转录因子p53、Sox2的翻译后修饰调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在个体发育过程中以及应对外界刺激的时候,细胞内发生了一系列的基因转录事件。决定一个基因是否转录的因素主要包括调节区域染色质的开放状态,转录因子的局部丰度。组蛋白以及转录因子的翻译后修饰是调节基因转录的重要方面。
     DNA缠绕在组蛋白八聚体上形成核小体,一个个核小体构成串珠样的染色质纤维,并可以进一步折叠包装成更高级的结构。染色质的结构愈紧密,转录因子就愈加难以接近其特异的DNA元件。组蛋白的共价修饰可以直接或间接地影响染色质结构。如H3K4的三甲基化可以募集专司激活的蛋白质复合物,对组蛋白进行乙酰化,打开核小体间的聚合状态,减弱组蛋白和DNA间的相互作用,并有依赖ATP水解能量的蛋白复合物同时对染色质结构进行物理重塑,最终使DNA充分暴露,形成开放的染色质状态;与之相反,H3K27的三甲基化则募集使组蛋白去乙酰化的复合物,在各种蛋白复合物的配合下将核小体装配成更高级的异染色质样结构,DNA被紧密包裹,转录因子不能靠近。转录因子的翻译后修饰如多聚泛素化可引起转录因子的降解,磷酸化乙酰化甲基化可能引起转录因子亚细胞分布变化,或者改变转录因子与DNA以及其它大分子的相互作用,最终影响其转录活性。转录因子的各种共价修饰不是孤立存在的,往往互相促进或拮抗,所以共价修饰实际上是各种上级信号的输入,经转录因子整合后输出为转录因子结合调节元件及持续调节靶基因转录的能力。
     我们分别以p53调控细胞凋亡的过程和全反式维甲酸(RA)诱导的P19细胞神经分化过程为对象,就翻译后修饰对蛋白质功能的调节作用进行了一些研究。
     第一部分翻译后修饰与p53功能
     利用放射性同位素氚标记的甲基供体进行in vivo甲基标记实验,我们发现p53核心结构域在细胞内发生了甲基化;利用特异识别甲基化精氨酸的抗体,我们确定p53核心结构域在细胞内发生了精氨酸的甲基化。文献报道:免疫沉淀得到的内源p53蛋白经质谱鉴定,第110、209、213位精氨酸有甲基化形式存在。我们将第110、209、213位精氨酸同时突变为赖氨酸后,p53的转录活性被严重抑制。
     在蛋白质的精氨酸上还可以发生PAD家族催化的肽酰脱氨基修饰。PAD4是PAD家族唯一能够进行核定位的成员,能够在细胞内修饰组蛋白。我们想知道PAD4是否能够直接修饰p53并调节其活性。已经有文献报道了p53可以和PAD4相互作用,并能募集PAD4到靶基因启动子区修饰组蛋白引起染色质结构变化,导致靶基因的表达受到限制,所以我们直接检测了p53是否为PAD4的底物。
     我们发现p53可以在in vivo和in vitro水平上被PAD4脱氨基化,脱氨基作用使得p53的电泳迁移率发生变化。
     在in vitro的乙酰化反应实验中,PAD4的脱氨基作用抑制p53乙酰化。
     在不能表达内源p53的H1299细胞中进行的双荧光素酶报告基因实验显示,随着过表达PAD4蛋白量的增加,p53驱动报告基因表达的能力逐渐降低。根据这些结果,我们认为PAD4可以修饰p53,并引起p53转录活性的降低。
     在HEK293A细胞中,我们发现过表达PAD4诱导内源p53表达的显著上调。
     结论:PAD4对p53的调节是多方面的,可以通过直接修饰p53或被p53募集修饰染色质抑制p53活性,同时也能通过其它途径引起细胞应激状态激活p53表达。
     第二部分翻译后修饰与P19细胞多能性维持及神经分化
     为了研究蛋白质甲基化对P19细胞多能性维持及其神经分化过程的影响,我们用甲基转移酶抑制剂腺苷二醛(AdOx)来处理细胞。我们发现:
     1.在RA诱导时加入AdOx处理抑制P19神经分化早期转录因子Mashl和Ngnl的上调。
     2. AdOx处理后的P19细胞再经RA诱导,不能向神经外胚层方向分化,说明抑制蛋白质甲基化会限制P19细胞的多能性,我们对其具体机制进行了一些研究,发现:
     a. AdOx处理引起P19细胞周期阻滞和形态变化。
     b. AdOx处理抑制多种组蛋白甲基化修饰,且程度各不相同。
     c. AdOx处理上调多能性相关基因Utf1、Fgf4、Nanog、Sox2的转录。
     d. AdOx处理抑制多能性维持的关键转录因子之一Sox2的转录活性,改变Sox2的亚细胞定位,限制Sox2与染色质的动态结合能力。
     e.精氨酸甲基转移酶Carm1能够与Sox2相互作用,并在in vivo和invitro水平上甲基化Sox2。
     f. Carm1甲基化Sox2的主要位点是113位精氨酸。
     g.Sox2的正常转录活性需要Carm1,过表达Carm1促进Sox2转录活性。113,115,116位精氨酸同时突变使得AdOx对Sox2转录活性的抑制能力减弱。
     h.Sox2能被p300乙酰化,Carm1和p300能共同促进Sox2的转录活性;Akt介导的磷酸化也参与Sox2活性调节;Carm1过表达可以抑制发生在Sox2上的位点特异性蛋白酶切割。
     结论:蛋白质甲基化对于P19细胞多能性的维持以及神经分化能力至关重要;精氨酸甲基化参与Sox2活性调节;Sox2活性受多种翻译后修饰的共同调节。
For a eukaryotic gene, its transcription need an active transcription factor and an "open" chromatin confirmation in its regulatory region. Nucleosomes composed of core histones octamer and surrounded DNA are the fundamental repeating units of the eukaryotic "beads-on-a string" chromatin fibre. Chromatin fibre can be compacted into more complex spatial organizations. Modification of core histones play a key role in structure regulation of chromatin. Different modifications integratively affect the interactions among nuceosomes and affinity of core histones to DNA. Compacted chromatin exhibits reduced accessibility for transcription factors. Post-translational modifications of transcription factors also modulate transcription. Poly-ubiquitination leads to transcription factors degradation; phosphorylation, acetylation and methylation sometimes affect transcription factors subcellular distribution, affinity to DNA elements or other macromolecules. Different modifications may regulate transcription factor synergistically or exclusively, all kinds of upstream signals are integrated into modulated transcription activities.
     We investigated covalent modifications mediated p53 activity regulation, we also explored the roles of post-tranlational modifications in pluripotency maintenance and retinoic acid induced neural differentiation of P19 cells.
     Part I post-translational modifications and p53 regulation.
     By performing [3H-methyl] labeling in vivo, methylation of p53 core domain was detected; with a specific antibody, we found arginine methylation was involved in modifications of p53 core domain. P53 R110,209,213 had been reported to be methylated in vivo by mass spectrometry analysis. In the dual-luciferase reporter assays, transcription activity of p53 with tri-valent mutation of R110,209,213 to lysines was severely reduced.
     Peptidyl-deimination by PAD family is another post-translational modification of arginine residues. PAD4, the only PAD resides in nucleus, deiminates histones and is implicated in chromatin regulation. We sought to figure out whether PAD4 deiminates p53 and regulates its activity. It had been reported that p53 interacts with PAD4 and recruits PAD4 to target gene promoters to modify histones, as a result target gene expressions are restrained. At first we detected whether p53 is a substrate for PAD4.
