CTLA4Ig基因修饰的树突状细胞诱导哮喘免疫耐受的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分腺病毒转导CTLA4Ig基因修饰树突状细胞
     目的:构建CTLA4Ig基因修饰的树突状细胞,观察基因转导对树突状细胞表型的影响。
     方法:小鼠骨髓来源的细胞悬液,在GM-CSF和IL-4作用下,体外培养7天。光学显微镜下观察细胞生长状况和形态学变化。流式细胞仪鉴定细胞表型,确定是否为树突状细胞及其成熟度。确定为树突状细胞后,与重组腺病毒AdCTLA4Ig、AdGFP以及OVA共孵育48小时,荧光显微镜观察细胞内目的基因表达,流式细胞仪测定转染效率。
     结果:1、小鼠骨髓来源的细胞培养第7天可见树突状细胞特征性的树枝状形态和细胞集落形成。2、流式检测发现64.01%的细胞为CDllc阳性的未成熟的DC;33.49%的细胞为CD1lc+CD80+细胞;14.65%的细胞为CD11c+CD86+细胞;21.53%的细胞为CD11c+MHCⅡ+细胞。3、与重组腺病毒和OVA共孵育48小时后,荧光显微镜下可观察到树突状细胞内发出绿色荧光。流式细胞仪分析检测显示AdCTLA4Ig转染率为41.29%。4、与重组腺病毒和OVA共孵育48小时后,流式细胞仪检测显示42.65%的细胞为CDl1c+CD80+细胞;22.30%的细胞为CD11c+CD86+细胞;32.46%的细胞为CD11c+MHCⅡ+细胞。
     结论:成功构建了CTLA4Ig基因修饰的树突状细胞。
     第二部分CTLA4Ig基因修饰的树突状细胞的体外功能研究
     目的:研究CTLA4Ig基因修饰的树突状细胞在体外的功能,了解CTLA4Ig转染对树突状细胞表达细胞因子IL-10、IL-12的影响以及对刺激T细胞活化增殖功能的影响。
     方法:分离和培养小鼠骨髓来源的DC。将体外培养7天的树突状细胞分成4组,一组为DC组,一组为DC+OVA组,另外两组分别加入1μ1病毒滴度为1.5×108VP/ml的AdGFP或AdCTLA4Ig和OVA。这4组细胞分别共培养48小时后,分离细胞和上清。上清用ELISA方法检测IL-10和IL-12。细胞用于和BALB/c小鼠外周血来源的T淋巴细胞进行混合淋巴细胞反应。
     结果:1、CTLA4Ig基因转染树突状细胞后,促进树突状细胞分泌IL-10(P<0.05)。
     2、CTLA4Ig基因转染树突状细胞后,降低树突状细胞分泌IL-12的能力(P<0.05)。
     3、CTLA4Ig基因转染树突状细胞后,树突状细胞促T淋巴细胞增殖的能力下降(P<0.05)。
     结论:CTLA4Ig基因转染树突状细胞高表达IL-10,低表达IL-12,促T细胞增殖的能力降低。
     第三部分新生小鼠回输CTLA4Ig基因修饰的树突状细胞抑制成年期气道过敏性炎症
     目的:研究将CTLA4Ig基因修饰的树突状细胞回输给新生小鼠,观察其对成年期OVA致敏/激发的小鼠气道炎症的影响,并探讨其发病机制。
     方法:以OVA腹腔注射致敏小鼠并雾化吸入激发的方法制作哮喘模型。将CTLA4Ig基因修饰的树突状细胞回输给新生的BALB/c小鼠,在成年期OVA致敏/激发小鼠,观察CTLA4Ig基因修饰的树突状细胞对小鼠气道炎症的影响。同样方法设立对照组AdGFP干预组,另设立空白对照组、哮喘模型组。通过观察各组小鼠OVA激发时的表现、肺泡灌洗液(BALF)中嗜酸粒细胞比例和肺部病理切片改变了解小鼠气道炎症情况。ELISA方法测定血清及BALF的IgE、IL-4、IL-10及INF-y水平。
     结果:1、OVA腹腔注射致敏小鼠并雾化吸入激发的方法能成功制作哮喘模型。2、新生小鼠给予CTLA4Ig基因修饰的树突状细胞明显减轻成年期哮喘发作的症状、减少肺泡灌洗液中嗜酸性细胞的生成和病理切片中的炎症表现。3、CTLA4Ig基因修饰的树突状细胞可以减轻成年期小鼠哮喘发作时的血清和肺泡灌洗液中IgE水平。4、CTLA4Ig基因修饰的树突状细胞可减轻成年期小鼠哮喘发作时的血清和肺泡灌洗液中IL-4水平。5、CTLA4Ig基因修饰的树突状细胞可提高成年期小鼠血清中IL-10水平。6、CTLA4Ig基因修饰的树突状细胞对成年期小鼠哮喘发作时血清和肺泡灌洗液中INF-y水平无明显影响。
     结论:新生小鼠给予CTLA4Ig基因修饰的树突状细胞可在成年期时抑制OVA致敏/激发小鼠的气道炎症,使OVA致敏/激发小鼠血清IL-10水平增高,降低Th2细胞因子的分泌,对Thl细胞因子的分泌无明显影响。本研究为哮喘的预防和免疫治疗提供了新的思路。
Part I CTLA4Ig Gene Were Transducted into Dendritic Cells by Adenovirus
     Objective:To construct CTLA4Ig gene modified dendritic cells.
     Methods:The mouse bone marrow cells were isolated and cultured in complete medium with GM-CSF and IL-4for7days. Cell growth and morphological changes were observed under optical micro scope. The phenotype and the maturation of dendritic cells were analyzed by flow cytometry, examining the expression of CD11c, MHC Ⅱ, CD80and CD86. The cells were incubated with recombinant adenovirus (AdCTLA4Ig, AdGFP)and OVA for48hour, then target gene expression were observed under the fluorescence microscopy, transfection efficiency were determined by flow cytometry.
