中国省际节能减排政策的技术进步效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保持经济增长、能源节约和环境保护三者协调发展是中国当前乃至今后相当长一段时期内所面临的主要问题。目前,学者们普遍认为,开发或推广一批能源节约型与环境友好型新技术是解决上述问题的最有效方式之一。然而,由于外部性等市场失灵现象存在,企业对节能减排先进技术进行自主创新及推广缺乏足够的动力,因此需要政府采取适当措施加以积极引导。在此背景下,节能减排政策作为政府干预经济发展方式与途径的重要手段之一,其对中国节能减排技术进步的影响值得关注。
     截止目前,对中国节能减排政策的技术进步效应进行系统研究的文献尚不多见。鉴于此,本论文对该领域进行了理论探源和实证分析。首先,本文从技术和制度两个层面将节能减排技术进步定义为,与现有技术或管理制度相比,提高了生产单位能源效率或(和)环境绩效的一系列新产品、生产过程或工艺、管理方式、制度设计的开发或采用。随后,在前沿分析框架内,对传统二维方向性距离函数进行拓展,构建节能减排全要素生产率增长指数作为该技术进步的度量指标。在此基础上,运用数学规划方法估算了中国各省区节能减排技术变动率,通过对该技术变动率在节能减排政策实施前后的对比分析,考察中国节能减排政策的技术进步效应。最后,运用空间面板数据模型,对导致节能减排技术进步的原因进行了理论探析。本论文的主要内容包括如下几个方面:
     (1)节能减排技术进步的测度方法与建模
     首先,通过设定一个考虑经济增长、能源节约和污染物减排的三维方向向量,定义了节能减排方向性距离函数,该函数确定了节能减排技术的生产前沿,即在非能源投入给定条件下,用最小的能源投入生产最大的经济产出且排放最少的污染物。然后,运用Luenberger生产率指数构建方法,构造了测度节能减排技术变动指标——节能减排技术的全要素生产率指数。该指数值度量了后期节能减排技术水平相对于前期水平的变动率,数值大于、小于、等于零分别表示技术进步、技术退步、技术相对停滞。最后,依据实现技术进步的途径不同,进一步将节能减排技术进步分解为技术创新和技术扩散两种作用形式。
     (2)中国省际节能减排政策的技术进步效应实证分析
     运用数据包络分析(DEA)方法,通过对中国2001-2010年省际层面节能减排全要素生产率变动趋势进行测度与对比,分析中国“十一五”期间节能减排政策的技术进步效应。首先,从作用效果上看,政策实施之前(2001-2005)全国节能减排技术变动率均值为0.82%,政策实施后(2006-2010)的均值是2.51%,由此可见,节能减排政策实施促使全国技术进步速率增加了2倍以上。然而,这一效应存在着显著的区域差异,其中,24个省区的技术进步率因政策实施出现不同程度地升高,而其余6个省区的技术进步率略有降低。同时,省际层面技术进步率的收敛性检验结果表明:节能减排政策实施促进技术进步率的区域差异呈现缩小趋势。其次,从作用途径上看,节能减排政策对全国技术进步的促进效应更多地得益于先进节能减排技术的加快推广,而技术创新的贡献相对较小。其中,东部发达地区主要通过技术创新实现技术进步,而中西部欠发达地区则更多地通过加快推广现有成熟技术的方式提高自身技术水平。因此,目前中国节能减排政策的技术促进效应主要源自于中西部欠发达地区加快使用先进节能减排技术,未来政策应重点刺激各地区从事节能减排技术创新活动。
     (3)中国省际节能减排技术进步的原因探析
     运用空间面板数据模型,估算了经济发展水平、产业结构、知识资本以及能源结构等因素对节能减排技术进步率的影响。结果显示,邻近地区技术水平变动具有显著的相互依赖性;区域经济发展水平的提高、第二产业占GDP比重的提升以及R&D投资的增加,均在不同程度上促进了节能减排技术进步。就各指标的贡献份额而言,前两个变量对节能减排技术进步的促进作用较为显著,而R&D投资的节能减排技术进步效应不甚明显。因此,后续节能减排政策应重点刺激各地区增加R&D投资中节能减排技术创新资金的比重。最后,能源结构中煤炭比重增加会弱化节能减排技术进步,但是这一作用并不显著。
Making economic growth compatible with energy conservation and environmental protection has become an outstanding theme China facing in the current and in the future. In general, scholars agreed that one of the most effective ways to solve this problem is to develop or adopt energy-saving and\or environmental-friendly technology (EET). However, the externality of technology change reduces the incentives for firm to invest in this type of technologies. It is indispensable for government to make some measures for the development of the EET. Against this background, it is significant to analyze the effect of energy-saving and emissions-reduction policy (ESER) to technological change of EET (EETC), since ESER is one of ways for China's government intervening economic development, which refers to a package of policy instruments for tackling energy shortage and environmental deterioration in the11th Five-Year Plan.