     We found that PAD4 deiminates p53 in vitro and in vivo, causes changed mobility of p53 in SDS-PAGE.
     PAD4 deimination reduces p53 acetylation in vitro.
     PAD4 represses p53 transcription activity in H1299 cells, a cell line doesn't express endogenous p53.
     PAD4 induces endogenous p53 expression in HEK293A cells.
     Taken together, arginine methylation takes part in p53 regulation. PAD4 regulates p53 in three possible ways:direct deimination of p53; deimination of histones in p53 target promoters; induction of endogenous p53 expression.
     Part II To get a insight into the contribution of protein methylation to pluripotency maintenance and neural differentiation, we treated P19 cells with a methyltransferase inhibitor AdOx. Results are listed below.
     1. AdOx reduces P19 neural differentiation.
     2. AdOx impaires P19 cells pluripotency maintenance.
     3. AdOx causes P19 cells morphological change and blocked cell cycle.
     4. AdOx differentially inhibits histone methylations.
     5. AdOx upregulates transcription of pluripotency related genes(Utfl, Fgf4, Sox2, Nanog).
     6. AdOx reduces Sox2 transcription activity, alters Sox2 subcellular distribution, inhibits the dynamic association of Sox2 with chromatin.
     7. Protein arginine methyltransferase Carm1 interacts and methylates Sox2 in vitro and in vivo.
     8. Carml methylates Sox2 preferentially at R113.
     9. Carml enhances Sox2 transcription activity. R113,115,116K tri-valent mutation reduces the inhibition of Sox2 activity by AdOx.
     10. p300 interacts and acetylates Sox2, stimulations of Sox2 activity by Carml and p300 are compatible; Akt negatively regulates Sox2 activity; Carml can prevent Sox2 from site-specific proteolytic cleavage.
     Taken together:protein methylation is essential for P19 cells pluripotency maintenance and neural differentiation; arginine methylations modulate Sox2 transcription activity; different post-translational modifications jointly regulate Sox2.
引文
Ambrosetti, D. C., H. R. Scholer, L. Dailey, and C. Basilico,2000, Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer:J Biol Chem, v.275, p.23387-97.
    Amikura, T., M. Sekine, Y. Hirai, S. Fujimoto, M. Hatae, I. Kobayashi, T. Fujii, I. Nagata, K. Ushijima, K. Obata, M. Suzuki, M. Yoshinaga, N. Umesaki, S. Satoh, T. Enomoto, S. Motoyama, K. Nishino, K. Haino, and K. Tanaka,2006, Mutational analysis of TP53 and p21 in familial and sporadic ovarian cancer in Japan:Gynecol Oncol, v.100, p.365-71.
    An, W., J. Kim, and R. G. Roeder,2004, Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53:Cell, v.117, p.735-48.
    Ashur-Fabian, O., A. Avivi, L. Trakhtenbrot, K. Adamsky, M. Cohen, G. Kajakaro, A. Joel, N. Amariglio, E. Nevo, and G. Rechavi,2004, Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation:Proc Natl Acad Sci U S A, v.101, p.12236-41.
    Avilion, A. A., S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian, and R. Lovell-Badge,2003, Multipotent cell lineages in early mouse development depend on SOX2 function:Genes Dev, v.17, p.126-40.
    Bartkova, J., N. Rezaei, M. Liontos, P. Karakaidos, D. Kletsas, N. Issaeva, L. V. Vassiliou, E. Kolettas, K. Niforou, V. C. Zoumpourlis, M. Takaoka, H. Nakagawa, F. Tort, K. Fugger, F. Johansson, M. Sehested, C. L. Andersen, L. Dyrskjot, T. Orntoft, J. Lukas, C. Kittas, T. Helleday, T. D. Halazonetis, J. Bartek, and V. G. Gorgoulis,2006, Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints:Nature, v.444, p.633-7.
    Bedford, M. T.,2007, Arginine methylation at a glance:J Cell Sci, v.120, p.4243-6.
    Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber, and E. S. Lander,2006, A bivalent chromatin structure marks key developmental genes in embryonic stem cells:Cell, v.125, p. 315-26.
    Boyer, L. A., T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine, J. P. Zucker, M. G. Guenther, R. M. Kumar, H. L. Murray, R. G. Jenner, D. K. Gifford, D. A. Melton, R. Jaenisch, and R. A. Young,2005, Core transcriptional regulatory circuitry in human embryonic stem cells:Cell, v.122, p.947-56.
    Bustin, M.,1999, Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins:Mol Cell Biol, v.19, p.5237-46.
    Cao, R., and Y. Zhang,2004, The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3: Curr Opin Genet Dev, v.14, p.155-64.
    Chen, Y, L. Shi, L. Zhang, R. Li, J. Liang, W. Yu, L. Sun, X. Yang, Y. Wang, Y. Zhang, and Y. Shang,2008, The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer:J Biol Chem, v.283, p.17969-78.
    Chuikov, S., J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin, G. S. Ivanov, K. McKinney, P. Tempst, C. Prives, S. J. Gamblin, N. A. Barlev, and D. Reinberg,2004a, p53 modif.Regulation of p53 activity through lysine methylation:Nature, v.432, p.353-60.
    Chuikov, S., J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin, G. S. Ivanov, K. McKinney, P. Tempst, C. Prives, S. J. Gamblin, N. A. Barlev, and D. Reinberg,2004b, Regulation of p53 activity through lysine methylation:Nature, v.432, p.353-60.
    Curis, E., I. Nicolis, C. Moinard, S. Osowska, N. Zerrouk, S. Benazeth, and L. Cynober,2005, Almost all about citrulline in mammals:Amino Acids, v.29, p.177-205.
    Cuthbert, G. L., S. Daujat, A. W. Snowden, H. Erdjument-Bromage, T. Hagiwara, M. Yamada, R. Schneider, P. D. Gregory, P. Tempst, A. J. Bannister, and T. Kouzarides,2004, identif cell.Histone deimination antagonizes arginine methylation:Cell, v.118, p.545-53.
    Di Micco, R., M. Fumagalli, A. Cicalese, S. Piccinin, P. Gasparini, C. Luise, C. Schurra, M. Garre, P. G. Nuciforo, A. Bensimon, R. Maestro, P. G. Pelicci, and F. d'Adda di Fagagna,2006, Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication: Nature, v.444, p.638-42.
    Finkelstein, J. D.,1998, The metabolism of homocysteine:pathways and regulation:Eur J Pediatr, v.157 Suppl 2, p. S40-4.
    Francis, N. J., N. E. Follmer, M. D. Simon, G. Aghia, and J. D. Butler,2009, Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro:Cell, v.137, p.110-22.
    Glozak, M. A., N. Sengupta, X. Zhang, and E. Seto,2005, Acetylation and deacetylation of non-histone proteins:Gene, v.363, p.15-23.
    Groth, A., W. Rocha, A. Verreault, and G. Almouzni,2007, Chromatin challenges during DNA replication and repair:Cell, v.128, p.721-33.
    Gu, W., and R. G. Roeder,1997, c+tetra.Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain:Cell, v.90, p.595-606.
    Hendricks, C. L., J. R. Ross, E. Pichersky, J. P. Noel, and Z. S. Zhou,2004, An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases:Anal Biochem, v.326, p.100-5.
