特殊骨架羧酸类配体金属配合物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于晶体工程的经验和方法定向设计和构筑具有特定网络结构和相应理化性能的金属配合物(包括有限多核分子聚集体以及无限网络配位聚合物)是当前配位化学、超分子化学、材料化学以及相关领域的研究热点之一。这不仅因为作为一类新型分子基晶体材料,金属配合物(尤其是多孔配位聚合物)拥有迷人的拓扑结构,而且它们在光、电、磁、吸附分离以及选择性催化等诸多领域均显示出了潜在的应用前景。当前配位化学研究的主要目的之一仍然是通过设计合成特定的有机配体作为构筑块(building blocks)、选择适当的金属离子作为节点(metal nodes),通过配位组装构筑出具有新颖结构和相应功能的金属配合物。当然,由于配合物的合成过程中会受到内因及外因等各种因素的影响,因而对它们结构的完全预测还很难做到,所以目前配合物的合成基本还是依赖于带有一定随机性的自组装,但也正是由于这个原因,相关的研究才更具有挑战性。从这些研究中人们不仅能了解由小的分子构筑单元到高维拓扑网络以及晶格周期性的变化规律,而且还能很好地去推测化合物结构和性能之间的构效关系。
     迄今为止,与常见的带有苯环的有机配体相比较,对于大体积的芳环骨架以及小体积饱和环有机配体的配位化学研究相对还比较少。对于大体积芳环骨架配体而言,它们一般具有更大的共轭π体系,易通过形成π···π堆积和C–H···π相互作用,在对应配合物的合成过程中具有一定的影响作用;虽然由于大体积芳环骨架的体积较大,立体障碍会影响配体的配位情况,但从分子几何学和晶体工程的角度来讲,却也为分子内和分子间的π···π堆积和C–H···π相互作用的形成提供了一定的条件;此外,大的共轭芳环骨架一般是很好的荧光信号发色团,对此类配体形成的金属配合物的研究,将为新型荧光材料的进一步研发提供新的途径。对于小体积饱和环骨架有机配体,由于σ键可以一定程度的旋转扭曲,使其在配位时具有一定的变形协调能力,配位点间距、夹角及连接基团的形状都能进行调整以适应配位环境,更易形成结构独特的配合物,从而达到最佳匹配。此外,配体的这种变形能力使所形成的配合物的结构具有一定的弹性,能够在外界因素微扰下(如受热)可逆改变结构,从而体现出特有的性能。为了探索特殊骨架配体金属配合物的构筑条件,并进一步调控其结构与性能,本论文以一系列特殊环骨架配体(包括大体积萘环基多羧酸配体2,3-萘二甲酸、小体积饱和环骨架配体四氢呋喃四酸和顺/反式环氧琥珀酸以及半刚性含硫杂环配体5,6-二氢-1,4-二噻烯-2,3-二羧酸)为依托合成了42个具有零维、一维、二维及三维网络结构的配合物,解析了它们的晶体结构,并详细研究了相关性能,探索了合成、结构及性质的内在构效关系等。具体如下:
     一:简单介绍了本论文工作的研究背景及相关概念,并对相关的羧酸配体的研究现状进行了简单的总结和评述。在此基础上阐明了本论文的选题依据和目的意义,以及所要研究解决的相关问题和取得的主要成果。
     二:以萘环羧酸配体2,3-萘二甲酸(2,3-naphtnalenedicarboxylic acid,H2L~1)为主配体,联合相应的二级辅助配体[包括双齿桥联配体4,4′-联吡啶(L~2)、偶氮吡啶(L~3)和1,3-二(4-吡啶基)丙烷(L~4)以及双齿螯合配体2,2′-联吡啶(ⅠⅡ5)和1,10-邻菲咯啉(L~6)],通过配位组装合成了6个CdⅡ(1个四核、1个一维、2个二维以及2个三维结构),3个ZnⅡ(2个二维以及1个三维结构)以及3个Ag~Ⅰ(2个一维以及1个二维结构)三个系列共计12个d10金属配合物。通过X-射线单晶衍射、红外、元素分析准确表征了上述配合物的结构组成,并检测了相应的热稳定性和荧光性能等。相关结果表明:上述d10金属配合物在发光材料方面可能具有潜在的应用前景,可供进一步研发。
     三:分别选用了2,3,4,5-四氢呋喃四羧酸(tetrahydrofuran-2,3,4,5-tetracarboxylic acid,H4L~7 )以及顺式( cis- ),反式( trans- )环氧琥珀酸( cis-epoxysuccinic acid; (+/-)-trans-epoxysuccinic acid)(H2L~8和H2L~9),并引入相应的二级辅助配体[包括双齿桥联配体4,4′-联吡啶(L~2)以及双齿螯合配体2,2′-联吡啶(L~5)、1,10-邻菲咯啉(L~6)和3-(2-吡啶)吡唑(L~10)],分别用试管分层扩散以及烧杯法,制备了一系列结构各异的19个配合物:其中,用2,3,4,5-四氢呋喃四羧酸(H4L~7)制备了3个CuⅡ配合物(2个二维以及1个三维结构),1个MnⅡ配合物(一维结构)以及3个CdⅡ配合物(2个一维以及1个三维结构);顺式环氧琥珀酸(H2L~8)制备了6个CuⅡ配合物( 1个15核、1个一维、1个单核、1个二维以及2个双核结构),2个MnⅡ配合物(1个一维及1个双核结构),2个CdⅡ配合物(1个一维及1个双核结构)以及1个Ag~Ⅰ配合物(二维结构);反式环氧琥珀酸(H2L~9)制备了1个Ag~Ⅰ配合物(三维结构)。解析了它们的晶体结构,系统研究了它们的荧光、热稳定性以及磁性质等。
     四:选用5,6-二氢-1,4-二噻烯-2,3-二羧酸酐(5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydride),由于该配体为酸酐,需要在相应的酸性或者碱性条件下水解开环。具体试验中分别选用氢氧化锂以及氨水为pH调节剂利用它的原位(In Situ)开环,联合不同的二级辅助配体[包括双齿桥联配体4,4′-联吡啶(L~2)以及双齿螯合配体2,2′-联吡啶(L~5)、1,10-邻菲咯啉(L~6)、苯并咪唑(L~~(13))和咪唑(L~~(14))],获得了4个CuⅡ(1个双核、2个一维以及1个二维互穿结构),2个MnI(I2个同构的四核结构),1个Ag~Ⅰ(三维结构),和4个ZnⅡ(1个双核、2个一维以及1个二维结构)共计11个金属配合物,解析了它们的晶体结构,系统研究了它们的荧光和磁性质等。
     五:在上述试验工作的基础上尝试总结了配体结构与最终金属配合物的结构及性能之间的内在关系规律。
The rational design and synthesis of metal-organic coordination complexes with specific network structures (including multi-nuclear discrete coordination architectures and polymeric coordination networks) and physicochemical properties by using the experience and method of crystal engineering has currently been a hot research topic in coordination chemistry, supramolecular chemistry, material chemistry, and other relevant areas. As a new type of molecular-based crystalline materials, metal-organic coordination complexes (especially microporous coordinaton polymers) have exhibited potentially various applications in many fields such photoluminescence, electric conductivity, magnetism, adsorption/separation, and selective catalysis. The appropriate choice of well-designed organic tectons (building blocks) and metal ions or clusters (metal nodes) is one of the most effective ways. That is, utilizing suitable organic tectons with various functional groups that are capable of bridging metal centers to construct such crystalline materials has demonstrated to be an active area of multidisciplinary research, being in connection with crystal engineering, coordination/supramolecular chemistry, and material science. Thus far, the theoretical forecasting of the corresponding structures and functions of such complexes is still remained to be very difficult because they might be affected by many factors. Therefore, it is still necessary to systematically study the synthesis and structures of such complexes by carefully design and selection of suitable ligands, as well as the relationships between the ligand natures and complex structures.