     Results:1. Mouse bone marrow-derived cells showed characteristic dendritic morphology of dendritic cells and formed cell colony on the day7.2. The cell phenotype determined by flow cytometry showed that64.01%of cells were positive for CD11c,33.49%of the cells were positive for CD11c+CD80+cells,14.65%of the cells were positive for CD11c+CD86+cells,21.53%of the cells were positive for CD11c+MHCⅡ+cells.3. Incubated with recombinant adenovirus and OVA for48hours, green fluorescence in cells was observed under a fluorescence microscope. Flow cytometry analysis showed AdCTLA4Ig transfection rate was41.29%.4. Incubated with recombinant adenovirus and OVA for48hours,42.65%of the cells were CD11c+CD80+cells,22.30%of the cells were CD11c+CD86+cells,32.46%of the cells were CD11c+MHC Ⅱ+cells.
     Conclusion:Constructing CTLA4Ig gene modified dendritic cells successfully.
     Part Ⅱ The Functional Studies of CTLA4Ig Gene-modified Dendritic Cells in vitro
     Objective:To study the function of CTLA4Ig gene-modified dendritic cells in vitro.
     Methods:The mouse bone marrow-derived DCs were isolated and cultivated. The cultured dendritic cells for7days were divided into four groups:DC group, DC+OVA group, the other two groups were added1μl(1.5×108VP/ml) AdGFP or AdCTLA4Ig and OVA. All groups were cultured for48hours, then supernatant and cells were separated. The levels of IL-10and IL-12in supernatant were measured by ELISA. Cells were used to perform mixed lymphocyte reaction with peripheral blood T-lymphocytes of BALB/c mice.
     Results:1. CTLA4Ig gene transfected in dendritic cells promoted IL-10secretion (P<0.05).2. CTLA4Ig gene transfected in dendritic cells, reduced IL-12secretion (P<0.05).3. CTLA4Ig gene transfected in dendritic cells decreased the dendritic cells'ability to promote T lymphocyte proliferation (P<0.05).
     Conclusion:CTLA4Ig gene modified dendritic cells can promote the expression of IL-10, reduce the expression of IL-12and supress T cell proliferation.
     Part III CTLA4Ig Gene-modified Dendritic Cells Transfused To Mice In Neonatal Period Suppress Adult Airway Allergic Inflammation
     Objective:To study the impact of CTLA4Ig gene-modified dendritic cells transfused to mice in neonatal period on the airway inflammation of adult OVA-sensitized/challenged mice, and to explore its pathogenesis.
     Methods:Use OVA-sensitized/challenged mice by intraperitoneal injection and inhalation methods to establish asthma model. The CTLA4Ig gene-modified dendritic cells were given to the newborn BALB/c mice, OVA-sensitized/challenged the mice in the adulthood. Establish the AdGFP intervention group with the same method. In addition, establish the control group and asthma model group. The manifestation of OVA challenged mice in each group, BALF eosinophils and lung pathological changes were observed to study the impact of CTLA4Ig gene-modified dendritic cells on airway inflammation. The level of IgE, IL-4, IL-10and INF-γ were detected by ELISA methods.
     Results:1. Asthma model were established successfully by OVA-sensitized/challenged mice.2. CTLA4Ig gene-modified dendritic cells given in neonatal period significantly improved the symptoms of asthma in adulthood, reduced eosinophils in BALF and improved the airway inflammation in biopsy.3. CTLA4Ig gene-modified dendritic cells reduced IgE levels in serum and BALF during the onset of adulthood asthma.4. CTLA4Ig gene-modified dendritic cells reduced IL-4level in serum and BALF during the onset of adulthood asthma.5. CTLA4Ig gene-modified dendritic cells increased IL-10level in serum during the onset of adulthood asthma.6. CTLA4Ig gene-modified dendritic cells had no impact on level of INF-y in serum and BALF during the onset of adulthood asthma.
     Conclusion:CTLA4Ig gene-modified dendritic cells given in neonatal period suppress the airway inflammation of OVA-sensitized/challenged mice in adulthood, elevate the serum levels of IL-10, reduce the secretion of Th2cytokines, has no impact on the secretion of Thl cytokines. In conclusion, this study provides a new idea to prevent and contol asthma.
引文
1. The International study of Asthma and Allergies in childhood (ISAAC) Steering Committee. Worldwide variations in the prevalence of asthma and symptoms:the International study of Asthma and Allergies in Childhood (ISAAC) [J]. Eur Respir J.1998,12(2):315-335.
    2. Masoli M, Fabian D, Holt S, et al. The global burden of asthma:Executive summary of the GINA Dissemination Committee report [J]. Allergy.2004,59 (5):469-478.
    3. Douwes J, Brooks C, van Dalen C, et al. Importance of Allergy in Asthma:An Epidemiologic Perspective [J]. Curr Allergy Asthma Rep.2011, 11(5):434-444.
    4. Myers TR, Tomasio L. Asthma:2015 and beyond [J]. Respiratory care.2011, 56(9):1389-410.
    5. Szefler SJ, Zeiger RS, Haselkorn T, et al. Economic burden of impairment in children with severe or difficult-to-treat asthma [J]. Ann Allergy Asthma Immunol.2011,107(2):110-119.
    6. Kazani S, Israel E. Update in Asthma 2010[J]. Am J Respir Crit Care Med.2011, 184(3):291-296.
    7.全国儿科哮喘协作组.2000年与1990年儿童支气管哮喘患病率的调查比较[J].中华结核和呼吸杂志.2004,27(2):112-116.
    8. Akinbami L. The state of childhood asthma, United States,1980-2005 [J]. Adv Data.2006,12 (381):1-24.
    9.上海医学会儿科呼吸组.上海市0岁~14岁儿童支气管哮喘患病情况调查[J].临床儿科杂志.2002,20(3):144-146.
    10. Diamant Z, Boot JD, Vichow JC. Summing up 100 years of asthma[J]. Respir Med.2007,101(3):378-388.
    11. Tournoy KG, Procoost S, Van Hove C,et al.The role of immune tolerance in asthma pathogenesis[J].CurrAllergy Asthma Rep.2006,6(5):437-443.
    12. Cett AV, SaUusto F, Lanzavecchia A, et al.T cell fitness determined by signal strength [J]. Nat Immunol.2003,4(4):355-360.
    13. Wisniewski JA, Borish L. Novel cytokines and cytokine-producing T cells in allergic disorders [J]. Allergy Asthma Proc.2011,32(2):83-94.