    Huangfu, D., R. Maehr, W. Guo, A. Eijkelenboom, M. Snitow, A. E. Chen, and D. A. Melton,2008, Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds:Nat Biotechnol, v.26, p.795-7.
    Inberg, A., Y. Bogoch, Y. Bledi, and M. Linial,2007, Cellular processes underlying maturation of P19 neurons:Changes in protein folding regimen and cytoskeleton organization:Proteomics, v.7, p. 910-20.
    Ishigami, A., T. Ohsawa, M. Hiratsuka, H. Taguchi, S. Kobayashi, Y. Saito, S. Murayama, H. Asaga, T. Toda, N. Kimura, and N. Maruyama,2005, AD.Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's disease:J Neurosci Res, v.80, p.120-8.
    Ito, T., N. Yadav, J. Lee, T. Furumatsu, S. Yamashita, K. Yoshida, N. Taniguchi, M. Hashimoto, M. Tsuchiya, T. Ozaki, M. Lotz, M. T. Bedford, and H. Asahara,2009, Arginine methyltransferase CARM1/PRMT4 regulates endochondral ossification:BMC Dev Biol, v.9, p.47.
    Jansson, M., S. T. Durant, E. C. Cho, S. Sheahan, M. Edelmann, B. Kessler, and N. B. La Thangue,2008, Arginine methylation regulates the p53 response:Nat Cell Biol, v.10, p.1431-9.
    Johnson, J. E., K. Zimmerman, T. Saito, and D. J. Anderson,1992, Induction and repression of mammalian achaete-scute homologue (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells:Development, v.114, p.75-87.
    Jones-Villeneuve, E. M., M. W. McBurney, K. A. Rogers, and V. I. Kalnins,1982, Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells:J Cell Biol, v.94, p.253-62.
    Jung, S. Y, Y. Li, Y. Wang, Y. Chen, Y. Zhao, and J. Qin,2008, Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins:Anal Chem,v.80, p.1721-9.
    Kamachi, Y., M. Uchikawa, and H. Kondoh,2000, Pairing SOX off:with partners in the regulation of embryonic development:Trends Genet, v.16, p.182-7.
    Kooistra, S. M., R. P. Thummer, and B. J. Eggen,2009, Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells:Stem Cell Res.
    Li, B., M. Carey, and J. L. Workman,2007a, The role of chromatin during transcription:Cell, v.128, p. 707-19.
    Li, J., G. Pan, K. Cui, Y. Liu, S. Xu, and D. Pei,2007b, A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells:J Biol Chem,v.282, p.19481-92.
    Li, P., H. Yao, Z. Zhang, M. Li, Y. Luo, P. R. Thompson, D. S. Gilmour, and Y. Wang,2008, Regulation of p53 target gene expression by peptidylarginine deiminase 4:Mol Cell Biol, v.28, p.4745-58.
    Lu, C. C., J. Brennan, and E. J. Robertson,2001, From fertilization to gastrulation:axis formation in the mouse embryo:Curr Opin Genet Dev, v.11, p.384-92.
    Malkin, D., F. P. Li, L. C. Strong, J. F. Fraumeni, Jr., C. E. Nelson, D. H. Kim, J. Kassel, M. A. Gryka, F. Z. Bischoff, M. A. Tainsky, and et al,1990, Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms:Science, v.250, p.1233-8.
    Mallette, F. A., M. F. Gaumont-Leclerc, and G. Ferbeyre,2007, The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence:Genes Dev, v.21, p.43-8.
    Maruyama, N., A. Ishigami, and Y. Kondo,2005, aging. [Molecular abnormality in aging:its contribution to clinical pathology]:Rinsho Byori, v.53, p.728-34.
    Moscarello, M. A., F. G. Mastronardi, and D. D. Wood,2007, autoimmune.The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis:Neurochem Res, v.32, p. 251-6.
    Nakashima, K., T. Hagiwara, and M. Yamada,2002, Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes:J Biol Chem, v.277, p.49562-8.
    Niwa, H.,2007, Open conformation chromatin and pluripotency:Genes Dev, v.21, p.2671-6.
    Nowling, T., C. Bernadt, L. Johnson, M. Desler, and A. Rizzino,2003, The co-activator p300 associates physically with and can mediate the action of the distal enhancer of the FGF-4 gene:J Biol Chem, v. 278, p.13696-705.
    Nowling, T. K., L. R. Johnson, M. S. Wiebe, and A. Rizzino,2000, Identification of the transactivation domain of the transcription factor Sox-2 and an associated co-activator:J Biol Chem, v.275, p. 3810-8.
    Okorokov, A. L., M. B. Sherman, C. Plisson, V. Grinkevich, K. Sigmundsson, G. Selivanova, J. Milner, and E. V. Orlova,2006, c+tetramer.The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity:Embo J, v.25, p.5191-200.
    Remenyi, A., K. Lins, L. J. Nissen, R. Reinbold, H. R. Scholer, and M. Wilmanns,2003, Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers:Genes Dev, v.17, p.2048-59.
    Rinn, J. L., M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu, S. A. Brugmann, L. H. Goodnough, J. A. Helms, P. J. Farnham, E. Segal, and H. Y. Chang,2007, Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs:Cell, v.129, p.1311-23.
    Sarmento, O. F., L. C. Digilio, Y. Wang, J. Perlin, J. C. Herr, C. D. Allis, and S. A. Coonrod,2004a, Dynamic alterations of specific histone modifications during early murine development:J Cell Sci, v.117, p. 4449-59.
    Sarmento,O. F., L. C. Digilio, Y. Wang, J. Perlin, J. C. Herr, C. D. Allis, and S. A. Coonrod,2004b, PAD2.Dynamic alterations of specific histone modifications during early murine development:J Cell Sci, v.117, p.4449-59.
    Schwerk, C., and K. Schulze-Osthoff,2005, Methyltransferase inhibition induces p53-dependent apoptosis and a novel form of cell death:Oncogene, v.24, p.7002-11.
    Scoumanne, A., and X. Chen,2008, Protein methylation:a new mechanism of p53 tumor suppressor regulation:Histol Histopathol, v.23, p.1143-9.
    Shen, X., Y. Liu, Y. J. Hsu, Y. Fujiwara, J. Kim, X. Mao, G. C. Yuan, and S. H. Orkin,2008, EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency:Mol Cell, v.32, p.491-502.
    Sims, R. J.,3rd, and D. Reinberg,2008, Is there a code embedded in proteins that is based on post-translational modifications?:Nat Rev Mol Cell Biol, v.9, p.815-20.
    Smith, A. G.,1992, Mouse embryo stem cells:their identification, propagation and manipulation:Semin Cell Biol, v.3, p.385-99.
    Spivakov, M., and A. G. Fisher,2007, Epigenetic signatures of stem-cell identity:Nat Rev Genet, v.8, p. 263-71.
    Takahashi, K., and S. Yamanaka,2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors:Cell, v.126, p.663-76.
    Torres-Padilla, M. E., D. E. Parfitt, T. Kouzarides, and M. Zernicka-Goetz,2007, Histone arginine methylation regulates pluripotency in the early mouse embryo:Nature, v.445, p.214-8.