     In comparison with the usually aromatic benzene-based carboxylic acids, however, far less common has been the studies on bulky aromatic ring-based and saturated alicyclic or heteroalicyclic-based carboxylic acid ligands whose coordination chemistry of transition metals has been rarely investigated to date. One the one hand, such ligands bearing the bulky aromatic skeletons have several typically characteristics: (1) the electronic nature of its extendedπ-conjugated system and the steric hindrance of the bulky naphthalene ring that may affect the coordination modes of carboxylate, and thus, determine the final coordination arrays; (2) the extendedπ-conjugated system that normally results in C–H???πand/orπ???πstacking interactions from the viewpoint of the electronic nature, along with the increased overlap of the aromatic surface areas, play an important role on forming the final supramolecular lattices, namely, extending the low-dimensional coordination entities into higher-dimensional supramolecular networks. On the other hand, flexible alicyclic or heteroalicyclic multicarboxylate ligands generally have richer coordination modes and more flexible ring skeletons, which may not only affect the coordination abilities and modes of relevant carboxylic groups but also remain largely unexpected in the process of constructing metal-organic frameworks (MOFs), and also make them more difficult to predict and control the final coordination polymers.
     Considering all the aspects mentioned above, in this dissertation, several carboxylic ligands with differently novel ring skeletons (naphthalene, tetrahydrofuran, oxirane, and etc) were selected to react with some transition metal ions, and related metal complexes with 0D, 1D, 2D or 3D structures have been obtained and characterized by elemental analyses, IR, and X-ray crystallography. Moreover, the corresponding luminescent/magnetic/thermal properties of the complexes have also been investigated in detail. Also, the factors governing the framework formations of these complexes were discussed. The main contents consisting of four chapters have been summarized as following:
     In chapter 1, a brief introduction of the backgrounds and relative concepts of this work were presented. The progress of the coordination chemistry of the related carboxylic ligands was concisely reviewed, and the research significance and main conclusions of this dissertation were summarized.
     In chapter 2, three series of six Cd~Ⅱ, three Zn~Ⅱ, and three Ag~Ⅰcoordination complexes were synthesized by using naphthalene-2,3-dicarboxylic acid (H2L1) and different N-donor auxiliary co-ligands (chelating or bridging) such as 2,2′-bipyridine, 1,10-phenanthroline, 4,4′-bipyridine, rans-4,4′-azobis(pyridine), and 1,3-bis(4-pyridyl) propane, and structurally characterized by elemental analyses, IR, and X-ray diffraction analysis. Also, the luminescent properties of the corresponding d10 complexes mentioned above have been further investigated.
     In chapter 3, in order to systematically investigate the influence of the ring skeleton with flexible heteroatomic multicarboxylic acid ligands on the related structures and properties of their complexes, we synthesized and characterized nine Cu~Ⅱ, three Mn~Ⅱ, five Cd~Ⅱ, and two Ag~Ⅰcomplexes with tetrahydrofuran-2,3,4,5-tetracarboxylic acid (H_4L~7), cis-epoxysuccinic acid (H2L8), and (+/-)-trans-epoxysuccinic acid (H2L9), respectively, and sometimes incorporating different auxiliary ligands. The results reveal that, in comparison with structurally related aromatic ring-based multicarboxylic acid ligands, the small bulk flexible alicyclic-based multicarboxylic acid ligands of H4L7 H2L8, and H2L9, have the more flexible ring skeletons, from the viewpoint of geometry requirements, for the formation of the intra- and/or inter-network hydrogen-bonding (O–HO or C–HO) interactions, especially in the process of linking the low-dimensional entities into higher-dimensional supramolecular frameworks.
     In chapter 4, along that line of research in chapters 2 and 3, we, by employing the 5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydride as a primary ligand, also synthesized and characterized four Cu~Ⅱ, two Mn~Ⅱ, one Ag~Ⅰ, and four Cd~Ⅱcomplexes, and sometimes together with different auxiliary ligands. The related luminescent/thermal properties of such complexes have been further investigated and discussed in detail.
     In chapter 5, Conclusion remarks on my dissertation.
引文
[1] Lehn, J. M. Supramolecular Chemistry—Concepts and Perspectives, VCH: Weinheim, 1995.
    [2] [法] Lehn, J. M.著,沈兴海等译,超分子化学——概念和展望,北京大学出版社,2002.
    [3] Werner, A. Z. Anorg. Chem. 1893, 3, 267.
    [4] (a) Zeng, M.-H.; Wang, Q.-X.; Tan, Y.-X.; Hu, S.; Zhao, H.-X.; Long, L.-S.; Kurmoo, M. J. Am. Chem. Soc. 2010, 132, 2561. (b) Williams, A. F.; Floriani, C. A.; Merbach (eds), E. Perspectives in Coordination Chemistry, VCH, Weinheim 1992.
    [5] (a)孟庆金,戴安邦,配位化学的创始和现代化,北京,高等教育出版社,1998. (b)游效曾,孟庆金,韩万书主编,配位化学进展,北京,高等教育出版社,2000. (c)孙为银编著,配位化学,北京,化学工业出版社,2004. (d)洪茂椿,21世纪的无机化学,北京,科学出版社,2006.
    [6] (a) Sauvage, J. P.; Hosseim, M. W. Comprehensive Suprachemolecular Chemistry, 1995. (b) V?gtle, F. Supramolecular Chemistry, Wiley, Chichester, 1991. (c) Steed, J. W.; Atwood, J. L. Supramolecular chemistry, Willey and Sons, New York, 2000.
    [7] (a) Zhang, X.-M.; Tong, M.-L.; Chen, X.-M. Angew. Chem. Int. Ed.. 2002, 41, 1029. (b) Zhang, Y.-J.; Liu, T.; Kanegawa, S.; Sato, O. J. Am. Chem. Soc. 2010, 132, 912.
    [8] Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry, University Science Book, California 1994.
    [9] (a) Xie, Z.; Ma, L.; deKrafft, K. E.; Jin, A.; Lin, W. J. Am. Chem. Soc. 2010, 132, 922. (b) Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 950. (c) Ciardelli, F.; Tsuchida, E.; Wohrle, D. Macromoleculae-Metal Complexs, Springer-Verlag, Berlin 1996.
    [10] Bruce, D. W.; O’Hare (eds.), D. Inorganic Materials, 2nd ed., John Wiley & Sons, New York 1996.
    [11] (a) Friscic, T.; Reid, D. G.; Halasz, I.; Stein, R. S.; Dinnebier, R. E.; Duer, M. J. Angew. Chem., Int. Ed. 2010, 49, 712. (b) Day, P. Coord. Chem. Rev. 1999, 190-192, 827.
    [12] Kahn, O. Molecular Magnetism, VCH Publisher, New York 1993.