    14. Matsuda A, Fukuda S, Matsumoto K, et al. Th1/Th2 cytokines reciprocally regulate in vitro pulmonary angiogenesis via CXC chemokine synthesis [J]. Am J Respir Cell Mol Biol.2008,38(2):168-175.
    15. Tanaka Hiroyuki; Inagaki Naoki; Nagai Hiroichi. Role of Th2 cytokines in the onset of asthmatic phenotype induced by Dermatophagoides farinae in mice [J]. Jpn J Pharmacol Soc.2007,127(suppl):62-65.
    16. Tanaka H, Komai M, Nagao K, et al. Role of interleukin 5 and eosinophils in allergen-induced airway remodeling in mice [J].Am J Respir Cell Mol Biol. 2004,31(1):62-68.
    17. Kelly HW, Van Natta ML, Covar RA, et al. Effect of long-term corticosteroid use on bone mineral density in children:a prospective longitudinal assessment in the childhood Asthma Management Program (CAMP) study [J]. Pediatrics. 2008,122(1):e53-61.
    18. Yoshihara, Shigemi. Early intervention for infantile and childhood asthma [J]. Expert Review of Clinical Immunology.2010,6(2):247-255.
    19. Passalacqua G, Canonica GW.Specific immunotherapy in asthma:efficacy and safety [J]. Clin Exp Allergy.2011,41(9):1247-1255.
    20. Sorensen P. The future of specific immunotherapy:strategies and challenges for the next generation of allergy vaccines [J]. Allergy.2011,66(95):63-65.
    21.Hankin CS, Cox L, Bronstone A. The Health Economics of Allergen Immunotherapy [J]. Immunol Allergy Clin North Am.2011,31(2):325-41.
    22. Campbell D, DeKruy RH, Umet su DT. Allergen immunotherapy:novel approaches in the management of allergic diseases and asthma [J]. Clin Immunol.2000,97(3):193-202.
    23. Samoilova EB, Horton JL, Zhang H, et al. CTLA-4 is required for the induction of high dose oral tolerance [J]. Int Immunol.1998,10(4):491-498.
    24. Frauwirth KA, Alegre ML, Thompson CB. Induction of T cell anergy in the absence of CTLA-4/B7 interaction [J]. J Immunol.2000,164(6):2987-2993.
    25. Nel AE, Slaughter N. T-cell activation through the antigen receptor. Part 2:role of signaling cascades in T-cell differentiation, anergy, immune senescence, and development of immunotherapy [J]. J Allergy Clin Immunol.2002, 109(6):901-915.
    26. Wallace PM, Johnson JS, Rodgers JN, et al. Immunosuppression by a soluble form of the CTLA4 T-cell activation antigen [J]. Abs Pap Am Chem Soc.1993, 206 (Part1):255-MEDI.
    27. Alexander DZ, Pearson TC, Hendrix R, et al. CTLA4-Ig-induced transplantation tolerance:Analysis of donor cell chimerism [J]. Surgical Forum. 1994,45:402-404.
    28. Pearson TC, Alexander DZ, Winn KJ, et al. Transplantation tolerance induced by CTLA4-Ig[J]. Transplantation.1994,57(12):1701-1706.
    29. Boden E, Tang Q, Bour-Jordan H, et al. The role of CD28 and CTLA4 in the function and homeostasis of CD4+CD25+ regulatory T cells [J]. Novartis Found Symp.2003,252:55-63.
    30. Stamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses [J]. Nature.2001,410(6828): 608-611.
    31. Schneider H, Smith X, Liu H,et al. CTLA-4 expression disrupts ZAP-70 microcluster formation, T-cell/APC conjugation and calcium mobilization[J]. Eur J Immunol.2007,38(1):40-47.
    32. Zheng SG, Wang JH, Stohl W,et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells[J]. J Immunol.2006,176(6):3321-3329.
    33. Boasso A, Herbeuval JP, Hardy AW, et al. Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ Tcells[J]. Blood.2004,105(4):1574-1581.
    34. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells [J]. Nat Immunol.2003,4(12):1206-1212.
    35. Deppong CM, Parulekar A, Boomer JS, et al. CTLA4-Ig inhibits allergic airway inflammation by a novel CD28-independent, nitric oxide synthase-dependent mechanism [J]. Eur J Immunol.2010,40(7):1985-1994.
    36. Rosenberg HF, Slifka MK. CTLA4, T cell function, and long term immunity:an interview with Dr. Mark K. Slifka [J]. J Leukoc Biol.2007,81(5):1176-1178.
    37. Sly PD, Holt PG. Role of innate immunity in the development of allergy and asthma [J]. Curr Opin Allergy Clin Immunol.2011,11 (2):127-131.
    38. Wilson CB, Kollmann TR. Induction of antigen-specific immunity in human neonates and infants [J]. Nestle Nutr Workshop Ser Pediatr Program.2008, 61:183-195.
    39. Hemmrich G, Miller DJ, Bosch TC. The evolution of immunity:a low-life perspective [J]. Trends Immunol.2007,28(10):449-454.
    40. Calder PC, Krauss-Etschmann S, de Jong Esther C, et al. Early nutrition and immunity-progress and perspectives [J]. Br J Nutr.2006,96(4):774-790.
    41. Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age [J]. Nat Rev Immunol.2004,4(7):553-564.
    42. Kovarik J, Siegrist CA. Immunity in early life [J]. Immunology Today.1998, 19(4),150-152.
    43. Belderbos ME, Bleek G, Levy O. Skewed pattern of toll-like receptor 4-mediated cytokine production in human neonatal blood:low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life [J]. Clin Immunol.2009,133(2):228-37.
    44. Burkly LC, Lo D, Kanagawa O, et al. T-cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class Ⅱ I-E [J]. Nature. 1989,342(6249):564-566.
    45. Taams LS, van Eden W, Wauben MH. Dose-dependent induction of distinct anergic phenotypes:multiple levels of T cell anergy [J]. J Immunol.1999, 162(4):1974-1981.
    46. Roth DM, Lai NC, Gao MH, et al.Nitroprusside increases gene transfer associated with intracoronary delivery of adenovirus [J].Hum Gene Ther.2004, 15(10):989-94.