    Tsuruzoe, S., K. Ishihara, Y. Uchimura, S. Watanabe, Y. Sekita, T. Aoto, H. Saitoh, Y. Yuasa, H. Niwa, M. Kawasuji, H. Baba, and M. Nakao,2006, Inhibition of DNA binding of Sox2 by the SUMO conjugation:Biochem Biophys Res Commun, v.351, p.920-6.
    Van Hoof, D., J. Munoz, S. R. Braam, M. W. Pinkse, R. Linding, A. J. Heck, C. L. Mummery, and J. Krijgsveld,2009, Phosphorylation dynamics during early differentiation of human embryonic stem cells:Cell Stem Cell, v.5, p.214-26.
    Vossenaar, E. R., A. J. Zendman, W. J. van Venrooij, and G. J. Pruijn,2003, PAD, a growing family of citrullinating enzymes:genes, features and involvement in disease:Bioessays, v.25, p.1106-18.
    Wang, Y, J. Wysocka, J. Sayegh, Y. H. Lee, J. R. Perlin, L. Leonelli, L. S. Sonbuchner, C. H. McDonald, R. G. Cook, Y. Dou, R. G. Roeder, S. Clarke, M. R. Stallcup, C. D. Allis, and S. A. Coonrod,2004a, Human PAD4 regulates histone arginine methylation levels via demethylimination:Science, v.306, p.279-83.
    Wang, Y., J. Wysocka, J. Sayegh, Y. H. Lee, J. R. Perlin, L. Leonelli, L. S. Sonbuchner, C. H. McDonald, R. G. Cook, Y. Dou, R. G. Roeder, S. Clarke, M. R. Stallcup, C. D. Allis, and S. A. Coonrod,2004b, identif.Human PAD4 regulates histone arginine methylation levels via demethylimination:Science, v.306, p.279-83.
    Wu, Q., A. W. Bruce, A. Jedrusik, P. D. Ellis, R. M. Andrews, C. F. Langford, D. M. Glover, and M. Zernicka-Goetz,2009, CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation:Stem Cells, v.27, p.2637-45.
    Wu, Q., X. Chen, J. Zhang, Y. H. Loh, T. Y. Low, W. Zhang, W. Zhang, S. K. Sze, B. Lim, and H. H. Ng, 2006, Sal14 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells:J Biol Chem, v.281, p.24090-4.
    Yamagata, K., H. Daitoku, Y. Takahashi, K. Namiki, K. Hisatake, K. Kako, H. Mukai, Y. Kasuya, and A. Fukamizu,2008, Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt:Mol Cell,v.32,p.221-31.
    Yao, H., P. Li, B. J. Venters, S. Zheng, P. R. Thompson, B. F. Pugh, and Y. Wang,2008, pad w/t p53.Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis:J Biol Chem, v.283, p.20060-8.
    Zhang, Z., B. Liao, M. Xu, and Y. Jin,2007, Post-translational modification of POU domain transcription factor Oct-4 by SUMO-1:Faseb J, v.21, p.3042-51.
    Zhao, Q., G. Rank, Y. T. Tan, H. Li, R. L. Moritz, R. J. Simpson, L. Cerruti, D. J. Curtis, D. J. Patel, C. D. Allis, J. M. Cunningham, and S. M. Jane,2009, PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing:Nat Struct Mol Biol, v. 16, p.304-11.
    Ambrosetti, D. C., H. R. Scholer, L. Dailey, and C. Basilico,2000, Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer:J Biol Chem, v.275, p.23387-97.
    Amikura, T., M. Sekine, Y. Hirai, S. Fujimoto, M. Hatae, I. Kobayashi, T. Fujii, I. Nagata, K. Ushijima, K. Obata, M. Suzuki, M. Yoshinaga, N. Umesaki, S. Satoh, T. Enomoto, S. Motoyama, K. Nishino, K. Haino, and K. Tanaka,2006, Mutational analysis of TP53 and p21 in familial and sporadic ovarian cancer in Japan:Gynecol Oncol, v.100, p.365-71.
    An, W., J. Kim, and R. G. Roeder,2004, Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53:Cell, v.117, p.735-48.
    Aoyagi, S., and T. K. Archer,2005, Modulating molecular chaperone Hsp90 functions through reversible acetylation:Trends Cell Biol, v.15, p.565-7.
    Ard, P. G., C. Chatterjee, S. Kunjibettu, L. R. Adside, L. E. Gralinski, and S. B. McMahon,2002, Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes:Mol Cell Biol, v.22, p.5650-61.
    Ashur-Fabian, O., A. Avivi, L. Trakhtenbrot, K. Adamsky, M. Cohen, G. Kajakaro, A. Joel, N. Amariglio, E. Nevo, and G. Rechavi,2004, Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation:Proc Natl Acad Sci U S A, v.101, p.12236-41.
    Avilion, A. A., S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian, and R. Lovell-Badge,2003, Multipotent cell lineages in early mouse development depend on SOX2 function:Genes Dev, v.17, p.126-40.
    Bartkova, J., N. Rezaei, M. Liontos, P. Karakaidos, D. Kletsas, N. Issaeva, L. V. Vassiliou, E. Kolettas, K. Niforou, V. C. Zoumpourlis, M. Takaoka, H. Nakagawa, F. Tort, K. Fugger, F. Johansson, M. Sehested, C. L. Andersen, L. Dyrskjot, T. Orntoft, J. Lukas, C. Kittas, T. Helleday, T. D. Halazonetis, J. Bartek, and V. G. Gorgoulis,2006, Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints:Nature, v.444, p.633-7.
    Bedford, M. T.,2007, Arginine methylation at a glance:J Cell Sci, v.120, p.4243-6.
    Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber, and E. S. Lander,2006, A bivalent chromatin structure marks key developmental genes in embryonic stem cells:Cell, v.125, p. 315-26.
    Boyer, L. A., T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine, J. P. Zucker, M. G. Guenther, R. M. Kumar, H. L. Murray, R. G. Jenner, D. K. Gifford, D. A. Melton, R. Jaenisch, and R. A. Young,2005, Core transcriptional regulatory circuitry in human embryonic stem cells:Cell, v.122, p.947-56.
    Brunet, A., L. B. Sweeney, J. F. Sturgill, K. F. Chua, P. L. Greer, Y. Lin, H. Tran, S. E. Ross, R. Mostoslavsky, H. Y. Cohen, L. S. Hu, H. L. Cheng, M. P. Jedrychowski, S. P. Gygi, D. A. Sinclair, F. W. Alt, and M. E. Greenberg,2004, Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase:Science, v.303, p.2011-5.
    Bustin, M.,1999, Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins:Mol Cell Biol, v.19, p.5237-46.
    Cao, R., and Y. Zhang,2004, The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3: Curr Opin Genet Dev, v.14, p.155-64.
    Chen, Y., L. Shi, L. Zhang, R. Li, J. Liang, W. Yu, L. Sun, X. Yang, Y. Wang, Y. Zhang, and Y. Shang,2008, The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer:J Biol Chem, v.283, p.17969-78.
    Chuikov, S., J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin, G. S. Ivanov, K. McKinney, P. Tempst, C. Prives, S. J. Gamblin, N. A. Barlev, and D. Reinberg,2004a, p53 modif.Regulation of p53 activity through lysine methylation:Nature, v.432, p.353-60.
    Chuikov, S., J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin, G. S. Ivanov, K. McKinney, P. Tempst, C. Prives, S. J. Gamblin, N. A. Barlev, and D. Reinberg,2004b, Regulation of p53 activity through lysine methylation:Nature, v.432, p.353-60.