     Up to now, there are few studies on technology change effect of ESER. This paper tries to fill this gap by studying its related theories and empirical methods. First, from the two perspectives--technology and institution, this paper defines EETC as:compared to relevant alternatives, the development or adoption of a product, production process, management method and institution that is novel to the organization (developing or adopting it), which results, throughout its life cycle, in the improvement of energy efficiency and/or environmental performance. Subsequently, in the frontier analysis framework, this analysis expands the two-dimension directional distance function to define the energy-saving and emissions-reduction directional distance function (EDDF), and then use it to construct the TFP growth index of EET. The main conclusions are as follows,
     (1) The construction of TFP growth index of EET
     This paper defines EDDF by setting a three-dimensional vector which determines the direction of technological change towards the frontier of EET. Following their respective directions, energy inputs, emissions and desirable outputs can be translated to get the frontier, where producers attain the maximum of desirable outputs and emit the least of undesirable outputs using the minimum of energy inputs along with a given amount of non-energy inputs. According to the construction method of Luenberger productivity index, this analysis uses EDDF to construct the TFP growth index of EET, which measures EETC across periods. Its value of larger or less than and equal to zero shows technical progress, technical regress and technical relative stagnation. Moreover, according to the way to obtain technology change, the indicator can be decomposed two components:technological innovation and technology adoption.
     (2) Empirical analysis on the impact of ESER on EETC in China
     This paper employs DEA method to calculate EETC. The results show that, the value of technology change before (2001-2005) and after (2006-2010) the enforcement of ESER is0.82%and2.51%, respectively. The enforcement of ESER increases the rate of technical progress at the national level by more than two times. However, the effects across provinces are different. ESER accelerates technological progress rates of24provinces, but slightly decrease the progress rates for6provinces. The convergence test on technological progress rates for30provinces in the11th Five-Year Plan shows the difference will be diminishing over time. From the specific way, technological progress effect of ESER at the national level is mainly attributed to accelerated adoption of the frontier technology, and the effect of technical innovation is relatively weak. Specifically, the provinces located in the east area attain technical progress by increasing technical innovation activities of EET, and the provinces in the central and west area obtain technical progress by accelerating the adoption for advanced technologies.
     (3) The determinants of EETC
     This paper employs spatial panel data regression approach to estimate the impact of economic development level, economic structure, knowledge capital stock and energy structure on EETC. The results shows, technology change rates between adjacent provinces are interdependent; the enhancement in economic development level, or the increase in the ratio of the second industry to GDP or R&D investment, promotes significantly technology progress of EET, and comparing the elasticity values for the three coefficients, the value for R&D investment is the smallest. Therefore, the future ESER should focus on the incentives of regions investing in technical innovation of EET. Finally, the proportion of coal to total energy consumption weakens technology progress of EET, but the impact is not significant.
引文
[1]Anselin, L., Florax, R.J.G.M., Rey, S.J. Advances in spatial econometrics:methodology, tools and applications[M]. Berlin:Springer-Verlag.2004.
    [2]Anselin, L. Spatial econometrics:methods and models[M]. Dordrecht:Kluwer Academic Publisher.1988.
    [3]Anselin, L., Varga, A., Acs, Z. Geographic and sectoral characteristics of academic knowledge externalities[J]. Regional Science.2000,79(4):435-443.
    [4]Arundel, A., Kemp, R., Parto, S. Indicators for environmental innovation:what and how to measure. The international handbook on environmental technology management[M]. Cheltenham:Edward Elgar Publishing.2007.
    [5]Baltagi, B.H. Econometric analysis of panel data[M](2nd edition). New York:John Wiley and Sons.2001.
    [6]Barry, R.P., Pace, R.K. Monte Carlo estimates of the log determinant of large sparse matrices[J]. Linear Algebra and its Applications.1999,289:41-54.