    47. Boyer JL, Kobinger G wjlson JM,et al.AdenoVirus-Based Genctic Vaccines for Biodefense [J].Hum Gene Ther.2005,16(2):157-68.
    48. Rea D, Laface D, Hutchins B,et al.Recombinant adenovirus-transduced human dendritic cells engineered to secrete imedeukin-10(IL-10)suppress Th1-type responses while selectively activating IL-10-producing CD4+T cells [J].Hum Immunol.2004,65(11):1344-55.
    49. Sen L, Hong YS, Luo H, et al.Efficiency, efficacy, and adverse effects of adenovirus vs 1 iposome-mediated gene therapy in cardiac allografts [J].Am J Physiol Hean Circ Physiol.2001,281(3):H1433-41.
    1. DhodapkaLr MV, Steinman RM, Krasovsky J, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells [J]. J Exp Med.2001,193(2):233-238.
    2. Van Rijt LS, Kuipers H, Vos N, et al. A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma[J].J Immunol Methods.2004,288(1-2):111-121.
    3. Lambrecht BN, Peleman RA, Bullock GR, et al. Sensitization to inhaled antigen by intratracheal instillation of dendritic cells [J].Clin Exp Allergy.2000,30(2):214-224.
    4. Lambrecht BN, Pauwels RA, Fazekas De St, et al. Induction of rapid T cell activation, division, and recirculation by intratracheal inj ection of dendritic cells in a TCRtransgenic model[J]. J Immunol.2000,164(6):2937-2946.
    5. Lambrecht BN, de Veerman M, Coyle AJ, et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation [J]. J Clin Invest.2000,106(4):551-559.
    6. Girodet PO, Ozier A, Bara I, et al. Airway remodeling in asthma:New mechanisms and potential for pharmacological intervention [J]. Pharmocol Ther.2011,130(3):325-337.
    7. Broide DH, Finkelman F, Bochner BS, et al. Advances in mechanisms of asthma, allergy, and immunology in 2010[J]. J Allergy Clin Immunol.2011, 127(3):689-695.
    8. Panettieri Jr, Reynold A. Chapter 5.Airway smooth muscle proliferation: insights into mechanisms regulating airway smooth muscle mass. Chung KF. Airway Smooth Muscle in Asthma and COPD:Biology and Pharmacology [M].Published Online,2008:89-104.
    9. Pfefferle PI, Pinkenburg O, Renz H. Fetal Epigenetic Mechanisms and Innate Immunity in Asthma [J]. Curr Allergy Asthma Rep.2010,10(6):434-443
    10. Finkelman FD, Boyce JA, Vercelli D, et al. Key advances in mechanisms of asthma, allergy, and immunology in 2009[J]. J Allergy Clin Immunol.2010, 125(2):312-318.
    11. Lemanske RF Jr, Busse WW. Asthma:Clinical expression and molecular mechanisms [J]. J Allergy Clin Immunol.2010,125(suppl2):S95-S102.
    12. Cohn L. Mechanisms of Mucus Induction in Asthma. Pawankar R, Holgate ST, Rosenwasser LJ. Allergy Frontiers:Clinical Manifestations [M].2009, 3:173-185.
    13. Kowal K, Du BL. Mechanisms of Nocturnal Asthma. Pawankar R, Holgate ST, Rosenwasser LJ. Allergy Frontiers:Clinical Manifestations [M].2009, 3:227-246.
    14. Suarez CJ, Parker NJ, Finn PW. Innate immune mechanism in allergic asthma [J]. Curr Allergy Asthma Rep.2008,8(5):451-459.
    15. Diamant Z, Boot JD, Vichow JC. Summing up 100 years of asthma [J]. Respir Med.2007,101(3):378-388.
    16. Tournoy KG, Procoost S, Van Hove C, et al. The role of immune tolerance in asthma pathogenesis [J]. Curr Allergy Asthma Rep.2006,6(5):437-443.
    17. Stamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/ CTLA-4 complex that inhibits human immune responses [J]. Nature.2001, 410(6828):608-611.
    18. Schneider H, Smith X, Liu H,et al. CTLA-4 expression disrupts ZAP-70 microcluster formation, T-cell/APC conjugation and calcium mobilization[J]. Eur J Immunol.2007,38(1):40-47.
    19. Zheng SG, Wang JH, Stohl W, et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells[J]. J Immunol.2006,176(6):3321-3329.
    20. Boasso A, Herbeuval JP, Hardy AW, et al. Regulation of indoleamine 2, 3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells [J].Blood.2004,105(4):1574-1581.
    21. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells [J]. Nat Immunol.2003,4(12):1206-1212.
    22. Deppong CM, Parulekar A, Boomer JS, et al. CTLA4-Ig inhibits allergic airway inflammation by a novel CD28-independent, nitric oxide synthase-dependent mechanism [J]. Eur J Immunol.2010,40(7):1985-1994.
    23. Stewart PL, Fuller SD, Bumett RM, et al. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy [J]. EMBO J.1993,12(7):2589-99.
    24. Calnek B W. Adenovirus Infections [M].USA:Iowa State University Press. 1997,607-642.
    25. Roth DM, Lai NC, Gao MH, et al. Nitroprusside increases gene transfer associated with intracoronary delivery of adenovirus [J]. Hum Gene Ther. 2004,15(10):989-94.
    26. Boyer JL, Kobinger G, wjlson JM, et al. AdenoVirus-Based Genctic Vaccines for Biodefense [J]. Hum Gene Ther.2005,16(2):157-68.
    27. Rea D, Laface D, Hutchins B, et al.Recombinant adenovirus-transduced human dendritic cells engineered to secrete imedeukin-10(IL-10) suppress Thl-type responses while selectively activating IL-10-producing CD4+T cells[J].Hum Immunol.2004,65(11):1344-55.
    28. Sen L, Hong YS, Luo H, et al.Efficiency, efficacy, and adverse effects of adenovirus vs liposome-mediated gene therapy in cardiac allografts [J].Am J Physiol Hean Circ Physiol.2001,281 (3):H 1433-41.
    29. Ballay A, Levrero M, Buendia MA, et al. In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses [J]. EMBO J.1985, 4(13B):3861-5.