    Curis, E., I. Nicolis, C. Moinard, S. Osowska, N. Zerrouk, S. Benazeth, and L. Cynober,2005, Almost all about citrulline in mammals:Amino Acids, v.29, p.177-205.
    Cuthbert, G. L., S. Daujat, A. W. Snowden, H. Erdjument-Bromage, T. Hagiwara, M. Yamada, R. Schneider, P. D. Gregory, P. Tempst, A. J. Bannister, and T. Kouzarides,2004a, Histone deimination antagonizes arginine methylation:Cell, v.118, p.545-53.
    Cuthbert, G. L., S. Daujat, A. W. Snowden, H. Erdjument-Bromage, T. Hagiwara, M. Yamada, R. Schneider, P. D. Gregory, P. Tempst, A. J. Bannister, and T. Kouzarides,2004b, identif cell.Histone deimination antagonizes arginine methylation:Cell, v.118, p.545-53.
    de Ruijter, A. J., A. H. van Gennip, H. N. Caron, S. Kemp, and A. B. van Kuilenburg,2003, Histone deacetylases (HDACs):characterization of the classical HDAC family:Biochem J, v.370, p. 737-49.
    Di Micco, R., M. Fumagalli, A. Cicalese, S. Piccinin, P. Gasparini, C. Luise, C. Schurra, M. Garre, P. G. Nuciforo, A. Bensimon, R. Maestro, P. G. Pelicci, and F. d'Adda di Fagagna,2006, Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication: Nature, v.444, p.638-42.
    Finkelstein, J. D.,1998, The metabolism of homocysteine:pathways and regulation:Eur J Pediatr, v.157 Suppl 2, p. S40-4.
    Francis, N. J., N. E. Follmer, M. D. Simon, G. Aghia, and J. D. Butler,2009, Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro:Cell, v.137, p.110-22.
    Glozak, M. A., N. Sengupta, X. Zhang, and E. Seto,2005, Acetylation and deacetylation of non-histone proteins:Gene, v.363, p.15-23.
    Groth, A., W. Rocha, A. Verreault, and G. Almouzni,2007, Chromatin challenges during DNA replication and repair:Cell, v.128, p.721-33.
    Gu, W., and R. G. Roeder,1997, c+tetra.Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain:Cell, v.90, p.595-606.
    Hendricks, C. L., J. R. Ross, E. Pichersky, J. P. Noel, and Z. S. Zhou,2004, An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases:Anal Biochem, v.326, p.100-5.
    Huangfu, D., R. Maehr, W. Guo, A. Eijkelenboom, M. Snitow, A. E. Chen, and D. A. Melton,2008, Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds:Nat Biotechnol, v.26, p.795-7.
    Inberg, A., Y. Bogoch, Y. Bledi, and M. Linial,2007, Cellular processes underlying maturation of P19 neurons:Changes in protein folding regimen and cytoskeleton organization:Proteomics, v.7, p. 910-20.
    Ishigami, A., T. Ohsawa, M. Hiratsuka, H. Taguchi, S. Kobayashi, Y. Saito, S. Murayama, H. Asaga, T. Toda, N. Kimura, and N. Maruyama,2005, AD.Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's disease:J Neurosci Res, v.80, p.120-8.
    Ito, T., N. Yadav, J. Lee, T. Furumatsu, S. Yamashita, K. Yoshida, N. Taniguchi, M.Hashimoto, M. Tsuchiya, T. Ozaki, M. Lotz, M. T. Bedford, and H. Asahara,2009, Arginine methyltransferase CARM1/PRMT4 regulates endochondral ossification:BMC Dev Biol, v.9, p.47.
    Jansson, M., S. T. Durant, E. C. Cho, S. Sheahan, M. Edelmann, B. Kessler, and N. B. La Thangue,2008, Arginine methylation regulates the p53 response:Nat Cell Biol, v.10, p.1431-9.
    Jeon, E. J., K. Y. Lee, N. S. Choi, M. H. Lee, H. N. Kim, Y. H. Jin, H. M. Ryoo, J. Y. Choi, M. Yoshida, N. Nishino, B. C. Oh, K. S. Lee, Y. H. Lee, and S. C. Bae,2006, Bone morphogenetic protein-2 stimulates Runx2 acetylation:J Biol Chem, v.281, p.16502-11.
    Johnson, J. E., K. Zimmerman, T. Saito, and D. J. Anderson,1992, Induction and repression of mammalian achaete-scute homologue (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells:Development, v.114, p.75-87.
    Jones-Villeneuve, E. M., M. W. McBurney, K. A. Rogers, and V. I. Kalnins,1982, Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells:J Cell Biol, v.94, p.253-62.
    Jung, S. Y, Y. Li, Y. Wang, Y Chen, Y. Zhao, and J. Qin,2008, Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins:Anal Chem, v.80, p.1721-9.
    Kamachi, Y., M. Uchikawa, and H. Kondoh,2000, Pairing SOX off:with partners in the regulation of embryonic development:Trends Genet, v.16, p.182-7.
    Kooistra, S. M., R. P. Thummer, and B. J. Eggen,2009, Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells:Stem Cell Res.
    Li, B., M. Carey, and J. L. Workman,2007a, The role of chromatin during transcription:Cell, v.128, p. 707-19.
    Li, J., G. Pan, K. Cui, Y. Liu, S. Xu, and D. Pei,2007b, A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells:J Biol Chem, v.282, p.19481-92.
    Li, P., H. Yao, Z. Zhang, M. Li, Y. Luo, P. R. Thompson, D. S. Gilmour, and Y Wang,2008, Regulation of p53 target gene expression by peptidylarginine deiminase 4:Mol Cell Biol, v.28, p.4745-58.
    Li, S., L. Wang, M. A. Berman, Y. Zhang, and M. E. Dorf,2006, RNAi screen in mouse astrocytes identifies phosphatases that regulate NF-kappaB signaling:Mol Cell, v.24, p.497-509.
    Lu, C. C., J. Brennan, and E. J. Robertson,2001, From fertilization to gastrulation:axis formation in the mouse embryo:Curr Opin Genet Dev, v.11, p.384-92.
    Luo, J., F. Su, D. Chen, A. Shiloh, and W. Gu,2000, Deacetylation of p53 modulates its effect on cell growth and apoptosis:Nature, v.408, p.377-81.
    Malkin, D., F. P. Li, L. C. Strong, J. F. Fraumeni, Jr., C. E. Nelson, D. H. Kim, J. Kassel, M. A. Gryka, F. Z. Bischoff, M. A. Tainsky, and et al.,1990, Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms:Science, v.250, p.1233-8.
    Mallette, F. A., M. F. Gaumont-Leclerc, and G. Ferbeyre,2007, The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence:Genes Dev, v.21, p.43-8.
    Maruyama, N., A. Ishigami, and Y. Kondo,2005, aging. [Molecular abnormality in aging:its contribution to clinical pathology]:Rinsho Byori, v.53, p.728-34.
    Moscarello, M. A., F. G. Mastronardi, and D. D. Wood,2007, autoimmune.The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis:Neurochem Res, v.32, p. 251-6.
    Nakashima, K., T. Hagiwara, and M. Yamada,2002, Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes:J Biol Chem, v.277, p.49562-8.
    Niwa, H.,2007, Open conformation chromatin and pluripotency:Genes Dev, v.21, p.2671-6.