    [13] (a) Soares-Santos, P. C. R.; Cunha-Silva, L.; Paz, F. A. A.; Ferreira, R. A. S.; Rocha, J.; Carlos, L. D.; Nogueira, H. I. S. Inorg. Chem. 2010, 49, 3428. (b) Chen, C. T.; Suslick, K. S. Coord. Chem. Rev. 1993, 128, 293.
    [14]游效曾,分子材料----光电功能化合物,上海科学技术出版社,上海,2001.
    [15] Philip, O.; Stoddart, J. F. Angew. Chem., Int. Ed. 1996, 35, 1154.
    [16] Braga, D.; Grepioni, F.; Desiraju, G. R. Chem. Rev. 1998, 98, 1375.
    [17] Zaworotko, M. J. Chem. Commun. 2001, 1, 1.
    [18] (a) Ramya, A. R.; Reddy, M. L. P.; Cowley, A. H.; Vasudevan, K. V. Inorg. Chem. 2010, 49, 2407. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
    [19] Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1989, 111, 5962.
    [20] Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546.
    [21] (a) Li, X.; Sun, H,-L.; Wu, X.-S.; Qiu, X.; Du, M. Inorg. Chem. 2010, 49, 1865. (b) Abrahams, B. F.; Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1991, 113, 3606.
    [22] Holliday, B. J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2001, 40, 2022.
    [23] Kahn, O. Acc. Chem. Res, 2000, 33, 647.
    [24] Choi, H. J.; Lee, T. S.; Suh, M. P. Angew. Chem. Int. Ed. 1999, 38, 1405.
    [25] Aaker?y, C. B.; Beatty, A. M.; Helfrich, B. A. Angew. Chem. Int. Ed. 2001, 40, 3240.
    [26] Ma, S. q.; Sun, D. f.; Simmons, J. M.; Collier, C. D.; Yuan, D. Q.; Zhou, H.-C. J. Am. Chem. Soc. 2008, 130, 1012.
    [27] (a) Cheng, X. N.; Xue, W.; Lin, J. B.; Chen, X. M. Chem. Commun. 2010, 46, 246.
    [28] (a) Weissbuch, I.; Baxter, P. N. W.; Kuzmenko, I.; Cohen, H.; Cohen, S.; Kjaer, K.; Howes, P.B.; Als-Nielsen, J.; Lehn, J. M.; Leiserowitz, L.; Lahav, M. Chem. Eur. J. 2000, 6, 725. (b) Mereacre, V.; Akhtar, M. N.; Lan, Y.; Ako, A. M.; Clerac, R.; Ansona C. E. and Powell, A. K. Dalton Trans. 2010, 39, 4918.
    [29] (a) Harbuzaru, B.V.; Corma, A.; Rey, F.; Jorda, J. L.; Ananias, D.; Carlos, L. D.; Rocha, J. Angew. Chem., Int. Ed. 2009, 48, 6476. (b) Campos-Fernández, C. S.; Clérac, R.; Koomen, J. M.; Russell, D. H.; Dunbar, K. R. J. Am. Chem. Soc. 2001, 123, 773.
    [30] (a) Evangelisti, M.; Brechin, E. K. Dalton Trans. 2010, 39, 4672. (b) Najar, A. M.; Tidmarsh, I. S.; Adams, H.; Ward M. D. Inorg. Chem. 2009, 48, 11483
    [31] (a) Kostakis, G. E.; Powell, A. K. Coord. Chem. Rev. 2009, 259, 2686. (b) Maxim, C.; Sorace, L.; Khuntia, P.; Madalan, A. M.; Kravtsov, V.; Lascialfari, A.; Caneschi, A.; Journaux, Y.; Andruh, M. Dalton Trans. 2010, 39, 4838. (c) Müller, I. M.; Robson, R. Angew. Chem. Int. Ed. 2000, 39, 4357. (d) Liu, S. X.; Lin, S.; Lin, B. Z.; Lin, C. C.; Huang, J. Q. Angew. Chem. Int. Ed. 2001, 40, 1084. (e) Paul, R. L.; Bell, Z. R.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D. Angew. Chem. Int. Ed. 2002, 41, 4883. (f) Kusukawa, T.; Fujita, M. J. Am. Chem. Soc. 2002, 124, 13576. (g) Ziegler, M.; Davis, A. V.; Johnson, D. W.; Raymond, K. N. Angew. Chem. Int. Ed. 2003, 42, 665.
    [32] (a) Wu, M.-F.; Zheng, F.-K.; Wu, A.-Q.; Li, Y.; Wang, M.-S.; Zhou, W.-W; Chen, F.; Guo, G.-C.; Huang, J.-S. CrystEngComm 2010, 12, 260.
    [33] (a) Turner, D. R.; Strachan-Hattonab, J.; Batten, S. R. CrystEngComm 2008, 10, 34. (b) Friedrichs, O. D.; O’Keeffe, M.; Yaghi, O. M. Solid State Sciences 2003, 5, 73.
    [34] (a) Bu, X.-H.; Tong, M.-L.; Chang, H.-C.; Kitagawa, S.; Batten, S. R. Angew. Chem. Int. Ed. 2004, 43, 192. (b) Chen, B.; Fronczek, F. R.; Maverick, A. W. Chem. Commun. 2003, 2166.
    [35] (a) Friedrichs, O. D.; O’Keeffe, M.; Yaghi, O. M. Phys. Chem. Chem. Phys. 2007, 9, 1035. (b) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddadoudi, M.; Kim, J. Nature, 2003, 423, 705.
    [36] X.-L.; Wang, Qin, C.; Wang, E.-B.; Su, Z.-M.; Xu. L. Angew. Chem. Int. Ed. 2004, 43, 5036.
    [37] (a) Men, Y.-B.; Sun, J. L.; Huang, Z.-T.; Zheng, Q.-Y. CrystEngComm. 2009, 11, 978.
    [38] Guo, H.-D.; Qiu, D.-F.; Guo, X.-M.; Zheng, G.-L.; Wang, X.; Dang, S.; Zhang, H.-J. CrystEngComm. 2009, 11, 2425.
    [39] (a) Zhang, L.; Yao, Y.-L.; Che, Y.-X.; Zheng, J.-M. Cryst. Growth Des. 2010, 10, 528.
    [40] (a) Li, Z.-X.; Hu, T.-L.; Ma, H.; Zeng, Y.-F.; Li, C.-J.; Tong, M.-L.; Bu, X.-H. Cryst. Growth Des. 2010, 10, 1138. (b) Mir, M. H.; Koh, L. L.; Tan, G. K.; Vitta, J. J. Angew. Chem. Int. Ed. 2010, 49, 390.
    [41] Wu, T.; Li, M.; Li, D.; Huang, X.-C. Cryst. Growth Des. 2008, 8, 568.
    [42] (a) Li, J.-R.; Yu, Q.; Sa?udo, E. C.; Tao, Y.; Bu, X.-H. Chem. Commun. 2004, 2602.
    [43] Qiu, S. L.; Zhu, G. S. Coord. Chem. Rev. 2009, 253, 2891.
    [44] Xu, Y.-H.; Lan, Y.-Q.; Wu, S.-X.; Shao, K.-Z.; Su, Z.-M.; Liao, Y. CrystEngComm 2009, 11, 1711.
    [45] (a) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford. 1999. (b) Calhorda, M. J. Chem. Commun. 2000, 801. (c) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.(d) Alekseyeva, E. S.; Batsanov, A. S.; Boyd, L. A.; Fox, M. A.; Hibbert, T. G.; Howard, J. A. K.; MacBride, J. A. H.; Mackinnon, A.; Wade, K. Dalton Trans. 2003, 475.
