biophys Res Commun,2007,355: 111-116.
    [42]Guo X, Zhang Z, Gerstein MB,Zheng D,Small RNAs originated from pseudogenes:cis-or trans-acting?[J] PLoComput.Biol,2009,5(7):e1000449
    [43]Minjing Zou, Essa Y et al. Oncogenic Activation Of MAP Kinase by BRAF Pseudogene in Thyroid Tumors[J].2009,11(1):57-65.
    [44]Devor EJ. Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. J Hered.2006,97(2):186-190.
    [45]Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language? [J]Cell,2011,146(3):353-358.
    [46]Khurana, E H,Lam HY, Cheng C et al,Segmental duplications in the human genome re veal details of pseudogene formation, [J]. Nucleic Acids Res,2010,38(20):6997-7007.
    [47]Zuckerkandl E.Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine[J].Genetica,2002,May; 115(1):105-29.
    [48]Kalayana-Sundaram S,Kumar-Sinha C,Shankar S et al. Expressed pseudogenes in the transcriptional landscape of human cancers[J].Cell,2012,149(7):1622-34.
    [49]Xiao LQ, Moller M, Zhu H. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas:incomplete concerted evolution and the origin of pseudogenes. [J]Mol Phylogenet Evol.2010,55(1):168-1677.
    [50]Hayashi H, Tazoe Y, Horino M, Fujimaki-Katoh C, Tsuboi S, Matsuyama T, Kosuge K, Yamada H, Tsuji D, Inoue K, Itoh K. An artifact derived from a pseudogene led to the discovery of microRNA binding site polymorphism in the 3'-untranslated region of the human dihydrofolate reductase gene. Drug Metab Pharmacokinet.2012;27(2):263-267.
    [51]Brzezinski JL, Glass DN, Choi E. A novel polymorphism in the pseudogene TCRBV5S5 combines with TCRBV6S1 to define three haplotypes. Genes Immun.2001,2(5):290-291.
    [52]Kawabe A, Miyashita NT. DNA polymorphism in active gene and pseudogene of the cytosolic phosphoglucose isomerase (PgiC) loci in Arabidopsis halleri ssp.gemmifera. Mol Biol Evol.2003,20(7):1043-1050.
    [53]Bailey CD, Carr TG, Harris SA, Hughes CE. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol.2003,29(3):435-455.
    [54]Unemo M, Norlen O, Fredlund H. The porA pseudogene of Neisseria Gonorrhoeae-low level of genetic polymorphism and afew,mainly identical,inactivating mutations. APMIS. 2005,113(6):410-419.
    [55]Wang HD, Zhu BF, Shen CM, Yuan GL, Yang G, Guo JN, Yan JW, Qin HX, Guo JX, Zhang LP, Jia XQ, Lucas R.Genetic polymorphism analysis of killer cell immunoglobulin-like receptor genes in the Chinese Uygur population. Mol Biol Rep. 2012,39(3):3017-3028.
    [56]Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ, Iyer MK, Barrette T, Shanmugam A, Dhanasekaran SM, Palanisamy N, Chinnaiyan AM. Expressed pseudogenes in the transcriptional landscape of human cancers.Cell.2012,149(7):1622-1634.
    [57]Zou M,Baitel EY,AL-Mohanna F et al.Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors[J].Neoplasia,2009,11(1):57-65.
    [58]Poliseno L, Haimovic A, Christos PJ, Vega Y Saenz de Miera EC, Shapiro R, Pavlick A, Berman RS, Darvishian F, Osman I. Deletion of PTENP1 pseudogene in human melanoma. J Invest Dermatol.2011,131 (12):2497-2500.
    [59]Ioffe YJ, Chiappinelli KB, Mutch DG, Zighelboim I, Goodfellow PJ. Phosphatase and tensin homolog (PTEN) pseudogene expression in endometrial cancer:a conserved regulatory mechanism important in tumorigenesis? Gynecol Oncol.2012,124(2): 340-346.
    [60]Alsip GR, Konkel DA. A processed chicken pseudogene (CPS1) related to the ras oncogene superfamily. Nucleic Acids Res.1986,14(5):2123-2138.