    [7]Bauman,Y., Lee, M., Seeley, K. Does technological innovation really reduce marginal abatment costs? some theory, algebraic evidence, and policy implication[J]. Environmental and Resource Economics.2008,40:507-527.
    [8]Bellas, A.S. Empirical evidence of advances in scrubber technology[J]. Resource and Energy Economics.1998,20:327-343.
    [9]Bennear, L.S., Stavins, R.N. Second-best theory and the use of multiple policy instruments [J]. Environmental and Resource Economics.2007,37 (1):111-129.
    [10]Bian, Y.W., Yang, F. Resource and environment efficiency analysis of provinces in China:a DEA approach based on Shannon's entropy[J]. Energy Policy.2010,38:1909-1917.
    [11]Bjurek, H. Essays on efficiency and productivity change with applications to public service production [PhD dissertation]. Gothenburg:University of Gothenburg.1994.
    [12]Blackman, A., Bannister, G.J. Community pressure and clean technology in the informal sector:an econometric analysis of the adoption of propane by traditional Mexican brickmakers[J]. Journal of Environmental Economics and Management.1998,35(1):1-21.
    [13]Bjurek, H. The Malmquist total factor productivity index[J]. Scandinavian Journal of Economics.1996,98(2):303-313.
    [14]Bjurek, H., Forsund, F.R., Hjalmarsson, L. Malmquist productivity indexes:an empirical comparison. In Fare, R., Grosskopf, S., Russell, R.R (eds.), Index numbers:essays in honour of Sten Malmquist[M]. Boston:Kluwer Academic Publishers.1998.
    [15]Brandouy, O., Briec, W., Kerstens, K., Van de Woestyne, Ⅰ. Portfolio performance gauging in discrete time using a Luenberger productivity indicator[J]. Journal of Banking & Finance. 2010,34:1899-1910.
    [16]Brawn, E., Wield, D. Regulation as a means for the social control of technology [J]. Technology Analysis and Strategic Management.1994,6(3):78-99.
    [17]Briec, W., Kerstens, K. The Luenberger productivity indicator:an economic specification leading to infeasibilities[J]. Economic Modelling.2009,26:597-600.
    [18]Brunneimer, S., Cohen, M. Determinants of environmental innovation in US manufacturing industries[J]. Journal of Environmental Economics and Management.2003,45:278-293.
    [19]Caves, D.W., Christensen, L.R., Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity[J]. Econometrica.1982,50(6):1393-1414.
    [20]Chambers, R.G., Fare, R., Grosskopf, S. Productivity growth in APEC countries[J]. Pacific Economic Review.1996,1(3):181-190.
    [21]Chung, Y.H., Fare, R., Grosskopf, S. Productivity and undesirable outputs:a directional distance function approach[J]. Journal of Environmental Manage.1997,51:229-240.
    [22]Coelli, T.J., Rao, D.S.P., O'Donnell,C.J., Battese, G. An introduction to efficiency and productivity analysis (2nd Edition)[M]. Berlin:Springer.2005.
    [23]Del Rio Gonzalez, P. The empirical analysis of the determinants for environmental technological change:a research agenda[J]. Ecological Economics.2009,68:861-878.
    [24]Demirel, P., Kesidou, E. Stimulating different types of eco-innovation in the UK:government policies and firm motivations[J]. Ecological Economics.2008,70:1546-1557.
    [25]Diewert, W.E. Fisher ideal output, input and productivity indexes revisited[J]. Journal of Productivity Analysis.1992,3(3):211-248.
    [26]Diewert, W.E. Index number theory using differences rather than ratios[J]. American Journal of Economics and Sociology.2005,64:347-395.
    [27]Edvinsson, L., Sullivan, P. Develop a model for management intellectual capital[J]. European Management Journal.1996,14(4):356-364.
    [28]Elhorst, J.P. Specification and estimation of spatial panel data models[J]. International Regional Science Review.2003,26:244-268.
    [29]Epure, M., Kerstens, K., Prior, D. Bank productivity and performance groups:a decomposition approach based upon the Luenberger productivity indicator[J].2011,211: 630-641.
    [30]Fare, R., Grosskopf, S. Theory and application of directional distance functions[J]. Journal of Productivity Analysis.2000,13(2):93-103.