    [46] (a) Sony, S. M. M.; Ponnuswamy, M. N. Cryst. Growth Des. 2006, 6, 736 and references therein. (b) Abernethy, C. D.; Macdonald, C. L. B.; Cowley, A. H.; Clyburne, J. A. C. Chem. Commun. 2001, 61.
    [47] Devic, T.; Evain, M.; Mo?lo, Y.; Canadell, E.; Auban-Senzier, P.; Fourmigué, M.; Batail, P. J. Am. Chem. Soc. 2003, 125, 3295.
    [48] (a) Janiak, C. J. Chem. Soc. Dalton Trans. 2000, 3885 and references therein. (b) Khlobystov, A. N.; Blake, A. J.; Champness, N. R.; Lemenovskki, D. A.; Majouga, A. G.; Zyk, N. V.; Schr?der, M. Coord. Chem. Rev. 2001, 222, 155.
    [49] Pullen, A. E.; Olk, R. M. Coord. Chem. Rev. 1999, 188, 211.
    [50] Che, C. M.; Mao, Z.; Miskowski, V. M.; Tse, M. C.; Chan, C. K.; Cheung, K. K.; Phillips, D. L.; Leung, K. H. Angew. Chem. Int. Ed. 2000, 39, 4084.
    [51] For examples: (a) Blake, A. J.; Champness, N. R.; Chung, S. S. M.; Li, W. S.; Schr?der, M. Chem. Commun. 1997, 1005. (b) Abrahams, B. F.; Batten, S. R.; Grannas, M. J.; Hamit, H.; Hoskins, B. F.; Robson, R. Angew. Chem. Int. Ed. 1999, 38, 1475. (c) Goodgame, D. M. L.; Menzer, S.; Ross, A. T.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1994, 2605.
    [52] Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Angew. Chem. Int. Ed. 1997, 36, 1725.
    [53] Bu, X. H.; Chen, W.; Lu, S. L.; Zhang, R. H.; Liao, D. Z.; Bu, W. M.; Shionoya, M.; Brisse, F.; Ribas,J. Angew. Chem. Int. Ed. 2001, 40, 3201.
    [54] For examples: (a) Lopez, S.; Kahraman, M.; Harmata, M.; Keller, S. W. Inorg. Chem. 1997, 36, 6138. (b) Shi, Z.; Zhang, L. R.; Gao, S.; Yang, G. Y.; Hua, J.; Gao, L;. Feng, S. H. Inorg. Chem. 2000, 39, 1990.
    [55] Lehn, J. M. Angew. Chem. Int. Ed. 1988, 27, 89.
    [56] Carlucci, L.; Ciani, G.; Macchi, P.; Proserpio,D. M.; Rizzato, S. Chem. Eur. J. 1999, 5, 237.
    [57] Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. J. Mater. Chem. 2005, 15, 3559.
    [58]陈小明,蔡继文,《单晶结构分析原理与实践》, 2003, 1, 24.
    [59] Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
    [60] Poulsen, R. D.; Bentien, A.; Chevalier, M.; Iversen, B. B. J. Am. Chem. Soc. 2009, 127, 9156.
    [61] Aronica, C.; Pilet, G.; Chastanet, G.; Wernsdorfer, W.; Jacquot, J.-F.; Luneau, D. Angew. Chem. Int. Ed. 2006, 45, 4659.
    [62] (a) Yu, Z. T.; Li, G. H.; Jiang, Y. S.; Xu, J. J.; Chen, J. S. J. Chem Soc., Dalton Trans. 2003, 22, 4219. (b) Bassett, A. P.; Magennis, S. W.; Glover, P. B.; Lewis, D. J.; Spencer, N.; Parsons, S.; Williams, R. M.; Cola, L. D.; Pikramenou, Z. J. Am. Chem. Soc. 2004, 126, 9413. (c) Reineke, T. M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O. M. J. Am. Chem. Soc. 1999, 121, 1651. (d) Serre, C.; Stock, N.; Bein, T.; Fe′rey, G. Inorg. Chem. 2004, 43, 3159. (e) Vicentini, G.; Zinner, L. B.; Zukerman-Schpector, J.; Zinner, K. Coord. Chem. Rev. 2000, 196, 353.
    [63] Chen, W.; Yuan, H. M.; Wang, J. Y.; Liu, Z. Y.; Yang, M. Y.; Chen, J. S. J. Am. Chem. Soc. 2003, 125, 9266.
    [64] (a) Yu, Z. T.; Liao, Z. L.; Jiang, Y. S.; Li, G. H.; Chen, J. S. Chem. Eur. J. 2005, 11, 2642. (b) Yu, Z. T.; Liao, Z. L.; Jiang, Y. S.; Li, G. H.; Li, G. D.; Chen, J. S. Chem Commun. 2004, 1814.
    [65] Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. J. Am. Chem. Soc. 2004, 126, 15394.
    [66] Hou, H. W.; Wei, Y. L.; Fan, Y. T.; Du, C. X.; Zhu, Y.; Song, Y. L.; Niu, Y. Y.; Xin, X. Q. Inorg. Chim. Acta 2001, 319, 212.
    [67] Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 15648.
    [68] (a) Schray, D.; Abbas, G.; Lan, Y.; Mereacre, V.; Sundt, A.; Dreiser, J.; Waldmann, O.; Kostakis, G. E.; Anson, C. E.; Powell A. K. Angew. Chem. Int. Ed. 2010, 49, 5185. (b) Novitchi, G.; Wernsdorfer, W.; Chibotaru, L. F.; Costes, J.-P.; Anson, C. E.; Powell, A. K. Angew. Chem. Int. Ed. 2009, 48, 1614.
    [69] Lin, P.-H.; Burchell, T. J.; Ungur, L.; Chibotaru, L. F.; Wernsdorfer, W.; Murugesu, M. Angew. Chem. Int. Ed. 2009, 48, 9489.
    [70] (a) Y. f.; Bi, Wang, X.-T.; Liao, W. P.; Wang, X. W.; Deng, R. P.; Zhang, H. J.; Gao, S. Inorg. Chem. 2009, 48, 11743. (b) Yeung, W.-F.; Lau, T.-C.; Wang, X.-Y.; Gao, S.; Szeto, L.; Wong, W.-T. Inorg. Chem. 2006, 45, 6756.
    [71] (a) Li, J.-R.; Chen, W.-T.; Tong, M.-L.; Guo, G.-C.; Tao, Y.; Yu, Q.; Song, W.-C.; Bu, X.-H. Cryst. Growth Des. 2008, 8, 2780.
    [72] Li, C.-J.; Peng, M.-X.; Leng, J.-D.; Yang, M.-M.; Lin, Z.; Tong, M.-L. CrystEngComm 2008, 10, 1645.
    [73] Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151.
    [74] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
    [75] Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; l O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
    [76] C?té, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
    [77] El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; C?té, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
    [78] (a) Liu, C.-S.; Chen, P.-Q.; Yang, E.-C.; Tian, J.-L.; Bu, X.-H.; Li, Z.-M.; Sun, H.-W.; Lin, Z. Inorg. Chem. 2006, 45, 5812. (b) Zou, R.-Q.; Liu, C.-S.; Huang, Z.; Hu, T.-L.; Bu, X.-H. Cryst. Growth Des. 2006, 6, 99. (c) Li, C.-Y.; Liu, C.-S.; Li, J.-R.; Bu, X.-H. Cryst. Growth Des. 2007, 7, 286.