    [61]Chang HY, Guerrero I, Lake R, Pellicer A, D'Eustachio P. Mouse N-ras genes: organization of the functional locus and of a truncated cDNA-like pseudogene. Oncogene Res.1987,1 (2):129-36.
    [62]Blanche H, Chang EH, Dausset J, Cann HM. A fragment of the human c-Ki-rasl pseudogene (HGM9 gene symbol KRAS1P), localized to 6p12-pll, detects 3 allele, RFLP. Nucleic Acids Res.1988,16(4):1652.
    [63]van Kranen HJ, van Steeg H, Schoren L, Faessen P, de Vries A, van Iersel PW, van Kreijl CF. The rat N-ras gene; interference of pseudogenes with the detection of activating point mutations. Carcinogenesis.1994,15(2):307-311.
    [64]Laird DW,Fistouris P,Batist G et al.Deficiency of connexin43 gap junctions is an independent marker for breast tumors[J].Cancer Res,1999,59:4104-4110
    [65]HuangRP,HossainMZ,HuangRetal,Connexin 43 (cx43)enhances chemotherapy-induced apoptosis in hunman glioblastoma cells[J].Cancer,2001,92:130-8
    [66]Carystino GD,Alaoui-Jamali MA,Phipps J et al.Upregulation of gap junctional intercellular communication and connexin 43 expression by cyclic-AMP and all-trans-retinoic acid is associated with glutathione depletion and chemosensitivity in neuroblastoma cells[J].Cancer Chemother Pharmacol,2001;47(2):126-32.
    [67]Andrew Bier,Irene Oviedo-Landaverde,Jing Zhao et al.Connexin43 pseudogene in breast cancer cells offers a novel therapeutic target[J].Mol Cancer Ther,2009,Apr;8(4):786-93.
    [68]Watanabe K, Meyer MJ, Strizzi L, et al. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells[J]. Stem Cells,2010,28(8):1303-1314.
    [69]Bianco C, Rangel MC, Castro NP, Nagaoka T, Rollman K, Gonzales M, Salomon DS. Role of Cripto-1 in stem cell maintenance and malignant progression[J]. Am J Pathol,2010,177(2):532-540.
    [70]Strizzi L, Abbott DE, Salomon DS, et al. Potential for cripto-1 in defining stem cell-likecharacteristics inhuman malignantmelanoma[J].Cell Cycle,2008,7(13):1931-1935.
    [71]钟锡明,范钰,周永静等.靶向cripto siRNA转染对裸鼠实验性大肠癌细胞肝转移的影响.复旦学报(医学版),2010,37(2):202-206.
    [72]Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol.2012, 181(6):1895-1899.
    [73]Libra M, Scalisi A, Vella N, Clementi S, Sorio R, Stivala F, Spandidos DA,Mazzarino C Uterine cervical carcinoma:role of matrix metalloproteinases (review). Int J Oncol.2009 Apr;34(4):897-903.
    [74]Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases:regulators of the tumor microenvironment. Cell.2010,141(1):52-67.
    [75]Bulbule A, Saraswati S, Kundu GC. Status of research on matrix metalloproteinases (MMPs) in India. Expert Opin Ther Targets.2011,15(6):671-675.
    [76]Groblewska M, Siewko M, Mroczko B, Szmitkowski M. The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer. Folia Histochem Cytobiol.2012,50(1):12-19.
    [77]Yamaguchi H. Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol.2012 Nov-Dec;91(11-12):902-7. doi:10.1016/j.ejcb.2012.04.005. Epub 2012 Jun 2. PubMed PMID:22658792.
    [78]Pucci-Minafra I, Minafra S, La Rocca G, Barranca M, Fontana S, Alaimo G, Okada Y. Zymographic analysis of circulating and tissue forms of colon carcinoma gelatinase A (MMP-2) and B (MMP-9) separated by mono-and two-dimensional electrophoresis. Matrix Biol.2001, (7):419-427.