    Nowling, T., C. Bernadt, L. Johnson, M. Desler, and A. Rizzino,2003, The co-activator p300 associates physically with and can mediate the action of the distal enhancer of the FGF-4 gene:J Biol Chem, v. 278, p.13696-705.
    Nowling, T. K., L. R. Johnson, M. S. Wiebe, and A. Rizzino,2000, Identification of the transact!vation domain of the transcription factor Sox-2 and an associated co-activator:J Biol Chem, v.275, p. 3810-8.
    Okorokov, A. L., M. B. Sherman, C. Plisson, V. Grinkevich, K. Sigmundsson, G. Selivanova, J. Milner, and E. V. Orlova,2006, c+tetramer.The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity:Embo J, v.25, p.5191-200.
    Qiu, Y., A. Sharma, and R. Stein,1998, NeuroD
    p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene:Mol Cell Biol, v.18, p.2957-64.
    Remenyi, A., K. Lins, L. J. Nissen, R. Reinbold, H. R. Scholer, and M. Wilmanns,2003, Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers:Genes Dev, v.17, p.2048-59.
    Rinn, J. L., M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu, S. A. Brugmann, L. H. Goodnough, J. A. Helms, P. J. Farnham, E. Segal, and H. Y. Chang,2007, Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs:Cell, v.129, p.1311-23.
    Saha, R. N., and K. Pahan,2006, HATs and HDACs in neurodegeneration:a tale of disconcerted acetylation homeostasis:Cell Death Differ, v.13, p.539-50.
    Sarmento, O. F., L. C. Digilio, Y. Wang, J. Perlin, J. C. Herr, C. D. Allis, and S. A. Coonrod,2004a, Dynamic alterations of specific histone modifications during early murine development:J Cell Sci, v.117, p. 4449-59.
    Sarmento, O. F., L. C. Digilio, Y. Wang, J. Perlin, J. C. Herr, C. D. Allis, and S. A. Coonrod,2004b, PAD2.Dynamic alterations of specific histone modifications during early murine development:J Cell Sci, v.117, p.4449-59.
    Schwerk, C., and K. Schulze-Osthoff,2005, Methyltransferase inhibition induces p53-dependent apoptosis and a novel form of cell death:Oncogene, v.24, p.7002-11.
    Scoumanne, A., and X. Chen,2008, Protein methylation:a new mechanism of p53 tumor suppressor regulation:Histol Histopathol, v.23, p.1143-9.
    Shen, W. F., K. Krishnan, H. J. Lawrence, and C. Largman,2001, The HOX homeodomain proteins block CBP histone acetyltransferase activity:Mol Cell Biol, v.21, p.7509-22.
    Shen, X., Y. Liu, Y. J. Hsu, Y. Fujiwara, J. Kim, X. Mao, G. C. Yuan, and S. H. Orkin,2008, EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency:Mol Cell, v.32, p.491-502.
    Sims, R. J.,3rd, and D. Reinberg,2008, Is there a code embedded in proteins that is based on post-translational modifications?:Nat Rev Mol Cell Biol, v.9, p.815-20.
    Smith, A. G.,1992, Mouse embryo stem cells:their identification, propagation and manipulation:Semin Cell Biol, v.3, p.385-99.
    Solomon, J. M., R. Pasupuleti, L. Xu, T. McDonagh, R. Curtis, P. S. DiStefano, and L. J. Huber,2006, Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage:Mol Cell Biol, v.26, p.28-38.
    Spivakov, M., and A. G. Fisher,2007, Epigenetic signatures of stem-cell identity:Nat Rev Genet, v.8, p. 263-71.
    Sterner, D. E., and S. L. Berger,2000, Acetylation of histones and transcription-related factors:Microbiol Mol Biol Rev, v.64, p.435-59.
    Stetler, A., C. Winograd, J. Sayegh, A. Cheever, E. Patton, X. Zhang, S. Clarke, and S. Ceman,2006, Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp:Hum Mol Genet, v.15, p.87-96.
    Strahl, B. D., S. D. Briggs, C. J. Brame, J. A. Caldwell, S. S. Koh, H. Ma, R. G. Cook, J. Shabanowitz, D. F. Hunt, M. R. Stallcup, and C. D. Allis,2001, Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1:Curr Biol, v.11, p.996-1000.
    Takahashi, K., and S. Yamanaka,2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors:Cell, v.126, p.663-76.
    Terui, T., K. Murakami, R. Takimoto, M. Takahashi, K. Takada, T. Murakami, S. Minami, T. Matsunaga, T. Takayama, J. Kato, and Y. Niitsu,2003, Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors:Cancer Res, v.63, p.8948-54.
    Torres-Padilla, M. E., D. E. Parfitt, T. Kouzarides, and M. Zernicka-Goetz,2007, Histone arginine methylation regulates pluripotency in the early mouse embryo:Nature, v.445, p.214-8.
    Tsai, A., and R. P. Carstens,2006, An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach:Nat Protoc, v.1, p.2820-7.
    Tsuruzoe, S., K. Ishihara, Y. Uchimura, S. Watanabe, Y. Sekita, T. Aoto, H. Saitoh, Y. Yuasa, H. Niwa, M. Kawasuji, H. Baba, and M. Nakao,2006, Inhibition of DNA binding of Sox2 by the SUMO conjugation:Biochem Biophys Res Commun, v.351, p.920-6.
    Van Hoof, D., J. Munoz, S. R. Braam, M. W. Pinkse, R. Linding, A. J. Heck, C. L. Mummery, and J. Krijgsveld,2009, Phosphorylation dynamics during early differentiation of human embryonic stem cells:Cell Stem Cell, v.5, p.214-26.
    Vossenaar, E. R., A. J. Zendman, W. J. van Venrooij, and G. J. Pruijn,2003, PAD, a growing family of citrullinating enzymes:genes, features and involvement in disease:Bioessays, v.25, p.1106-18.
    Wang, Y., J. Wysocka, J. Sayegh, Y. H. Lee, J. R. Perlin, L. Leonelli, L. S. Sonbuchner, C. H. McDonald, R. G. Cook, Y. Dou, R. G. Roeder, S. Clarke, M. R. Stallcup, C. D. Allis, and S. A. Coonrod,2004a, Human PAD4 regulates histone arginine methylation levels via demethylimination:Science, v.306, p.279-83.
    Wang, Y., J. Wysocka, J. Sayegh, Y. H. Lee, J. R. Perlin, L. Leonelli, L. S. Sonbuchner, C. H. McDonald, R. G. Cook, Y. Dou, R. G. Roeder, S. Clarke, M. R. Stallcup, C. D. Allis, and S. A. Coonrod,2004b, identif.Human PAD4 regulates histone arginine methylation levels via demethylimination:Science, v.306, p.279-83.
    Wu, Q., A. W. Bruce, A. Jedrusik, P. D. Ellis, R. M. Andrews, C. F. Langford, D. M. Glover, and M. Zernicka-Goetz,2009, CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation:Stem Cells, v.27, p.2637-45.
    Wu, Q., X. Chen, J. Zhang, Y. H. Loh, T. Y. Low, W. Zhang, W. Zhang, S. K. Sze, B. Lim, and H. H. Ng, 2006, Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells:J BiolChem, v.281, p.24090-4.