    30. Rosenfeld MA, Siegfried W, Yoshimura K, et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo[J].Science.1991,252(5004):431-4.
    31. Mittal SK, McDermott MR, Johnson DC, et al. Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter [J]. Virus Res.1993,28(1):67-90.
    32. Stratford-Perricaudet LD, Makeh I, Perricaudet M, et al.Widespread long-term gene transfer to mouse skeletal muscles and heart [J]. J Clin Invest. 1992,90(2):626-30.
    33. Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5[J]. J Gen Virol.1977, 36(1):59-74.
    34. Becker TC, Noel RJ, Coats WS, et al. Use of recombinant adenovirus for metabolic engineering of mammalian cells [J]. Methods Cell Biol.1994,43 PtA:161-89.
    35. He TC, Zhou S, da Costa LT, et al.A simplified system for generating recombinant adenoviruses [J]. Proc Natl Acad Sci U S A.1998, 95(5):2509-2514.
    36. Zeng M, Smith S K, Siegel F, et al.AdEasy system made easier by selecting the Viral backbone plasmid preceding homologous recombination[J].Biotechniques.2001,31(2):260-2.
    37. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution [J]. J Exp Med 1973; 137(5):1142-62.
    38. Banchereau J, Steinman RM. Dendritic cells and the control of immunity [J]. Nature.1998; 392(6673):245-52.
    39. Austyn JM. Dendritic cells [J]. Curr Opin Hematol.1998; 5(1):3-15.
    40. Loser K, Beissert S. Dendritic cells and T cells in the regulation of cutaneous immunity [J]. Adv Dermatol.2007,23:307-33.
    41. Langlois RA, Legge KL. Respiratory dendritic cells:mediators of tolerance and immunity [J]. Immunol Res.2007,39(1-3):128-145.
    42. Shklovskaya E, Fazekas de St Groth B. Balancing tolerance and immunity: the role of dendritic cell and T cell subsets [J]. Methods Mol Biol.2007,380: 25-46.
    43. Cao W, Liu YJ. Innate immune functions of plasmacytoid dendritic cells [J]. Curr Opin Immunol.2007,19(1):24-30.
    44. Lee HK, Iwasaki A. Innate control of adaptive immunity:Dendritic cells and beyond [J]. Semin Immunol.2007,19(1):48-55.
    45. Svajger U, Obermajer N, Jeras M. Novel Findings in Drug-Induced Dendritic Cell Tolerogenicity [J]. Int Rev Immunol.2010,29(6):574-607.
    46. Kaisho T. Molecular mechanisms for plasmacytoid dendritic cell function and development [J]. Vaccine.2010,28(50):8046-8047.
    47. Watowich SS, Liu YJ. Mechanisms regulating dendritic cell specification and development [J]. Immunol Rev.2010,238(1):76-92.
    48. Tuettenberg A, Becker C, Correll A, et al. Immune Regulation by Dendritic Cells and T cells-Basic Science, Diagnostic, and Clinical Application [J]. Clin Lab.2011,57(1-2):1-12.
    49. Cett AV, SaUusto F, Lanzavecchia A, et al.T cell fitness determined by signal strength [J]. Nat Immunol.2003,4(4):355-360.
    50.张临友,高源.设计树突状细胞疫苗诱发外周免疫耐受治疗自身免疫疾病[J].国外医学免疫学分册,2004,27(2):83-87.
    51. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor [J]. J Exp Med.1992, 176(6):1693-702.
    1. Tournoy KG, Procoost S, Van Hove C, et al. The role of immune tolerance in asthma pathogenesis [J]. Curr Allergy Asthma Rep.2006,6(5):437-443.
    2. Wakach A, Fournier N, Brun V, et al.Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo[J]. Immunity. 2003,18(5):605-17.
    3. Roncarlol MG, Bacchetta R, Bordignon C, et al.Type 1 T regulatory cells[J].Immunol Rev.2001,182:68-79.
    4. Holt PG, Upham JW. The role of dendrtic cells in asthma [J]. Curr Opin Allergy Clin Immunol.2004,4(1):39-44.
    5. Kuipers H, Herman C, Hijdra D, et al. Dendrentic cells retrovirally overexpressing IL12 induce strong Thl responses to inhaled antigen in the lung but fail to revert established Th2 sensitization [J]. J Leukoc Biol.2004,76 (5):1028-1038.
    6. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell.IV.Th2 clones secrete a factor that inhibits cytokine production by Thl clones [J]. J Exp Med.1989,170(6):2081-95.
    7. Moore KW, O'Garra A, de Waal Malefyt R. Interleukin-10[J]. Annu Rev Immunol.1993,11:165-90.
    8. Barnes PJ. Cytokine modulators as novel therapies for asthma [J]. Annu Rev Pharmacol Toxicol.2002,42:81-98.
    9. De Waal Malefyt R, Abrams J, Bennett B, et al. Interteukin 10 (IL-10) inhibits cytokine synthesis by human monocytes:an autoregulatory role of IL-10 produced by monocytes[J]. J Exp Med.1991,174(5):1209-20.
    10. Powrie F, Coffman RL. Inhibition of Cell-Mediated-Immunity by IL4 and IL10 [J]. Res Immunol.1993,144(8):639-643.
    11. Magny JP. New in light of immune modulation by probiotics bacteria and increase IL10 producing regulatory T cells [J]. Arch Pediatr.2011, 18(2):238-243.
    12. Kim SH, Yang EM, Lee HN, et al. Combined effect of IL-10 and TGF-beta 1 promoter polymorphisms as a risk factor for aspirin-intolerant asthma and rhinosinusitis [J]. Allergy.2009,64(8):1221-1225.
    13. Hunninghake GM, Soto-Quiros ME, Lasky-Su J, et al. Dust mite exposure modifies the effect of functional IL10 polymorphisms on allergy and asthma exacerbations [J]. J Allergy Clin Immunol.2008,122(1):93-98.
    14. Panzani R, Armentia A, Lobo R, et al. Tolerance mechanisms in response to antigens responsible for baker's asthma in different exposed people[J]. J Asthma. 2008,45(4):333-338.
    15. Chatterjee R, Batra J, Kumar A, et al. Interleukin-10 promoter polymorphisms and atopic asthma in North Indians [J]. Clin Exp Allergy.2005,35(7):914-919.