    [79] (a) Hu, T. L.; Li, J. R.; Liu, C. S.; Shi, X. S.; Zhou, J. N.; Bu, X. H.; Ribas, J. Inorg. Chem. 2006, 44, 162. (b) Zou, R. Q.; Bu, X. H.; Du, M.; Sui, Y. X. J. Mole. Struc. 2004, 707, 11.
    [80] (a) Liu, C.-S.; Wang, J.-J.; Yan, L.-F.; Chang, Z.; Bu, X.-H.; Sa?udo, E. C.; Ribas, J. Inorg. Chem. 2007, 46, 6299. (b) Liu, C.-S.; Shi, X.-S.; Li, J.-R.; Wang, J.-J.; Bu, X.-H. Cryst. Growth Des. 2006, 6, 656.
    [81] Zou, R. Q.; Bu, X. H.; Zhang, R. H. Inorg. Chem. 2004, 43, 5382.
    [82] Kitagawa, S.; Kitaura ,R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334.
    [83] Tong, M.-L.; Chen, X.-M.; Ye, B.-H.; Ng, S. W. Angew. Chem. Int. Ed. 1999, 38, 2237.
    [84] (a) Ko, J. W.; Min, K. S.; Suh, M. P. J. Am. Chem. Soc. 2002, 124, 10976. (b)李建荣,南开大学博士学位论文2005, Pp19-20.
    [85] Wang, X.-Yi.; Scancella, M.; Sevov, S. C. Chem. Mater. 2007, 19, 4506.
    [86] Kitaura, R.; Fujimoto, K.; Noro, S.; Kondo, M.; Kitagawa, S. Chem. Int. Ed. 2002, 41, 133.
    [87] Carlucci, L.; Ciani, G.; Gudenberg, D. W. V.; Proserpio, D. Inorg. Chem. 1997, 36, 3812.
    [88] Tong, M. L.; Chen, X. M.; Ye, B. H.; Ji, L. N. Angew. Chem. Int. Ed. 1999, 38, 2237.
    [89] Zhu, H. L.; Tong, Y. X.; Chen, X. M. J. Chem. Soc., Dalton Trans. 2000, 4182.
    [90] G. A. V.; Guijt, R. C.; Haasnoot, J. G.; Lutz, M.; Spek, A. L.; Reedijk, J. Eur. J. Inorg. Chem. 2000, 121.
    [91] Yang, S. P.; Chen, X. M.; Ji, L. N. J. Chem. Soc., Dalton Trans. 2000, 2337.
    [92] Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S. CrystEngComm 2002, 4, 413.
    [93] Sun, D. F.; Cao, R.; Bi, W. H.; Li, X. J.; Wang, Y. Q.; Hong, M. C. Eur. J. Inorg. Chem. 2004, 2144.
    [94] Wang, R. H.; Han, L.; Xu, J.; Gong, Y. Q.; Zhou, Y. F.; Hong, M. C.; Chan, A. S. C. Eur. J. Inorg. Chem. 2004, 3751
    [95] Wang, J.; Zhang, Y.-H.; Tong, M.-L. Chem. Commun. 2006, 3166.
    [96]刘春森,南开大学博士学位论文,2007。
    [97]杜淼,南开大学博士学位论文,2003。
    [98]李建荣,南开大学博士学位论文,2005。
    [99]邹如强,南开大学硕士学位论文,2004。
    [100]曾永飞,南开大学博士学位论文,2007。
    [101]赵斌,南开大学博士学位论文,2010。
    [102]赵炯鹏,南开大学博士学位论文,2010。
    [1] (a) Cunha-Silva, L.; Lima, S.; Ananias, D.; Silva, P.; Mafra, L.; Carlos, L. D.; Pillinger, M.; Valente, A. A.; Paz, F. A. A.; Rocha, J. J. Mater. Chem. 2009, 19, 2618. (b) Custelcean, R.; Ward, M. D. Angew. Chem. Int. Ed. 2002, 41, 1724.
    [2] Gangopadhyay, T. P. Radhakrishnan, Angew. Chem. Int. Ed. 2001, 40, 2451.
    [3] Sherrington, D. C.; Taskinen, K. A. Chem. Soc. Rev. 2001, 30, 83.
    [4] Holman, K. T.; Pivovar, A. M.; Ward, M. D. Science 2001, 294, 1907.
    [5] (a) Soares-Santos, P. C. R.; Cunha-Silva, L.; Paz, F. A. A.; Ferreira, R. A. S.; Rocha, J.; Carlos, L. D.; Nogueira, H. I. S. Inorg. Chem. 2010, 49, 3428. (b) Dybtsev, D. N,; Chun, H,; Kim K. Angew. Chem. Int. Ed. 2004, 43, 5033.
    [6] (a) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309, 1350. (b) Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176. (c) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319.
    [7] (a) Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8571. (b) Li, H.; Davis, C. E.; Groy, T. L.; Kelley, D. G.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 2186. (c) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
    [8] (a) Spencer, E. C.; Howard, J. A. K.; McIntyre, G. J.; Rowsell, J. L. C.; Yaghi, O. M. Chem. Commun. 2006, 278. (e) Vodak, D. T.; Braun, M. E.; Kim, J.; Eddaoudi, M.; Yaghi, O. M. Chem. Commun. 2001, 2534. (f) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391.
    [9] (a) Kristiansson, O. Inorg. Chem. 2001, 40, 5058. (b) Wei, P.; Mak, T. C. W.; Atwood, D. A. Inorg.Chem. 1998, 37, 2605. (c) Sun, D.; Cao, R.; Bi, W.; Weng, J.; Hong, M.; Liang, Y. Inorg. Chim. Acta 2004, 357, 991. (d) Sun, D.; Cao, R.; Weng, J.; Hong, M.; Liang, Y. J. Chem. Soc., Dalton Trans. 2002, 291. (e) Noguchi, R.; Hara, A.; Sugie, A.; Nomiya, K. Inorg. Chem. Commun. 2006, 9, 60. (f) Whitcomb, D. R.; Rajeswaran, M. Polyhedron 2006, 25, 1747. (g) Olson, L. P.; Whitcomb, D. R.;Rajeswaran, M.; Blanton, T. N.; Stwertka, B. J. Chem. Mater. 2006, 18, 1667. (h) Nomiya, K.; Takahashi, S.; Noguchi, R. J. Chem. Soc., Dalton Trans. 2000, 2091.
    [10] Bruker AXS, SAINT Software Reference Manual, Madison, WI, 1998.
    [11] G. M. Sheldrick, G. M. SHELXTL NT Version 5.1. Program for Solution and Refinemen of Crystal Structures, University of G?ttingen, Germany, 1997.
    [12] (a) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press: Oxford, 1999. (b) Calhorda, M. J. Chem. Commun. 2000, 801. (c) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.
    [13] (a) Xu, J.-X.; Ma, Y.; Liao, D.-Z.; Xu, G.-F.; Tang, J.;Wang, C.; Zhou, N.; Yan, S.-P.; Cheng, P.; Li, L.-C. Inorg. Chem. 2009, 48, 8890. (b) Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885 and references cited therein.
    [14] Smith, G.; Reddy, A. N.; Byriel, K. A.; Kennard, C. H. L. J. Chem. Soc., Dalton Trans. 1995, 3565.