    Yamagata, K., H. Daitoku, Y. Takahashi, K. Namiki, K. Hisatake, K. Kako, H. Mukai, Y. Kasuya, and A. Fukamizu,2008, Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt: Mol Cell, v.32, p.221-31.
    Yao, H., P. Li, B. J. Venters, S. Zheng, P. R. Thompson, B. F. Pugh, and Y Wang,2008, pad w/t p53.Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis:J Biol Chem, v.283, p.20060-8.
    Yao, Y. L., W. M. Yang, and E. Seto,2001,发育 Regulation of transcription factor YY1 by acetylation and deacetylation:Mol Cell Biol, v.21, p.5979-91.
    Zhang, Z., B. Liao, M. Xu, and Y. Jin,2007, Post-translational modification of POU domain transcription factor Oct-4 by SUMO-1:Faseb J, v.21, p.3042-51.
    Zhao, Q., G. Rank, Y. T. Tan, H. Li, R. L. Moritz, R. J. Simpson, L. Cerruti, D. J. Curtis, D. J. Patel, C. D. Allis, J. M. Cunningham, and S. M. Jane,2009, PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing:Nat Struct Mol Biol, v. 16, p.304-11.
    Zhao, Y, S. Lu, L. Wu, G. Chai, H. Wang, Y. Chen, J. Sun, Y. Yu, W. Zhou, Q. Zheng, M. Wu, G. A. Otterson, and W. G. Zhu,2006, a549 p53 acetyl
    Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1):Mol Cell Biol, v.26, p.2782-90.
    Azuara, V., P. Perry, S. Sauer, M. Spivakov, H. F. Jorgensen, R. M. John, M. Gouti, M. Casanova, G. Warnes, M. Merkenschlager, and A. G. Fisher,2006, Chromatin signatures of pluripotent cell lines:Nat Cell Biol, v.8, p.532-8.
    Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber, and E. S. Lander,2006, A bivalent chromatin structure marks key developmental genes in embryonic stem cells:Cell, v.125, p. 315-26.
    Bibikova, M., E. Chudin, B. Wu, L. Zhou, E. W. Garcia, Y. Liu, S. Shin, T. W. Plaia, J. M. Auerbach, D. E. Arking, R. Gonzalez, J. Crook, B. Davidson, T. C. Schulz, A. Robins, A. Khanna, P. Sartipy, J. Hyllner, P. Vanguri, S. Savant-Bhonsale, A. K. Smith, A. Chakravarti, A. Maitra, M. Rao, D. L. Barker, J. F. Loring, and J. B. Fan,2006, Human embryonic stem cells have a unique epigenetic signature:Genome Res, v.16, p.1075-83.
    Bilodeau, S., M. H. Kagey, G. M. Frampton, P. B. Rahl, and R. A. Young,2009, SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state:Genes Dev, v.23, p.2484-9.
    Boyer, L. A., K. Plath, J. Zeitlinger, T. Brambrink, L. A. Medeiros, T. I. Lee, S. S. Levine, M. Wernig, A. Tajonar, M. K. Ray, G. W. Bell, A. P. Otte, M. Vidal, D. K. Gifford, R. A. Young, and R. Jaenisch, 2006, Polycomb complexes repress developmental regulators in murine embryonic stem cells: Nature, v.441, p.349-53.
    Bracken, A. P., N. Dietrich, D. Pasini, K. H. Hansen, and K. Helin,2006, Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions:Genes Dev, v.20, p.1123-36.
    Chambers, I., J. Silva, D. Colby, J. Nichols, B. Nijmeijer, M. Robertson, J. Vrana, K. Jones, L. Grotewold, and A. Smith,2007, Nanog safeguards pluripotency and mediates germline development:Nature, v. 450, p.1230-4.
    Chen, X., H. Xu, P. Yuan, F. Fang, M. Huss, V. B. Vega, E. Wong, Y. L. Orlov, W. Zhang, J. Jiang, Y. H. Loh, H. C. Yeo, Z. X. Yeo, V. Narang, K. R. Govindarajan, B. Leong, A. Shahab, Y. Ruan, G. Bourque, W. K. Sung, N. D. Clarke, C. L. Wei, and H. H. Ng,2008, Integration of external signaling pathways with the core transcriptional network in embryonic stem cells:Cell, v.133, p.1106-17.
    Dodge, J. E., Y. K. Kang, H. Beppu, H. Lei, and E. Li,2004, Histone H3-K9 methyltransferase ESET is essential for early development:Mol Cell Biol, v.24, p.2478-86.
    Efroni, S., R. Duttagupta, J. Cheng, H. Dehghani, D. J. Hoeppner, C. Dash, D. P. Bazett-Jones, S. Le Grice, R. D. McKay, K. H. Buetow, T. R. Gingeras, T. Misteli, and E. Meshorer,2008, Global transcription in pluripotent embryonic stem cells:Cell Stem Cell, v.2, p.437-47.
    Fazzio, T. G., J. T. Huff, and B. Panning,2008, An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity:Cell, v.134, p.162-74.
    Feldman, N., A. Gerson, J. Fang, E. Li, Y. Zhang, Y. Shinkai, H. Cedar, and Y. Bergman,2006, G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis:Nat Cell Biol, v.8, p. 188-94.
    Fouse, S. D., Y. Shen, M. Pellegrini, S. Cole, A. Meissner, L. Van Neste, R. Jaenisch, and G. Fan,2008, Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation:Cell Stem Cell, v.2, p.160-9.
    Francis, N. J., N. E. Follmer, M. D. Simon, G. Aghia, and J. D. Butler,2009, Polycomb proteins remain bound to chromatin and DNA during DN A replication in vitro:Cell, v.137, p.110-22.
    Freberg, C. T., J. A. Dahl, S. Timoskainen, and P. Collas,2007, Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract:Mol Biol Cell, v.18, p.1543-53.
    Gao, X., P. Tate, P. Hu, R. Tjian, W. C. Skarnes, and Z. Wang,2008, ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a:Proc Natl Acad Sci U SA,v.105, p.6656-61.
    Gaspar-Maia, A., A. Alajem, F. Polesso, R. Sridharan, M. J. Mason, A. Heidersbach, J. Ramalho-Santos, M. T. McManus, K. Plath, E. Meshorer, and M. Ramalho-Santos,2009, Chdl regulates open chromatin and pluripotency of embryonic stem cells:Nature, v.460, p.863-8.
    Hattori, N., Y. Imao, K. Nishino, N. Hattori, J. Ohgane, S. Yagi, S. Tanaka, and K. Shiota,2007, Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells:Genes Cells, v.12, p. 387-96.
    Ho, L., and G. R. Crabtree, Chromatin remodelling during development:Nature, v.463, p.474-84.
    Ho, L., R. Jothi, J. L. Ronan, K. Cui, K. Zhao, and G. R. Crabtree,2009, An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network:Proc Natl Acad Sci U S A, v.106, p.5187-91.
    Huangfu, D., R. Maehr, W. Guo, A. Eijkelenboom, M. Snitow, A. E. Chen, and D. A. Melton,2008, Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds:Nat Biotechnol, v.26, p.795-7.
    Ikegami, K., M. Iwatani, M. Suzuki, M. Tachibana, Y. Shinkai, S. Tanaka, J. M. Greally, S. Yagi, N. Hattori, and K. Shiota,2007, Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells:Genes Cells, v.12, p.1-11.