    [79]Tutton MG, George ML, Eccles SA, Burton S, Swift RI, Abulafi AM. Use of plasma MMP-2 and MMP-9 levels as a surrogate for tumour expression in colorectal cancer patients. Int J Cancer.2003 Nov 20;107(4):541-50. PubMed PMID:14520690.
    [80]Di Carlo A, Mariano A, Terracciano D, Mazzarella C, Galzerano S, Cicalese M,Cecere C, Macchia V. Gelatinolytic activities (matrix metalloproteinase-2 and-9) and soluble extracellular domain of Her-2/neu in pleural effusions. Oncol Rep.2007,18(2):425-431.
    [81]Vishnubhotla R, Sun S, Huq J, Bulic M, Ramesh A, Guzman G, Cho M, Glover SC.ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging. Lab Invest.2007, 87(11):1149-1158.
    [82]Kang JH, Han IH, Sung MK, Yoo H, Kim YG, Kim JS, Kawada T, Yu R. Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP-2. Cancer Lett.2008,261 (1):84-92.
    [83]Lai KC, Huang AC, Hsu SC, Kuo CL, Yang JS, Wu SH, Chung JG. Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. J Agric Food Chem.2010 Mar10;58(5):2935-2942.
    [84]Babykutty S, Suboj P, Srinivas P, Nair AS, Chandramohan K, Gopala S. Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways. Clin Exp Metastasis.2012, 29(5):471-492.
    [85]Hong SW, Kang YK, Lee B, Lee WY, Jang YG, Paik IW, Lee H. Matrix metalloproteinase-2 and-7 expression in colorectal cancer. J Korean Soc Coloproctol. 2011,27(3):133-139.
    [86]Yanagisawa N, Geironson L, Al-Soud WA, Ljungh S. Expression of matrix metalloprotease-2,-7 and-9 on human colon, liver and bile duct cell lines by enteric and gastric Helicobacter species.FEMS Immunol Med Microbiol.2005,44(2):197-204.
    [87]Pesta M, Holubec L Jr, Topolcan O, et al. Quantitativeest imation of matrix metalloproteinases 2 and 7 (MMP-2, MMP-7) and tissue inhibitors of matrix metalloproteinases 1 and 2 (TIMP-1, TIMP-2) in colorectal carcinom a tissue samples [J].Anticancer Res,2005,25 (5):3387-3391.
    [88]Koskensalo S, Louhimo J, Nordling S, et al. MMP-7 as a prognostic marker in colorectal cancer[J]. Tumour Biol,2011,32(2):259-264.
    [89]Dong W, Li H, Zhang Y, et al. Matrix metalloproteinase 2 promotes cell growth and invasion in colorectal cancer[J]. Acta Biochim Biophys Sin(Shanghai),2011,43(11): 840-848.
    [90]Leeman MF, Curran S, Murray GI. New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression [J].J Pathol,2003, 201(1):528-534.
    [91]Knopfova L, Benes P, Pekarcikova L, Hermanova M, Masafik M, Pernicova Z,Soucek K, Smarda J. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D:implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer.2012,11:15.
    [92]Jia ZC, Wan YL, Tang JQ, Dai Y, Liu YC, Wang X, Zhu J. Tissue factor/activated factor Ⅶa induces matrix metalloproteinase-7 expression through activation of c-Fos via ERK1/2 and p38 MAPK signaling pathways in human colon cancer cell. Int J Colorectal Dis.2012,27(4):437-445..
    [93]Li J, Sun R, Tao K, Wang G. The CCL21/CCR7 pathway plays a key role in human colon cancer metastasis through regulation of matrix metalloproteinase-9. Dig Liver Dis. 2011,43(1):40-147.
    [94]Peng L, Xing X, Li W, Qu L, Meng L, Lian S, Jiang B, Wu J, Shou C. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin betal-ERK1/2 and-MMP2 signaling. Mol Cancer.2009,8:110.
    [95]Vishnubhotla R, Sun S, Huq J, Bulic M, Ramesh A, Guzman G, Cho M, Glover SC.ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging. Lab Invest. 2007,87(11):1149-1158.