    [31]Fare, R., Grosskopf, S., Lindgren, B., Roos, P. Productivity developments in Swedish hospitals:a Malmquist output index approach. In Charnes, A., Cooper, W.W., Lewin, A.Y. Seiford, L.M. (eds.), Data envelopment analysis theory, methodology and applications [M]. Boston:Kluwer Academic Publishers.1989.
    [32]Fare, R., Grosskopf, S., Norris, M., Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries[J]. American Economic Review.1994, 84(1):66-83.
    [33]Fare, R., Grosskopf, S., Pasurka Jr., C.A. Environmental production functions and environmental directional distance functions[J]. Energy.2007,32:1055-1066.
    [34]Fare, R., Grosskopf,S., Roos, P. On two definitions of productivity[J]. Economics Letters. 1996,53:269-274.
    [35]Fare, R., Primont, D. Multi-output production and duality:theory and applications[M]. Boston:Kluwer Academic Publishers.1995.
    [36]Farrell, M.J. The measurement of productive efficiency[J]. Journal of the Royal Statistical Society. Series A (General),1957,120(3):253-290.
    [37]Fischer, C., Parry, I.W.H., Pizer, W.A. Instrument choice for environmental protection when technological innovation is endogenous [J]. Journal of Environmental Economics and Management.2003,45:523-545.
    [38]Fleiter, T., Worrell, E., Eichhammer, W. Barriers to energy efficiency in industrial bottom-up energy demand model-a review[J]. Renewable and Sustainable Energy Reviews.2011,15(6): 3099-3111.
    [39]Fowlie, M. Emissions trading, electricity restructuring, and investment in pollution abatement[J]. American Economic Review.2010,100:837-869.
    [40]Francis, J. The politics of regulation:a comparative perspective. Oxford:Blackwell.1993.
    [41]Frondel, M., Horbach, J., Rennings, K. End-of-pipe or cleaner production? an empirical comparision of environmental innovation decisions across OECD countries[J]. Business Strategy and the Environment.2007,16:571-584.
    [42]Fukuyama, H., Weber, W.L. A directional slacks-based measure of technical inefficiency [J]. Socio-economic Planning Sciences.2009,43:274-287.
    [43]Gans, J.S. Innovation and climate change policy[J]. American Economic Journal:Economic Policy (forthcoming).2011.
    [44]Gillingham, K., Newell, R.G., Pizer, W.A. Modeling endogenous technological change for climate policy analysis[J]. Energy Economics.2008,30:2734-2753.
    [45]Gitto,S., Mancuso,P. Bootstrapping the Malmquistindexes for Italian airports[J]. International Journal of Production Economics.2012,135:403-411.
    [46]Goldsmith, R. A perpetual inventory of national wealth, in Gainsburgh, M. (ed.), Studies in income and wealth[M]. New York:NBER.1951.
    [47]Greene, D.L. CAFE or price? an analysis of the effects of federal fuel economy regulations and gasoline price on new car MPG,1978-89. The Energy Journal.1990, 11(3):37-57.
    [48]Grilliches, Z. Issues in assessing the contribution of research and development to productivity growth[J]. Journal of Economics.1979,10(3):92-116.
    [49]Haan, A.D. A defining moment? China's social policy response to the financial crisis[J]. Journal of International Development.2010,22:758-771.
    [50]Hall, B., Van Reenen, J. How effective are fiscal incentives for R&D? a review of the evidence[J]. Research Policy.2000,29:449-469.
    [51]Hamamoto, M. Environmental regulation and the productivity of Japanese manufacturing industries[J]. Resource and Energy Economics.2006,28:299-312.
    [52]Hascic, I., Johnstone, N., Michel, C. Environmental policy stringency and technological innovation:evidence from patent counts. Paper presented at the European Association of Environmental and Resource Economists 16th Annual Conference, Gothenburg, Sweden, June 26,2008.
    [53]Hicks, J. The theory of wages[M]. London:Macmillan.1932.
    [54]Hoang, V-N., Coelli, T. Measurement of agricultural total factor productivity growth incorporating environmental factors:a nutrients balance approach [J]. Journal of Environmental Economics and Management.2011,62:462-474.
    [55]Horbach, J., Rammer,C., Rennings, K. Determinants of eco-innovations by type of environmental impact-the role of regulatory push/pull, technology push and market pull[J]. Ecological Economics.2012,78:112-122.