    Ivanova, N., R. Dobrin, R. Lu, I. Kotenko, J. Levorse, C. DeCoste, X. Schafer, Y. Lun, and I. R. Lemischka, 2006, Dissecting self-renewal in stem cells with RNA interference:Nature, v.442, p.533-8.
    Jaenisch, R., and R. Young,2008, Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming:Cell, v.132, p.567-82.
    Kaji, K.,I. M. Caballero, R. MacLeod, J. Nichols, V. A. Wilson, and B. Hendrich,2006, The NuRD component Mbd3 is required for pluripotency of embryonic stem cells:Nat Cell Biol, v.8, p. 285-92.
    Kaji, K., J. Nichols, and B. Hendrich,2007, Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells:Development, v.134, p.1123-32.
    Kooistra, S. M., R. P. Thummer, and B. J. Eggen,2009, Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells:Stem Cell Res.
    Lee, M. G., R. Villa, P. Trojer, J. Norman, K. P. Yan, D. Reinberg, L. Di Croce, and R. Shiekhattar,2007, Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination:Science, v.318, p.447-50.
    Lee, T. I., R. G. Jenner, L. A. Boyer, M. G. Guenther, S. S. Levine, R. M. Kumar, B. Chevalier, S. E. Johnstone, M. F. Cole, K. Isono, H. Koseki, T. Fuchikami, K. Abe, H. L. Murray, J. P. Zucker, B. Yuan, G. W. Bell, E. Herbolsheimer, N. M. Hannett, K. Sun, D. T. Odom, A. P. Otte, T. L. Volkert, D. P. Bartel, D. A. Melton, D. K. Gifford, R. Jaenisch, and R. A. Young,2006, Control of developmental regulators by Polycomb in human embryonic stem cells:Cell, v.125, p.301-13.
    Li, B., M. Carey, and J. L. Workman,2007, The role of chromatin during transcription:Cell, v.128, p. 707-19.
    Lin, C. H., C. Lin, H. Tanaka, M. L. Fero, and R. N. Eisenman,2009, Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc:PLoS One, v.4, p. e7839.
    Loh, Y. H., W. Zhang, X. Chen, J. George, and H. H. Ng,2007, Jmjdla and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells:Genes Dev, v.21, p.2545-57.
    Lu, C. C., J. Brennan, and E. J. Robertson,2001, From fertilization to gastrulation:axis formation in the mouse embryo:Curr Opin Genet Dev, v.11, p.384-92.
    Lyko, F., C. Beisel, J. Marhold, and R. Paro,2006, Epigenetic regulation in Drosophila:Curr Top Microbiol Immunol, v.310, p.23-44.
    Ma, D. K., C. H. Chiang, K. Ponnusamy, G. L. Ming, and H. Song,2008, G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells:Stem Cells, v.26, p. 2131-41.
    Masui, S., Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi, K. Takahashi, H. Okochi, A. Okuda, R. Matoba, A. A. Sharov, M. S. Ko, and H. Niwa,2007, Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells:Nat Cell Biol, v.9, p.625-35.
    Meshorer, E., D. Yellajoshula, E. George, P. J. Scambler, D. T. Brown, and T. Misteli,2006, Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells:Dev Cell, v.10, p.105-16.
    Montgomery, N. D., D. Yee, A. Chen, S. Kalantry, S. J. Chamberlain, A. P. Otte, and T. Magnuson,2005, The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation:Curr Biol,v.15, p.942-7.
    Pasini, D., A. P. Bracken, J. B. Hansen, M. Capillo, and K. Helin,2007, The polycomb group protein Suzl2 is required for embryonic stem cell differentiation:Mol Cell Biol, v.27, p.3769-79.
    Pasini, D., K. H. Hansen, J. Christensen, K. Agger, P. A. Cloos, and K. Helin,2008, Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2: Genes Dev, v.22, p.1345-55.
    Peters, A. H., D. O'Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schofer, K. Weipoltshammer, M. Pagani, M. Lachner, A. Kohlmaier, S. Opravil, M. Doyle, M. Sibilia, and T. Jenuwein,2001, Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability:Cell, v.107, p.323-37.
    Rinn, J. L., M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu, S. A. Brugmann, L. H. Goodnough, J. A. Helms, P. J. Farnham, E. Segal, and H. Y. Chang,2007, Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs:Cell, v.129, p.1311-23.
    Schwartz, Y. B., T. G. Kahn, P. Stenberg, K. Ohno, R. Bourgon, and V. Pirrotta, Alternative epigenetic chromatin states of polycomb target genes:PLoS Genet, v.6, p. e1000805.
    Shen, X., Y. Liu, Y. J. Hsu, Y. Fujiwara, J. Kim, X. Mao, G. C. Yuan, and S. H. Orkin,2008, EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency:Mol Cell, v.32, p.491-502.
    Shi, Y., J. T. Do, C. Desponts, H. S. Hahm, H. R. Scholer, and S. Ding,2008, A combined chemical and genetic approach for the generation of induced pluripotent stem cells:Cell Stem Cell, v.2, p.525-8.
    Smith, A. G.,1992, Mouse embryo stem cells:their identification, propagation and manipulation:Semin Cell Biol, v.3, p.385-99.
    Spivakov, M., and A. G. Fisher,2007, Epigenetic signatures of stem-cell identity:Nat Rev Genet, v.8, p. 263-71.
    Srinivasan, S., K. M. Dorighi, and J. W. Tamkun,2008, Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase Ⅱ:PLoS Genet, v.4, p. e1000217.
    Tachibana, M., K. Sugimoto, M. Nozaki, J. Ueda, T. Ohta, M. Ohki, M. Fukuda, N. Takeda, H. Niida, H. Kato, and Y. Shinkai,2002, G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis:Genes Dev, v.16, p. 1779-91.
    Takahashi, K., and S. Yamanaka,2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors:Cell, v.126, p.663-76.
    Torres-Padilla, M. E., D. E. Parfitt, T. Kouzarides, and M. Zernicka-Goetz,2007, Histone arginine methylation regulates pluripotency in the early mouse embryo:Nature, v.445, p.214-8.
    Vastenhouw, N. L., Y. Zhang, I. G. Woods, F. Imam, A. Regev, X. S. Liu, J. Rinn, and A. F. Schier, Chromatin signature of embryonic pluripotency is established during genome activation:Nature, v.464, p. 922-6.
    Wu, Q., A. W. Bruce, A. Jedrusik, P. D. Ellis, R. M. Andrews, C. F. Langford, D. M. Glover, and M. Zernicka-Goetz,2009, CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation:Stem Cells, v.27, p.2637-45.
    Yan, Z., Z. Wang, L. Sharova, A. A. Sharov, C. Ling, Y. Piao, K. Aiba, R. Matoba, W. Wang, and M. S. Ko, 2008, BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells:Stem Cells, v.26, p.1155-65.
    Yu, B. D., J. L. Hess, S. E. Horning, G. A. Brown, and S. J. Korsmeyer,1995, Altered Hox expression and segmental identity in Mll-mutant mice:Nature, v.378, p.505-8.
    Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, Ⅱ, and J. A. Thomson,2007, Induced pluripotent stem cell lines derived from human somatic cells:Science, v.318, p.1917-20.
    Yuan, P., J. Han, G. Guo, Y. L. Orlov, M. Huss, Y. H. Loh, L. P. Yaw, P. Robson, B. Lim, and H. H. Ng,2009, Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells:Genes Dev, v.23, p.2507-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700