    [15] Hedrich, M.; Hartl, H. Acta Crystallogr., Sect. C. 1983, 39, 1649.
    [16] Cingi, M. B.; Lanfredi, A. M. M.; Tiripicchio, A.; Tiripicchio, C. M. Acta Crystallogr., Sect. B. 1979, 35, 312.
    [17] Gu, X.; Xue, D. Cryst. Growth Des. 2006, 6, 2551.
    [18] Liu, C.-S.; P.-Q.; Chen, P.-Q.; Chang, Z.; Wang, J.-J.; Yan, L.-F.; Sun, H.-W.; Bu, X.-H.; Lin, Z.; Li, Z.-M.; Batten, S. R. Inorg. Chem. Commun. 2008, 11, 159.
    [19] Liu, C.-S.; Chang, Z.; Wang, J.-J.; Yan, L.-F.; Bu, X.-H.; Batten, S. R. Inorg. Chem. Commun. 2008, 11, 889.
    [20] (a) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; D. G.; Watson, D. G.; R.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1. (b) O’Keeffe M.; Brese, N. E. J. Am. Chem. Soc. 1991, 113, 3226.
    [21] (a) Olson, L. P.; Whitcomb, D. R.; Rajeswaran, M.; Blanton, T. N.; Stwertka, B. J. Chem. Mater. 2006, 18, 1667. (b) Sailaja, S.; Rajasekharan, M. V. Inorg. Chem. 2003, 42, 5675. (c) Sun, D.; Cao, R.; Weng, J.; Hong, M.; Liang, Y. J. Chem. Soc., Dalton Trans. 2002, 291.
    [22] (a) Tong, M.-L.; Chen, X.-M.; Ye, B.-H.; Ji, L.-N. Angew. Chem. Int. Ed. 1999, 38, 2237. (b) Omary, M. A.; Webb, T. R.; Assefa, Z.; Shankle, G. E.; Patterson, H. H. Inorg. Chem. 1998, 37, 1380. (c) Singh, K.; Long, J. R.; Stavropoulos, P. J. Am. Chem. Soc. 1997, 119, 2942.
    [23] (a) Pyykk?, P. Chem. Rev. 1997, 97, 597. (b) Cotton, F. A.; Feng, X.; Matusz, M.; Poli, R. J. Am. Chem. Soc. 1988, 110, 7077.
    [24] Sun, H. L.; Ma, B. Q.; Gao, S.; Batten, S. R. Cryst. Growth Des. 2005, 5, 1331.
    [25] Long, D. L.; Blake, A. J.; Champness, N. R.; Wilson, C.; Schr?der, M. J. Am. Chem. Soc. 2001, 123, 3401.
    [26] (a) Ramya, A. R.; Reddy, M. L. P.; Cowley, A. H.; Vasudevan, K. V. Inorg. Chem. 2010, 49, 2407.(b) Yang, G.; Raptis, R. G.; ?afá?, P. Cryst. Growth Des. 2008, 8, 981.
    [27] Baburin, I. A.; Blatov, V. A. Acta Crystallogr., Sect. B. 2007, 63, 791.
    [28] Borel, C.; Ghazzali, M.; Langer, V.; ?hrstr?m, L. Inorg. Chem. Commun., 2009, 12, 105.
    [29] Wang, G.-H.; Li, Z.-G.; Jia, H.-Q.; Hu, N.-H.; Xu, J.-W. Cryst. Growth Des. 2008, 8, 1932.
    [30] Montney, M. R.; Krishnan, S. M.; Patel, N. M.; Supkowski, R. M.; LaDuca, R. L. Cryst. Growth Des. 2007, 7, 1145.
    [31] Delgado-Friedrichs, O.; Foster, M. D.; O’Keeffe, M.; Proserpio, D. M.; Treacy, M. M.; Yaghi, O. M. J. Solid State Chem., 2005, 178, 2533.
    [32] (a) Wang, X. W.; Dong, Y. R.; Zheng, Y. Q.; Chen, J. Z. Cryst. Growth Des. 2007, 7, 613. (b) Hill, R. J.; Long, D. L.; Hubberstey, P.; Schr?der, M.; Champness, N. R. J. Solid State Chem. 2005, 178, 2414. (c) Hill, R. J.; Long, D. L.; Turvey, M. S.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Wilson, C.; Schr?der, M. Chem. Commun. 2004, 1792. (d) Pan, L.; Ching, N.; Huang, X. Y.; Li, J. Chem. Commun. 2001, 1064.
    [33] (a) Barrer, R. M. The Hydrothermal Chemistry of Zeolites; Academic Press: London, 1982. (b) Ludise, R. A. Chem. Eng. News 1987, 65, 30–43. (c) Wu, C.-D.; Lu, C.-Z.; Yang, W.-B.; Lu, S.-F.; Zhuang, H.-H.; Huang, J.-S. Eur. J. Inorg. Chem. 2002, 797. and references therein. (d) Watton, S. P.; Fuhrmann, P.; Pence, L. E.; Lippard, S. J.; Caneschi, A.; Cornia, A.; Abbati, G. L. Angew. Chem., Int. Ed. 1997, 36, 2774. (e) Bürgstein, M. R.; Gamer, M. T.; Roesky, P. W. J. Am. Chem. Soc. 2004, 126, 5213.
    [34] Wilkinson, G.; Gillard, R. D.; McCleverty (Eds.), J. A. Comprehensive Coordination Chemistry, Vol. 5, Pergamon: Oxford, 1987.
    [35] Usubaliev, B. T.; Movsumov, E. M.; Amiraslanov, I. R.; Akhmedov, A. I.; Musaev, A. A.; Mamedov, Kh. S. J. Struct. Chem. 1981, 22, 73.
    [36] Cerius2; Molecular Simulation Incorporated: San Diego, CA, 2001.
    [37] (a) Valeur, B. Molecular Fluorescence: Principles and Applications, Wiley-VCH: Weinheim, 2002. (b)Zheng, S.-L.; Yang, J.-H.; Yu, X.-L.; Chen, X.-M.; Wong, W.-T. Inorg. Chem. 2004, 43, 830.
    [38] (a) Shi, X.; Zhu, G.; Wang, X.; Li, G.; Fang, Q.; Wu, G.; Tian, G.; Xue, M.; Zhao, X.; Wang, R.; Qiu, S.Cryst. Growth Des. 2005, 5, 207–213. (b) Yuan, R.-X.; Xiong, R.-G.; Xie, Y.-L.; You, X.-Z.; Peng,S.-M.; Lee, G.-H. Inorg. Chem. Commun. 2004, 4, 384.
    [1] (a) Férey, G. Chem. Soc. Rev. 2008, 37, 191. (b) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 130, 663. (c) Katritzky, A. R.; Nichols, D. A.; Siskin, M.; Murugan, R.; Balasubramanian, M. Chem. Rev. 2001, 101, 837. (d) Janiak, C. Dalton Trans. 2003, 2781. (e) James, S. L. Chem. Soc. Rev. 2003, 32, 276. (f) Zhang, J. P.; Huang, X. C.; Chen, X. M. Chem. Soc. Rev. 2009, 38, 2385. (g) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (h) Morris, R. E.; Bu, X. Nature Chem. 2010, 2, 353.