    [56]Howarth, R.B., Haddad, B.M., Paton, B. The economics of energy efficiency:insights from voluntary participation programs[J]. Energy Policy.2000,28:477-486.
    [57]Isaksson, H.L. Abatement costs in response to the Swedish charge on nitrogen oxide emissions[J]. Journal of Environmental Economics and Management.2005,50:102-120.
    [58]Jaffe, A.B. The importance of'spillovers'in the policy mission of the advanced technology program [J]. Journal of Technology Transfer.1998,6:11-19.
    [59]Jaffe, A.B., Stavins, R.N. Dynamic incentives of environmental regulations:the effects of alternative policy instruments on technology diffusion[J]. Journal of Environmental Economics and Management.1995,29:43-63.
    [60]Jaffe, A.B., Newell, R., Stavins, R.N. Environmental policy and technological change[J]. Environmental and Resource Economics.2002,22:41-69.
    [61]Jaffe, A.B., Newell, R.G, Stavins, R.N. Technological change and the environment. In:Maler, K.G., Vincent, J. (Eds.), Handbook of environmental economics (volume 1)[M]. North-Holland:North-Holland publisher.2003.
    [62]Jaffe, A.B., Newell, R.G., Stavins, R.N. A tale of two market failures:technology and environmental policy[J]. Ecological Economics.2005,54:164-174.
    [63]Jaffe, A.B., Palmer, K. Environmental regulation and innovation:a panel data study[J]. Review of Economics and Statistics.1997,79:610-519.
    [64]Johnstone, N., Hascic, I., Poirier, J., Hemar, M., Michel, C. Environmental policy stringency and technological innovation:evidence from survey data and patent counts[J]. Applied Economics.2012,44:2157-2170.
    [65]Johnstone, N., Hascic, I., Popp, D. Renewable energy policies and technological innovation: evidence based on patent counts[J]. Environment and Resource Economics.2009, 45:133-155.
    [66]Jorgenson, D., Gollop, F., Fraumeni, B. Productivity and U.S. economic growth[M]. Cambridge:Harvard University Press.1987.
    [67]Kemmelskamp, J., Rennings, K., Leone, F. Innovation-oriented environmental regulation: theoretical approaches and empirical analysis[M]. Heidelberg:Physica-Verlag.2000.
    [68]Kemp, R. The diffusion of biological waste-water treatment plants in the Dutch food and beverage Industry[J]. Environmental and Resource Economics.1998,12:113-136.
    [69]Kemp, R., Pearson, P. Final report MEI project about measuring eco-innovation, Maastricht.
    [70]Kemp, R., Pontoglio, S. The innovation effects of environmental policy instruments-a typical case of the blind men and the elephant?[J]. Ecological Economics.2011,72:28-36.
    [71]Keohane, N.O. Essays in the economics of environmental policy (Ph.D. Dissertation). Boston: Harvard University.2001.
    [72]Keohanc, N.O. Cost savings from allowance trading in the 1990 Clean Air Act:estimated from a choice-based model. In:Kolstad, C.E., Freeman, J.(Eds.), Moving to markets in environmental regulation:lessons from twenty years experience[M]. New York:Oxford University Press.2007.
    [73]Kerr, S., Newell, R. Policy-induced technology adoption:evidence from the US lead phase down[J]. Journal of Industrial Economics.2003,51:317-343.
    [74]Kneese, A., Schultze, C. Pollution, prices, and public policy[M]. Washington DC:Brookings Institution.1975.
    [75]Knittel, C.R. Automobiles on steroids:product attribute trade-offs and technological progress in the automobile sector[J]. American Economic Review.2011,101(7):3368-3399.
    [76]Knox-Lovell, C.A. The decomposition of Malmquist productivity indexes[J]. Journal of Productivity Analysis.2003,20:437-458.
    [77]Kumar, S. Environmentally sensitive productivity growth:a global analysis using Malmquist-Luenberger index[J]. Ecological Economics.2006,56:280-293.
    [78]Kumar, S., Managi, S. Energy price-induced and exogenous technological change:assessing the economic and environmental outcomes[J]. Resource and Energy Economics.2009, 31:334-353.
    [79]Krugman, P. Increasing returns and economic geography[J]. Journal of political Economy. 1991,99(3):483-499.
    [80]Krysiak, F. Environmental regulation, technological diversity, and the dynamics of technological change[J]. Journal of Economic Dynamics and Control.2009,35 (4):528-544.