    [96]Wai PY, Mi Z, Guo H, Sarraf-Yazdi S, Gao C, Wei J, Marroquin CE, Clary B, Kuo PC. Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis.2005,26(4):741-751.
    [97]范钰,张尤历,郑树.RNA干扰沉默促肝细胞再生磷酸酶-3基因对结直肠癌细胞基质金属蛋白酶2和9表达的影响.中华胃肠外科杂志,2008,11(5):477-481.
    [1]Zhang Z,Gerstein Large-scale analysis of pseudogenes in the human genome[J]. current opinion in genetics &development,2004,8,14(4):328-35
    [2]Wickelgren 1,Molecular biology[J].Spinning junk into gold,Science,2003,300(5626): 1646-1649
    [3]Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome[J].Nature Rev Genet,2010,11(8):559-571.
    [4]Zheng D, Gestein M. The the ambiguous boundary between genes and pseudogenes:the dead rise up, or do they?[J].Trends Genet,2007,23(5):219-224.
    [5]C.Jacq,J.R.Miller, G.G.Brownlee. A pseudogene structure in 5S DNA of Xenopuslaevis[J] Cell,1977,12(1):109-120,1977.
    [6]MighellAJ,SmithNR,RobinsonPA.Vertebratepseudogenes[J].FEBSletters,2000,468(2-3):10 9-1
    [7]L.Poliaeno, L.Selmena et al.A coding-independent function of gene and pseudogene mRNA regulates tumor biology.Nature,2010 465:1033-1038.
    [8]Ingemarie R.Berger, Maraus Buschbeck. Indentification of a transcriptionally active Hvh-5 pseudogene on 10q22.2[J].Cancer Genetics and Cytogenetics,2005,159:155-159.
    [9]Y.J.Han, S.F.Ma et al. A transcribed pseudogene of MYLK promotes cell proliferation[J].The FASEB Journal,2011,25(7):2305-2312.
    [10]R.Sasidharan,M,Gerstein.Genomics:protein fossils live on as RNA.[J].Nature,2008,453(7196):729-731.
    [11]D.Ulveling, C.Francastel, F.Hube When one is better than two:RNA with dual functions[J].Biochimie,2011 (93):633-634.
    [12]S.A.Korneev, J.H.Park, M.O'Shea. Neuronal expression of neural nitric oxide synthase(nNOS)protein is suppressed by an antisense RNA transcribed from an NOS pseudogene[J].Neurosci.1999,19:711-7720.
    [13]E.Betran, W.Wang, L.Jin, M.Long.Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene[J].Mol.Biol.Evol,2002,19:654-663.
    [14]Evolution of the NANOG pseudogene family in the human and chimpanzee genomes. Fairbanks DJ, Maughan PJ. BMC Evol Biol.20069;6:12.
    [15]Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells.2009,27(5):993-1005.
    [16]Ibrahim EE, Babaei-Jadidi R, Saadeddin A, Spencer-Dene B, Hossaini S, Abuzinadah M, Li N, Fadhil W, Ilyas M, Bonnet D, Nateri AS.Embryonic NANOG activity defines colorectal cancer stem cells and modulates through API-and TCF-dependent mechanisms. Stem Cells.2012,30(10):2076-2087.
    [17]Uchino K, Hirano G, Hirahashi M, Isobe T, Shirakawa T, Kusaba H, Baba E, Tsuneyoshi M, Akashi K. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells. Exp Cell Res.2012,318(15):1799-1807.
    [28]Yano Y, Saito R, Yoshida N, Yoshiki A, Wynshaw-Boris A, Tomita M, Hirotsune S. Anew role for expressed pseudogenes as ncRNA:regulation of mRNA stability of its homologous coding gene. J Mol Med (Berl).2004,82(7):414-422.
    [19]Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature.2003,423(6935):91-96.
    [20]Balakirev ES, Ayala FJ. Pseudogenes:are they "junk" or functional DNA? Annu Rev Genet.2003,37:123-51.