    16. Joos L, Carlen Brutsche IE, Laule-Kilian K, et al. Systemic Th1-and Th2-gene signals in atopy and asthma [J]. Swiss Med Wkly.2004,134(11-12):159-164.
    17. Lyon H, Lange C, Lake S, et al. IL10 gene polymorphisms are associated with asthma phenotypes in children[J]. Genet Epidemiol.2004,26(2):155-165.
    18. Van Scott MR, Justice JP, Bradfield JF. IL-10 reduces Th2 cytokine production and eosinophilia but augments airway reactivity in allergic mice [J]. Am J Physiol-Lung Physiol.2000,278(4):L667-L674.
    19. Toumoy KG, Kips JC, Pauwels RA. Counter balancing of TH2-driven allergic airway inflammation by IL-12 does not require 1L-10[J]. J Allergy Clin Immunol.2001,107(3):483-91.
    20. Oh JW, Seroogy CM, Meyer EH. CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation [J]. J Allergy Clin Immunol.2002,110(3):460-8.
    21.刘领,赵淑敏,卢青等.支气管哮喘患者血浆白细胞介素-5、白细胞介素-10水平的变化[J].临床内科杂志.2007,24(11):752-755.
    22. Stelmach I, Jerzynska J, Kuna P. A randomized, double-blind trial of the effect of glucocorticoid, antileukotriene and beta-agonist treatment on IL-10 serum levels in Children with asthma [J]. Clin Exp Allergy.2002,32 (2):264-9.
    23. Omid A, Rosemarie HD, Dale T, et al. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respirtory exposure to antigen[J]. Nature Immunology.2001,2(8):725-731.
    24. Bilenki L, Gao X, Wang S, et al. Dendritic cells from mycobacteria-infected mice inhibits established allergic airway inflammatory responses to ragweed via IL-10-and IL-12-secreting mechanisms [J]. J Immunol.2010,184 (12):7288-96.
    25. Li X, Yang A, Huang H, Zhang X, et al.Induction of type 2 T helper cell allergen tolerance by IL-10-differentiated regulatory dendritic cells [J].Am J Respir Cell Mol Biol.2010,42(2):190-9.
    26. Henry E, Desmet CJ, Garze V, et al.Dendritic cells genetically engineered to express IL-10 induce long-lasting antigen-specific tolerance in experimental asthma [J].J Immunol.2008,181(10):7230-42.
    27. Delespesse G, Wu CY, Shu U, et al. Influence of IL12 on the maturation of human naive T cells [J]. Res Immunol.1995,146(7-8):461-464.
    28. Seder RA. The role of IL12 in the regulation of Thl and Th2 differentiation [J]. Res Immunol.1995,146(7-8):473-476.
    29. Germann T, Rude E, Schmitt E. The influence of IL12 on the development of Th1 and Th2 cells and its adjuvant effect for humoral immune responses [J]. Res Immunol.1995,146(7-8):481-485.
    30. Scharton-Kersten T, Afonso LC, Wysocka M, et al.IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis [J]. J Immunol.1995,154:5320-5330.
    31. Seder RA, Gazzinelli R, Sher A, et al. Interleukin 12 acts directly on CD4+T cells to enhance priming for interferon production and diminishes interleukin 4 inhibition of such priming [J]. Proc Natl Acad Sci U S A.1993,90(21): 10188-10192.
    32. Manetti R, Parronchi P, Giudizi MG, et al. Natural killer cell stimulatory factor (interleukin 12[IL-12]) induces T helper type 1 (Thl)-specific immune responses and inhibits the development of IL-4-producing Th cells [J]. J Exp Med.1993,177(4):1199-1204.
    33. Kiniwa M, Gately M, Gubler U, et al. Recombinant interleukin-12 suppresses the synthesis of immunoglobulin E by interleukin-4 stimulated human lymphocytes [J]. J Clin Invest.1992,90(1):262-266.
    34. Reinach AJ, Zangrilli JG, Lustine HT, et al. Role of IL12 in allergic asthma and inflammation [J]. Am J Respir Crit Care Med.1999,159 (3suppl):A255-A255.
    35. Gavett SH, O'Hearn DJ, Li X, et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice [J]. J Exp Med.1995,182(5):1527-1536.
    36. Kips JC, Brusselle GJ, Joos GF, et al. Interleukin-12 inhibits antigen-induced airway hyperresponsiveness in mice [J]. Am J Respir Crit Care Med.1996, 153(2):535-539.
    37. Ke X, Huang J, Chen Q, et al. Protective effects of combined Mycobacterium bovis BCG and interleukin-12 vaccination on airway inflammation in a murine model of allergic asthma[J]. Clin Invest Med.2010,33(3):E196-E202.
    38. Schwarze J, Hamelmann E, Cieslewicz G, et al. Local treatment with IL-12 is an effective inhibitor of airway hyperresponsiveness and lung eosinophilia after airway challenge in sensitized mice[J]. J Allergy Clin Immunol.1998, 102(1):86-93.
    39. Hogan SP, Foster PS, Tan X,et al. Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity [J].Eur J Immunol.1998, 28(2):413-423.
    40.毛光宇,杨炯,陈宏斌等.过敏性哮喘患者树突细胞表型及分泌细胞因子的 研究[J].中华内科杂志,2005,44(3):206-209.
    41. Nasser T, Minshall EM, Leung OY, et al. Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy [J]. Am J Respir Crit Care Med.1997,155(3):845-851.
    42. Bryan SA, O'Connor BJ, Matti S, et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response [J]. Lancet.2000,356:2149-2153.
    43. Wang S, Fan Y, Han X, et al. IL-12 dependent vascular cell adhesion molecule-1 expression contributes to airway eosinophilic inflammation in a mouse model of asthma-like reaction[J]. J Immunol.2001,166(4):2741-2749.
    44. Meyts I, Hellings PW, Hens G, et al. IL-12 contributes to allergen-induced airway inflammation in experimental asthma [J]. J Immunol.2006,177 (9):6460-70.
    45. Wills-Karp M. IL-12/IL-13 axis in allergic asthma [J]. J Allergy Clin immunol. 2001,107(1):9-18.
    46. Morahan G, Huang D, Wu M, et al. Association of IL12B promoter polymorphism with severity of atopic and non-atopic asthma in children[J]. Lancet.2002,360(9331):455-459.