    [81]Lanjouw, J.O., Mody, A. Innovation and the international diffusion of environmentally responsive technology[J]. Research Policy.1996,25:549-571.
    [82]Lanoie, P., Laurent-Lucchetti, J., Johnstone, N., Ambec, S. Environmental policy, innovation and performance:new insights [R]. GAEL Working Paper 2007-07.
    [83]Liao, H., Fan,Y., Wei, Y-M. What induced China's energy intensity to fluctuate: 1997-2006?[J]. Energy Policy.2007,35(6):4640-4649.
    [84]Luenberger, D.G. Benefit functions and duality[J]. Journal of Mathematical Economics.1992, 21:461-81.
    [85]Magat,W. Pollution control and technological advance:a model of the firm[J]. Journal Environmental Economics and Management.1978,5:1-25.
    [86]Magat,W. The effects of environmental regulation on innovation[J]. Law Conremporary Problems.1979,43:4-25.
    [87]Mahlberg, B., Sahoo, B.H. Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application [J]. International Journal Production Economics. 2011,131:721-726.
    [88]Majone, G. Choice among policy instruments for pollution control. Policy Analysis.1976, 4:589-613.
    [89]Malmquist, S. Index numbers and indifference surfaces[J]. Trabajos de Estadistica.1953, 4:209-242.
    [90]Mansfield, E., Schwartz, M., Samuel, W. Imitation costs and patents:an empirical study[J]. The Economic Journal,1981,91 (364):907-918.
    [91]Martin, N., Worrell, E., Ruth, M., Price, L., Elliott, R.N., Shipley, A.M., Thorne, J. Emerging energy-efficient industrial technologies[R].2000.
    [92]Milliman, S.R., Prince, R. Firm incentives to promote technological change in pollution control [J]. Journal of Environmental Economics and Management.1989,17:247-265.
    [93]Montero, J.P. Market structure and environmental innovation[J]. Journal of Applied Economics.2002,5(2):293-325.
    [94]Moran, P.A.P. Notes on continuous stochastic phenomena[J]. Biometrika.1950,37(1):17-23.
    [95]Moreno, R., Paci, R., Usai, S. Spatial spillovers and innovation activity in European region [R].2004.
    [96]Newell, R.G., Jaffe, A.B., Stavins, R.N. The induced innovation hypothesis and energy-saving technological change[J]. Quarterly Journal of Economics.1999,104:907-940.
    [97]Newell, R.G., Jaffe, A.B., Stavins, R.N. The effects of economic and policy incentives on carbon mitigation technologies[J]. Energy Economics.2006,28:563-578.
    [98]Noailly, J. Improving the energy efficiency of buildings:the impact of environmental policy on technological innovation[J]. Energy Economics.2012,34:795-806.
    [99]Odeck, J. Assessing the relative efficiency and productivity growth of vehicle inspection services:an application of DEA and Malmquist indices[J]. European Journal of Operational Research.2000,126:501-514.
    [100]OECD. Taxation, innovation and the environment[R].2010.
    [101]Oh, D.H., Heshmati, A. A sequential Malmquist-Luenberger productivity index: environmentally sensitive productivity growth considering the progressive nature of technology [J]. Energy Economics.2010,9(3):1345-1355.
    [102]Oliveira, M.M., Gaspar, M.B., Paixao, J.P., Camanho, A.S. Productivity change of the artisanal fishing fleet in Portugal:a Malmquist index analysis[J]. Fisheries Research.2009, 95:189-197.
    [103]Olmstead, S.M. Applying market principles to environmental policy. In:Vig, N.J., Kraft, M.E. (eds) Environmental policy:new directions for the Twenty-First Century[M]. Washington, DC:CQ Press.2010.
    [104]Orr, L. Incentive for innovation as the basis for effluent charge strategy [J]. American Economic Review.1976,66:441-447.
    [105]Otto, V.M., Reilly, J. Directed technical change and the adoption of CO2 abatement technology:the case of CO2 capture and storage[J]. Energy Economics.2008,30:2879-2898.
    [106]Popp, D. Induced innovation and energy prices[J]. American Economic Review.2002, 92(1):160-180.
    [107]Popp, D. Pollution control innovations and the Clean Air Act of 1990[J]. Journal Policy Analysis and Management.2003,22(4):641-660.