    [21]Piehler AP,Hellum M,Wenzel JJ et al,The human ABC transporter pseudogene family: Evidence for transcription and gene-pseudogene interference[J].BMC Genomics,2008, 9:165.
    [22]Lin H, Shabbir A, Molnar M et al, Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene[J]. Biochem Biophys Res Commun,2007,355: 111-116.
    [23]X.Guo,Z.Zhang,M.B.Gerstein,D.Zheng,Small RNAs originated from pseudogenes:cis-or trans-acting?[J] PLoComput.Biol,2009,5(7):e 1000449
    [24]Minjing Zou, Essa Y et al. Oncogenic Activation Of MAP Kinase by BRAF Pseudogene in Thyroid Tumors[J].2009,11(1):57-65.
    [25]Devor EJ. Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. J Hered.2006,97(2):186-190.
    [26]Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language? Cell,2011,146(3):353-358.
    [27]Khurana, E H,Lam HY, Cheng C et al,Segmental duplications in the human genome re veal details of pseudogene formation,,[J]. Nucleic Acids Res,2010,38(20):6997-7007.
    [28]Zuckerkandl E.Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine[J].Genetica,2002,May; 115(1):105-29.
    [29]Kalayana-Sundaram S,Kumar-Sinha C,Shankar S et al. Expressed pseudogenes in the transcriptional landscape of human cancers[J].Cell,2012,149(7):1622-34.
    [30]Xiao LQ, Moller M, Zhu H. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas:incomplete concerted evolution and the origin of pseudogenes. Mol Phylogenet Evol.2010,55(1):168-1677.
    [31]Hayashi H, Tazoe Y, Horino M, Fujimaki-Katoh C, Tsuboi S, Matsuyama T, Kosuge K, Yamada H, Tsuji D, Inoue K, Itoh K. An artifact derived from a pseudogene led to the discovery of microRNA binding site polymorphism in the 3'-untranslated region of the human dihydrofolate reductase gene. Drug Metab Pharmacokinet.2012;27(2):263-267.
    [32]Brzezinski JL, Glass DN, Choi E. A novel polymorphism in the pseudogene TCRBV5S5 combines with TCRBV6S1 to define three haplotypes. Genes Immun.2001,2(5):290-291.
    [33]Kawabe A, Miyashita NT. DNA polymorphism in active gene and pseudogene of the cytosolic phosphoglucose isomerase (PgiC) loci in Arabidopsis halleri ssp.gemmifera. Mol Biol Evol.2003,20(7):1043-1050.
    [34]Bailey CD, Carr TG, Harris SA, Hughes CE. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol.2003,29(3):435-455.
    [35]Unemo M, Norlen O, Fredlund H. The porA pseudogene of Neisseria gonorrhoeae--low level of genetic polymorphism and a few, mainly identical,inactivating mutations. APMIS. 2005,113(6):410-419.
    [36]Wang HD, Zhu BF, Shen CM, Yuan GL, Yang G, Guo JN, Yan JW, Qin HX, Guo JX, Zhang LP, Jia XQ, Lucas R. Genetic polymorphism analysis of killer cell immunoglobulin-like receptor genes in the Chinese Uygur population. Mol Biol Rep. 2012,39(3):3017-3028.
    [37]Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ, Iyer MK, Barrette T, Shanmugam A, Dhanasekaran SM, Palanisamy N, Chinnaiyan AM. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell.2012,149(7):1622-1634.
    [38]Zou M,Baitel EY,AL-Mohanna F et al.Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors[J].Neoplasia,2009,11(1):57-65.
    [39]Poliseno L, Haimovic A, Christos PJ, Vega Y Saenz de Miera EC, Shapiro R, Pavlick A, Berman RS, Darvishian F, Osman I. Deletion of PTENP1 pseudogene in human melanoma. J Invest Dermatol.2011,131 (12):2497-2500.
    [40]Ioffe YJ, Chiappinelli KB, Mutch DG, Zighelboim I, Goodfellow PJ. Phosphatase and tensin homolog (PTEN) pseudogene expression in endometrial cancer:a conserved regulatory mechanism important in tumorigenesis? Gynecol Oncol. 2012,124(2):340-346.