    47. Wu CY, Yang G, Bermudez-Humaran LG, et al. Immunomodulatory effects of IL-12 secreted by Lactococcus lactis on Th1/Th2 balance in ovalbumin (OVA)-induced asthma model mice [J]. Int Immunopharmacol.2006, 6(4):610-615.
    48. Zitvogel L, Robbins PD, Storkus WJ, et al. Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors [J]. Eur J Immunol.1996,26(6):1335-41.
    49. Corinti S, Albanesi C, la Sala A, et al. Regulatory activity of autocrine IL-10 on dendritic cell functions [J]. J Immunol.2001.166(7):4312-4318.
    50.邱文洪,郭凯文,张悦等CTLAIg修饰的树突状细胞在体外对淋巴细胞增殖及胞毒效应的影响[J].细胞与分子免疫学杂志.2003,19(6):546-548.
    1. Janeway CA.The Immune System in Health and Disease,4th ed [M].Chapter 13.Current Biology Publication,1999.518-532.
    2. Weiner HL.Oral tolerance:immune mechanisms and treatment of autoimmune diseases [J]. Immunol Today.1997,18(7):335-343.
    3. Holmes AM, Solari R, Holgate ST. Animal models of asthma:value, limitations and opportunities for alternative approaches [J]. Drug Discov Today.2011, 16(15-16):659-670.
    4. Hirota JA, Hackett TL, Inman MD, et al. Modeling Asthma in Mice What Have We Learned about the Airway Epithelium? [J]. Am J Respir Cell Mol Biol.2011, 44(4):431-438.
    5. Zhu Z, Oh SY, Zheng T, et al. Immunomodulating effects of endotoxin in mouse models of allergic asthma [J]. Clin Exp Allergy.2010,40(4):536-546.
    6. Wegmann M, Hauber HP. Experimental approaches towards allergic asthma therapy-murine asthma models [J]. Recent Pat Inflamm Allergy Drug Discov. 2010,4(1):37-53.
    7. Bates Jason HT, Rincon M, Irvin CG. Animal models of asthma [J]. Am J Physiol-Lung C.2009,297(3):L401-L410.
    8. Nials AT, Uddin S. Mouse models of allergic asthma:acute and chronic allergen challenge [J]. Dis Model Mech.2008, 1(4-5):213-220.
    9. Meurs H, Gosens R, Zaagsma J. Airway hyperresponsiveness in asthma:lessons from in vitro model systems and animal models [J]. Eur Respir J.2008, 32(2):487-502.
    10. Kumar RK, Herbert C, Foster PS. The "classical" ovalbumin challenge model of asthma in mice [J]. Curr Drug Targets.2008,9(6):485-494.
    11.Zosky GR, Sly PD. Animal models of asthma [J]. Clin Exp Allergy.2007, 37(7):973-988.
    12. Akdis M, Trautmann A, Klunker S, et al. T helper(Th)2 predominance in atopic diseases is due to preferential apoptosis of circulating memory/effector Th1 cells [J]. FASEB J.2003,17(9):1026-1035.
    13. Clarke AH, Thomas WR, Rolland JM, et al. Murine allergic respiratory responses to the major house dust mite allergen Der P 1[J].Int Arch Allergy Immunol.1999,120(2):126-134.
    14. Rosenberg HF, Slifka MK. CTLA4, T cell function, and long term immunity:an interview with Dr. Mark K. Slifka [J]. J Leukoc Biol.2007,81(5):1176-1178.
    15. Sly PD, Holt PG. Role of innate immunity in the development of allergy and asthma [J]. Curr Opin Allergy Clin Immunol.2011,11(2):127-131.
    16. Wilson CB, Kollmann TR. Induction of antigen-specific immunity in human neonates and infants [J]. Nestle Nutr Workshop Ser Pediatr Program.2008, 61:183-195.
    17. Hemmrich G, Miller DJ, Bosch TC. The evolution of immunity:a low-life perspective [J]. Trends Immunol.2007,28(10)449-454.
    18. Calder PC, Krauss-Etschmann S, de Jong EC, et al. Early nutrition and immunity-progress and perspectives [J]. Br J Nutr.2006,96(4):774-790.
    19. Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age [J]. Nat Rev Immunol.2004,4(7):553-564.
    20. Kovarik J, Siegrist CA. Immunity in early life [J]. Immunol Today.1998, 19(4):150-2.
    21.Reizis B, Bunin A, Ghosh HS, et al. Plasmacytoid Dendritic Cells:Recent Progress and Open Questions [J]. Annu Rev Immunol.2011,29:163-183.
    22. Kaisho T. Molecular mechanisms for plasmacytoid dendritic cell function and development [J]. Vaccine.2010,28(50):8046-8047.
    23. Reizis B. Regulation of plasmacytoid dendritic cell development [J]. Curr Opin Immunol.2010,22(2):206-211.
    24. Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance [J]. Immunol Rev. 2010,234(1):142-162.
    25. Lande R, Gilliet M. Plasmacytoid dendritic cells:key players in the initiation and regulation of immune responses [J]. Ann N Y Acad Sci.2010,1183:89-103.
    26. Kahler DJ, Mellor AL. T cell regulatory plasmacytoid dendritic cells expressing indoleamine 2,3 dioxygenase [J]. Handb exp pharmacol.2009,188:165-196.
    27. Belderbos ME, Bleek G, Levy O, et al. Skewed pattern of toll-like receptor 4-mediated cytokine production in human neonatal blood:low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life[J]. Clin Immunol. 2009,133(2):228-37.
    28. Novak N, Bieber T. Dendritic cells as regulators of immunity and tolerance [J]. J Allergy Clin Immunol.2008,121:S370-S374.
    29. Oh JW, Seroogy CM, Meyer EH,et al.CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation[J].J Allergy Clin Immunol.2002,110(3):460-8.
    30. Bastida Segura DL, Lopez Velasquez B,et al.Allergic asthma and interleukins 2,4,5,6 and 12 and gamma interferon levels[J].Rev Alerg Mex.2004, 51(3):107-15.