    [2] (a) Zhang, J.-P.; Kitagawa, S. J. Am. Chem. Soc. 2008, 130, 907. (b) Férey, G.; Serre, C. Chem. Soc. Rev. 2009, 38, 1380. (c) Wang, B.; Coté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207. (d) Zhao, D.; Yuan, D. Q.; Zhou, H. C. Energy Environ. Sci. 2008, 1, 222. (e) Bradshaw, D.; Prior, T. J.; Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J. J. Am. Chem. Soc. 2004, 126, 6106.
    [3] (a) Gao, S. Y.; Yuan, D. Q.; Lu, J.; Li, T. H.; Cao, R. Chem. Commun. 2007, 1813. (b) Wu, D. Y.; Sato, O.; Einaga, Y.; Duan, C. Y. Angew. Chem., Int. Ed. 2009, 48, 1475. (c) Bu, X. H.; Tong, M. L.; Chang, H. C.; Kitagawa, S.; Batten, S. R. Angew. Chem., Int. Ed. 2004, 43, 192. (d) Wang, M. S.; Guo, G. C.; Zou, W. Q.; Zhou, W. W.; Zhang, Z. J.; Xu, G.; Huang, J. S. Angew. Chem., Int. Ed. 2008, 47, 3565. (e) Zeng, M.-H.; Wang, Q.-X.; Tan, Y.-X.; Hu, S.; Zhao, H.-X.; Long, L.-S.; Kurmoo, M. J. Am. Chem. Soc. 2010, 132, 2561.
    [4] (a) Zhang, J. P.; Chen, X. M. J. Am. Chem. Soc. 2008, 130, 6010. (b) Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. J. Am. Chem. Soc. 2004, 126, 15394.
    [5] (a) Wang, X. Y.; Wang, L.; Wang, Z. M.; Gao, S. J. Am. Chem. Soc. 2006, 128, 674. (b) Chu, Q.; Liu, G.-X.; Huang, Y.-Q.; Wang, X.-F.; Sun, W.-Y. Dalton Trans. 2007, 4302. (c) Lu, J.; Bi, W.-H.; Xiao, F.-X.; Batten, S. R.; Cao, R. Chem. Asian J. 2008, 3, 542. (d) Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai H.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 11302.
    [6] (a) Ye, Q.; Song, Y.-M.; Wang, G.-X.; Chen, K.; Fu, D.-W.; Chan, P.-W.; Zhu, J.-S.; Huang, S.-D.; Xiong, R.-G. J. Am. Chem. Soc. 2006, 128, 6554. (b) Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J. Angew. Chem., Int. Ed. 2009, 48, 2334.
    [7] (a) Bi, W.; Cao, R.; Sun, D.; Yuan, D.; Li, X.; Wang, Y.; Li, X.; Hong, M. Chem. Commun. 2004, 2104. (b) Kim, Y.; Jung, D.-Y. Chem. Commun. 2002, 908.
    [8] (a) Ma, A.-Q.; Yu, M.-X.; Zhu, L.-G.; Z. Kristallogr.-New Cryst. Struct. 2004, 219, 63. (b) Ma, A.-Q.; Yu, M.-X.; Zhu, L.-G. Z. Kristallogr.-New Cryst. Struct. 2004, 219, 117. (c) Xia, D.-C.; Li,W.-C.; Han, S.; Han, Q.-P.; Zhang, W.-C.; Ma, H.-X. Z. Kristallogr.-New Cryst. Struct. 2010, 225, 69.
    [9] Bi, W.; Cao, R.; Sun, D.; Yuan, D.; Li, X.; Hong, M. Hong. Inorg. Chem. Commun. 2003, 6, 1426.
    [10] (a) Qi, Y.; Wang, Y.; Hu, C.; Cao, M.; Mao, L.; Wang, E.; Inorg. Chem. 2003, 42, 8519. (b) Kurmoo, M.; Kumagai, H.; Hughes, S. M.; Kepert, C. J. Inorg. Chem. 2003 ,42, 6709. (c) Kurmoo, M.; Kumagai, H.; Akita-Tanaka, M.; Inoue, K.; Takagi, S. Inorg. Chem. 2006, 45, 1627. (d) Zheng, Y.-Z.; Xue, W.; Zhang, W.-X.; Tong, M.-L.; Chen, X.-M.; Grandjean, F.; Long, G. J.; Ng, S.-W.; Panissod, P.; Drillon, M. Inorg. Chem. 2009, 48, 2028.
    [11] Thirumurugan, A.; Avinash, M. B.; Rao, C. N. R. Dalton Trans. 2006, 221.
    [12] Chen, J.; Ohba, M.; Zhao, D.; Kaneko, W.; Kitagawa, S. Cryst. Growth Des. 2006, 6, 664.
    [13] Tian, Ge; Zhu, G.; Su, B.-L.; Qiu, S. J. Mater. Sci. 2009, 44, 6576.
    [14] (a) Lu, J.; Bi, W.; Cao, R. CrystEngComm 2009, 11, 2248. (b) Cui, F.-Y.; Huang, K.-L.; Xu, Y.-Q.; Han, Z.-G.; Liu, X.; Chi, Y.-N.; Hu, C.-W. CrystEngComm 2009, 11, 2757.
    [15] (a) Qi, Y.; Li, H.; Liu, C.; Hu, C. J. Coord. Chem. 2008, 61, 315. (b) Hernandez-Ahuactzi, I. F.; Hopfl, H.; Barba, V.; Roman-Bravo, P.; Zamudio-Rivera, L. S.; Beltran, H. I. Eur. J. Inorg. Chem. 2008, 2746.
    [16] Zhao, X.; Zhu, G.; Fang, Q.; Wang, Y.; Sun, F.; Qiu, S. Cryst. Growth Des. 2009, 9, 731.
    [17] Wang, J.; Hu, S.; Tong, M.-L. Eur. J. Inorg. Chem. 2006, 2069.
    [18] Wang, J.; Zhang, Y.-H.; Tong, M.-L. Chem .Commun. 2006, 3166.
    [19] Wang, J.; Lin, Z.-J.; Ou, Y.-C.; Shen, Y.; Herchel, R.; Tong, M.-L. Chem. Eur. J. 2008, 14, 7218.
    [20] Luo, J.; Jiang, F.; Wang, R.; Hong, M. Inorg. Chem. Commun. 2004, 7, 638.
    [21] Bruker AXS, SAINT Software Reference Manual, Madison, WI, 1998.
    [22] G. M. Sheldrick, G. M. SHELXTL NT Version 5.1. Program for Solution and Refinemen of Crystal Structures, University of G?ttingen, Germany, 1997.
    [23] (a) Orpen, A. G.; Brammer, L.; Aleen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J.Chem.Soc.,Dalton Trans. 1989, S1-S83. (b) Aleen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A.G.; Taylor, R. J. Chem. Soc., Perkin Trans. II 1987, S1-S19. (c) O’Keeffe, M.; Brese, N. E. J. Am.Chem. Soc. 1991, 113. 3226.
    [24] Kostakis, G. E.; Powell, A. K. Coord. Chem. Rev. 2009, 253, 2686
    [25] (a) Wells, A. F. Three-Dimensional Nets and Polyhedra, Wiley-Interscience, New York, 1977. (b) Wells, A. F. Further Studies of Three-Dimensional Nets, ACA Monograph No. 8, AmericanCrystallographic Association, 1979. (c) O’Keeffe, M.; Hyde, B. G. Crystal Structures I. Patterns and Symmetry, Mineralogical Society of America: Washington, DC, 1996. (d) Barnett, S. A.; Champness, N. R. Coord. Chem. Rev. 2003, 246, 145.