    [41]Alsip GR, Konkel DA. A processed chicken pseudogene (CPS1) related to the ras oncogene superfamily. Nucleic Acids Res.1986,14(5):2123-2138.
    [42]Poliseno L, Salmena L, Zhang J,et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology[J]. Nature,2010,465(7301):1033-1038.
    [43]Chang HY, Guerrero I, Lake R, Pellicer A, D'Eustachio P. Mouse N-ras genes: organization of the functional locus and of a truncated cDNA-like pseudogene. Oncogene Res.1987,1(2):129-36.
    [44]Blanche H, Chang EH, Dausset J, Cann HM. A fragment of the human c-Ki-rasl pseudogene (HGM9 gene symbol KRAS1P), localized to 6p12-p11, detects 3 allele, RFLP. Nucleic Acids Res.1988,16(4):1652.
    [45]van Kranen HJ, van Steeg H, Schoren L, Faessen P, de Vries A, van Iersel PW, van Kreijl CF. The rat N-ras gene; interference of pseudogenes with the detection of activating point mutations. Carcinogenesis.1994,15(2):307-311.
    [46]Laird DW,Fistouris P,Batist G et al.Deficiency of connexin43 gap junctions is an independent marker for breast tumors[J].Cancer Res,1999,59:4104-4110
    [47]Huang RP,Hossain MZ,Huang R et al,Connexin 43 (cx43)enhances chemotherapy-induced apoptosis in hunman glioblastoma cells[J].Cancer,2001,92:130-8
    [48]Carystino GD,Alaoui-Jamali MA,Phipps J et al.Upregulation of gap junctional intercellular communication and connexin 43 expression by cyclic-AMP and all-trans-retinoic acid is associated with glutathione depletion and chemosensitivity in neuroblastoma cells[J].Cancer Chemother Pharmacol,2001;47(2):126-32.
    [49]Scognamiglio B, Baldassarre q Cassano C, et al. Assignment of Human Teratocarcinoma Derived Growth Factor (Tdgo Sequences to Chromosomes 2q37,3q22,6p25 and 19q 13.1 [J]. Cytogenet Cell Genet,1999,84 (3-4):220-224.
    [50]Sun C, Orozco O, Olson DL, et al. Cripto3, a Presumed Pseudogene, Is Expressed in Cancer[J]. Biochem Biophys Res Commun,2008,377(1):215-220.
    [51]Bianco C, Salomon DS. Targeting the embryonic gene Cripto-1 in cancer and Beyond[J]. Expert Opin Ther Pat,2010,20(12):1739-1749.
    [52]de Castro NP, Rangel MC, Nagaoka T, et al. Cripto-1:an embryonic gene that promotes tumorigenesis[J]. Future Oncol,2010,6(7):1127-1142.
    [53]Wu Z, Li G, Wu L, Weng D, Li X, Yao K. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma. BMC Cancer,2009,9:315.
    [54]Mallikarjuna K, Vaijayanthi P, Krishnakumar S. Cripto-1 expression in uveal melanoma: an immunohistochemical study. Exp Eye Res,2007,84(6):1060-1066.
    [55]范钰,张尤历,吴莺等.大肠癌组织畸胎瘤衍生生长因子1蛋白表达及临床意义[J].中华消化内镜杂志,2007,15(33):3484-3488.
    [56]Watanabe K, Meyer MJ, Strizzi L, et al. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells[J]. Stem Cells,2010,28(8):1303-1314.
    [57]Bianco C, Rangel MC, Castro NP, Nagaoka T, Rollman K, Gonzales M, Salomon DS. Role of Cripto-1 in stem cell maintenance and malignant progression[J]. Am J Pathol,2010,177(2):532-540.
    [58]Strizzi L, Abbott DE, Salomon DS, et al. Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma[J].Cell Cycle,2008,7(13):1931-1935.
    [59]钟锡明,范钰,周永静等.靶向cripto siRNA转染对裸鼠实验性大肠癌细胞肝转移的影响. 复旦学报(医学版),2010,37(2):202-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700