    31. Katsunuma T-Kawahara H, Suda T. Analysis of gene expressions of T cells from children with acute exacerbations of asthma [J].Int Arch Allergy Immunol.2004, 134(1):29-33.
    32. Tamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses [J]. Nature.2001,410(6828): 608-611.
    33. Chneider H, Smith X, Liu H,et al. CTLA-4 expression disrupts ZAP-70 microcluster formation, T-cell/APC conjugation and calcium mobilization[J]. Eur J Immunol.2007,38(1):40-47.
    34. Zheng SG, Wang JH, Stohl W,et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells[J]. J Immunol.2006,176(6):3321-3329.
    35. Boasso A, Herbeuval JP, Hardy AW, et al. Regulation of indoleamine 2, 3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells [J]. Blood.2004,105(4):1574-1581.
    36. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells [J]. Nat Immunol.2003,4(12):1206-1212.
    37. Deppong CM, Parulekar A, Boomer JS, et al. CTLA4-Ig inhibits allergic airway inflammation by a novel CD28-independent, nitric oxide synthase-dependent mechanism [J]. Eur J Immunol.2010,40(7):1985-1994.
    1. Ling V, Wu PW, Finnerty HF, et al. Complete sequence determination of the mouse and human CTLA-4 gene loci:cross-species DNA sequence similarity beyond exon borders [J]. Genomics.1999,60(3):341-355.
    2. Miller RE, Fayen JD, Mohammad SF, et al.Reduced CTLA-4 protein and messenger RNA expression in umbilical cord blood T lymphocytes [J]. Exp. Hematol.2002,30(7):738-744.
    3. Gibson HM, Hedgcock CJ, Aufiero BM, et al. Induction of the CTLA-4 gene in human lymphocytes is dependent on NF-AT binding the proximal promoter [J]. J Immunol.2007,179(6):3831-3840.
    4. Finn PW, He H, Wang Y, et al.Synergistic induction of CTLA-4 expression by costimulation with TCR plus CD28 signals mediated by increased transcription and messenger ribonucleic acid stability [J]. J Immunol.1997,158 (9):4074-4081.
    5. Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function [J].Annu Rev Immunol.2006,24:65-97.
    6. Perkins D, Wang Z, Donovan C,et al. Regulation of CTLA-4 expression during T cell activation [J]. J Immunol.1996,156 (11):4154-4159.
    7. Stamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses [J]. Nature.2001,410(6828): 608-611.
    8. Huurman VA, Unger WW, Koeleman BP,et al. Differential inhibition of autoreactive memory-and alloreactive naive T cell responses by soluble cytotoxic T lymphocyte antigen 4 (sCTLA-4), CTLA4Ig and LEA29Y [J]. Clin Exp Immunol.2007,150(3):487-493.
    9. Ueda H, Howson JM, Esposito L,et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature [J].2003, 423(6939):506-511.
    10. Takahashi T, Tagami T, Yamazaki S,et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4[J].J Exp Med 2000,192(2):303-310.
    11. Wang XB, Zheng CY, Giscombe R, et al. Regulation of surface and intracellular expression of CTLA-4 on human peripheral T cells [J]. Scand J Immunol.2001, 54(5):453-458.
    12. Liu MF, Wang CR, Chen PC,et al. Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus [J].Scand. J Immunol.2003,57(6):568-572.
    13. Vijayakrishnan L, Slavik JM, Illes Z, et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells [J]. Immunity.2004,20 (5):563-575.
    14. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4 [J]. Science.1995,270 (5238):985-988.
    15. Chuang E, Fisher TS, Morgan RW, et al. The CD28 and CTLA-4 receptors associate with the serine/threoninephosphatase PP2A [J]. Immunity.2000,13(3):313-322.
    16.王文举,李鸿钧,孙茂.脂筏与T细胞信号转导[J].生命科学.2007,19(5):531-535.
    17. Riley JL, Mao M, Kobayashi S, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28,ICOS, and CTLA-4 receptors[J]. Proc Natl Acad Sci USA 2002,99 (18):11790-11795.
    18. Martin M, Schneider H, Azouz A, et al.Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function [J]. J Exp Med,2001,194(11):1675-1681.
    19. Saito T, Yokosuka T.Immunological synapse and microclusters:the site for recognition and activation of T cells [J]. Curr Opin Immunol.2006,18(3):305-13.
    20. Schneider H, Smith X, Liu H,et al. CTLA-4 expression disrupts ZAP-70 microcluster formation, T-cell/APC conjugation and calcium mobilization[J]. Eur J Immunol.2007,38(1):40-47.
    21. Ermann J, Szanya V, Ford GS, et al. CD4(+)CD25(+) T cells facilitate the induction of T cell anergy[J]. J Immunol.2001,167(8):4271-4275.
    22. Cederbom L, Hall H, Ivars F. CD4+CD25+regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells [J]. Eur J Immunol.2000, 30(6):1538-1543.
    23. Zheng SG, Wang JH, Stohl W, et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+regulatory cells[J]. J Immunol.2006,176(6):3321-3329.
    24. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- nai've T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. J Exp Med.2003,198(12):1875-1886.
    25. Wahl SM, Swisher J, McCartney-Francis N, et al. TGF-beta:the perpetrator of immune suppression by regulatory T cells and suicidal T cells [J]. J Leukoc Biol. 2004,76(1):15-24.
    26. Boasso A, Herbeuval JP, Hardy AW, et al. Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells[J].Blood.2004,105(4):1574-1581.
    27. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells [J]. Nat Immunol.2003,4(12):1206-1212.
    28. Mazzoni A, Bronte V, Visintin A,et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism [J]. J Immunol.2002,168(2):689-695.
    29. Bingisser RM, Tilbrook PA, Holt PG,et al.Macrophage-erived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway[J]. J Immunol.1998,160(12):5729-5734.
    30. Zhang P, McGrath BC, Reinert J, et al.The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice[J]. Mol Cell Biol.2002, 22(19):6681-6688.
    31. Deppong CM, Parulekar A, Boomer JS, et al. CTLA4-Ig inhibits allergic airway inflammation by a novel CD28-independent, nitric oxide synthasedependent mechanism [J]. Eur J Immunol.2010,40(7):1985-1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700