    [26] (a) Carlucci, L.; Ciani, G.; Proserpio, D. M. Coord. Chem. Rev. 2003, 246, 247. (b) Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design, Analysis and Application, Royal Society of Chemistry (RSC) Publishing, 2008.
    [27] Spek, A. L. PLATON, A Multipurpose Crystallographic Tool, Utrecht University: Utrecht, The Netherlands, 2005.
    [28] Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press: Oxford, 1999.
    [29] Spek, A. L. PLATON 2005.
    [30] Desiraju, G. R.; Steiner, T. Oxford University Press: Oxford 1999.
    [31] Cerius2; Molecular Simulation Incorporated: San Diego, CA, 2001.
    [32] (a) Yersin, H.; Vogler, A. Photochemistry and Photophysics of Coordination Compounds; Springer: Berlin, 1987. (b) Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2002.
    [33] (a) Zheng, S.-L.; Yang, J.-H.; Yu, X.-L.; Chen, X.-M.; Wong, W.-T. Inorg. Chem. 2004, 43, 830.
    [1] Whitcomb, D. R.; Rajeswaran, M. Polyhedron 2006, 25, 1747.
    [2] Gu, X.; Xue, D. Cryst.Growth Des. 2006, 6, 2551.
    [3] Wang, X.; Qin, C.; Wang, E.; Xu, L. J.Mol.Struct. 2005, 737, 49.
    [4] Hu, T.-L.; Zou, R.-Q.; Li, J.-R.; Bu, X.-H. Dalton Trans. 2008, 1302.
    [5] Wang, Q.-W.; Xu, Y.-Y.; Xu, Z.-L.; Wang J.-J. Z. Kristallogr.-New Cryst. Struct. 2009, 224, 157.
    [6] (a) Bi, W.; Cao, R.; Sun, D.; Yuan, D.; Li, X.; Wang, Y.; Li, X.; Hong, M. Chem. Commun. 2004, 2104. (b) Kim, Y.; Jung, D.-Y. Chem. Commun. 2002, 908.
    [7] (a) Ma, A.-Q.; Yu, M.-X.; Zhu, L.-G.; Z. Kristallogr.-New Cryst. Struct. 2004, 219, 63. (b) Ma, A.-Q.; Yu, M.-X.; Zhu, L.-G. Z. Kristallogr.-New Cryst. Struct. 2004, 219, 117. (c) Xia, D.-C.; Li, W.-C.; Han, S.; Han, Q.-P.; Zhang, W.-C.; Ma, H.-X. Z. Kristallogr.-New Cryst. Struct. 2010, 225, 69.
    [8] Bi, W.; Cao, R.; Sun, D.; Yuan, D.; Li, X.; Hong, M. Hong. Inorg. Chem. Commun. 2003, 6, 1426.
    [9] (a) Qi, Y.; Wang, Y.; Hu, C.; Cao, M.; Mao, L.; Wang, E.; Inorg. Chem. 2003, 42, 8519. (b) Kurmoo, M.; Kumagai, H.; Hughes, S. M.; Kepert, C. J. Inorg. Chem. 2003 ,42, 6709. (c) Kurmoo, M.; Kumagai, H.; Akita-Tanaka, M.; Inoue, K.; Takagi, S. Inorg. Chem. 2006, 45, 1627. (d) Zheng, Y.-Z.; Xue, W.; Zhang, W.-X.; Tong, M.-L.; Chen, X.-M.; Grandjean, F.; Long, G. J.; Ng, S.-W.; Panissod, P.; Drillon, M. Inorg. Chem. 2009, 48, 2028.
    [10] Thirumurugan, A.; Avinash, M. B.; Rao, C. N. R. Dalton Trans. 2006, 221.
    [11] Chen, J.; Ohba, M.; Zhao, D.; Kaneko, W.; Kitagawa, S. Cryst. Growth Des. 2006, 6, 664.
    [12] Tian, Ge; Zhu, G.; Su, B.-L.; Qiu, S. J. Mater. Sci. 2009, 44, 6576.
    [13] (a) Lu, J.; Bi, W.; Cao, R. CrystEngComm 2009, 11, 2248. (b) Cui, F.-Y.; Huang, K.-L.; Xu, Y.-Q.; Han, Z.-G.; Liu, X.; Chi, Y.-N.; Hu, C.-W. CrystEngComm 2009, 11, 2757.
    [14] (a) Qi, Y.; Li, H.; Liu, C.; Hu, C. J. Coord. Chem. 2008, 61, 315. (b) Hernandez-Ahuactzi, I. F.; Hopfl, H.; Barba, V.; Roman-Bravo, P.; Zamudio-Rivera, L. S.; Beltran, H. I. Eur. J. Inorg. Chem. 2008, 2746.
    [15] Bruker AXS, SAINT Software Reference Manual, Madison, WI, 1998.
    [16] G. M. Sheldrick, G. M. SHELXTL NT Version 5.1. Program for Solution and Refinemen of Crystal Structures, University of G?ttingen, Germany, 1997.
    [17] Bouhmaida, N.; Mendez-Rojas, M. A.; Perez-Ben?tez A.; Merino, G.; Fraisse, B.; Ghermani N. E. Inorg. Chem. 2010, 49, 6443.
    [18] Patrick L. F.; Hendrickson D. N. Inorg. Chem. 2010, 49, 6393.
    [19] (a) Orpen, A. G.; Brammer, L.; Aleen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1-S83. (b) Aleen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. II 1987, S1-S19. (c) O’Keeffe, M.; Brese, N. E. J. Am. Chem. Soc. 1991, 113. 3226.
    [20] Sun, D.; Cao, R.; Weng, J.; Hong, M.; Liang, Y. J. Chem. Soc., Dalton Trans. 2002, 291.
    [21] Munakata, M.; Liu, S. Q.; Konaka, H.; Kuroda-Sowa, T.; Suenaga, Y.; Maekawa, M.; Nakagawa, H.; Yamazaki, Y. Inorg. Chem. 2004, 43, 633.
    [22] Catalano, V. J.; Malwitz, M. A.; Etogo, A. O. Inorg. Chem. 2004, 43, 5714.
    [23] Tang, K.; Xie, X.; Zhao, L.; Zhang, Y.; Jin, X. Eur. J. Inorg. Chem. 2004, 78.
    [24] Yam, W.-W.; Cheng, E. C.-C.; Zhu, N.; New J. Chem. 2002, 26, 279.
    [25] Blake, A. J.; Champness, N. R.; Howdle, S. M.; Morley, K. S.; Webb, P. B.; Wilson, C. CrystEngComm 2002, 88.
    [26] Cerius2; Molecular Simulation Incorporated: San Diego, CA, 2001.
    [27] (a) Yersin, H.; Vogler, A. Photochemistry and Photophysics of Coordination Compounds; Springer: Berlin, 1987. (b) Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2002.
    [28] (a) Zheng, S.-L.; Yang, J.-H.; Yu, X.-L.; Chen, X.-M.; Wong, W.-T. Inorg. Chem. 2004, 43, 830. (b) Shi, X.; Zhu, G. S.; Fang, Q. R.; Wu, G.; Tian, G.; Wang, R. W.; Zhang, D. L.; Xue, M.; Qiu, S. L. Eur. J. Inorg. Chem. 2004, 185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700