    [108]Popp, D. International innovation and diffusion of air pollution control technologies:The effects of NOx and SO2 regulation in the U.S., Japan, and Germany[J]. Journal of Environmental Economics and Management.2006a,51(1):46-71.
    [109]Popp, D. Exploring links between innovation and diffusion:adoption of NOx control technologies at U.S. coal-fired power plants[R].2006b.
    [110]Popp, D. Exploring links between innovation and diffusion:adoption of NOx control technologies at US coal-fired power plants[J]. Environmental and resource economics.2010, 45:319-352.
    [111]Popp, D., Hascic, I., Medhi, N. Technology and the diffusion of renewable energy[J]. Energy Economics.2011,33:648-662.
    [112]Popp, D., Newell, R.G., Jaffe, A.B. Energy, the environment and technological change[R]. 2009.
    [113]Raa, T.T., Shestalova, V. The Solow residual, Domar aggregation, and inefficiency:a synthesis of TFP measures[J]. Journal of Productivity Analysis.2011,36:71-77.
    [114]Requate,T. Dynamic incentives by environmental policy instruments-a survey[J]. Ecological Economics.2005,54:175-195.
    [115]Rennings, K. Redefining innovation-eco-innovation research and the contribution from ecological economics [J]. Ecological Economics.2000,32:319-332.
    [116]Rennings, K., Andreas, Z., Kathrin, A., Esther, H. The influence of different characteristics of the EU environmental management and auditing scheme on technical environmental innovations and economic performance [J]. Ecological Economics.2006,57(1):45-59.
    [117]Romer, P.M. Endogenous technological change[J]. Journal of Political Economy.1990, 98(5):71-102.
    [118]Rosenberg, N. Inside the black box[M]. Cambridge:Cambridge University Press.1982
    [119]Schmookler, J. Invention and economic growth[M]. Cambridge:Harvard University Press. 1966.
    [120]Schnmpeter, J. Capitalism, socialism and democracy [M]. New York:Harper.1942.
    [121]Shephard, R.W. Cost and production functions[M]. Princeton:Princeton University Press. 1953.
    [122]Shrivastava, P. Environmental technologies and competitive advantage[J]. Strategic Management Journal.1995,16:183-200.
    [123]Smirnov, O., Anselin, L. Fast maximum likelihood estimation of very large spatial autoregressive models:a characteristic polynomial approach[J]. Computational Statistics and Data Analysis.2001,35(3):301-319.
    [124]Stewart, T.A. Intellectual capital[M]. London:Nicholas Brealey Publishing.1997.
    [125]Stoneman, P. The economic analysis of technological change[M]. Oxford:Oxford University Press.1983.
    [126]Tone, K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research.2001,130:498-509.
    [127]Wang, Q., Chen, Y. Energy saving and emission reduction revolutionizing China's environmental protection[J]. Renewable and Sustainable Energy Reviews.2010,14:535-539.
    [128]Wilbanks, T.J. Inducing transformational energy technological change[J]. Energy Economics. 2011,33:699-708.
    [129]Yarime, M. From end-of-pipe to clean technology:effects of environmental regulation on technological change in the Chlor-Alkali Industry in Japan and Western Europe [Ph.D. dissertation], Maastricht:United Nations University Institute for New Technologies.2003.
    [130]Yoriik, B.K., Zaim, O. Productivity growth in OECD countries:a comparison with Malmquist indices[J]. Journal of Comparative Economics.2005,33:401-420.
    [131]Zhang, J. Estimation of China's provincial capital stock (1952-2004) with applications[J]. Journal of Chinese Economic and Business Studies.2008,6:177-196.
    [132]Zofio, J.L., Knox-Lovell, C.A. Graph efficiency and productivity measures:an application to US agriculture[J]. Applied Economics.2001,33:1433-1442.
    [133]陈诗一.中国工业分行业统计数据估算:1980-2008[J].经济学(季刊).2011,10(3):735-776.
    [134]陈诗一.节能减排与中国工业的双赢发展(2009-2049)[J].经济研究.2010,3:129-143.
    [135]符淼.地理距离和技术外溢效应——对技术和经济聚集度现象的空间计量解释[J].经济学(季刊).2009,8(4):1549-1566.
    [136]陈雯.两型社会与节能减排标准化体系构建[J].求索.2011,6:89-90.
    [137]韩廷春.金融发展和经济增长:理论、实证和政策[M].北京:清华大学出版社.2002
    [138]黄平,胡日东.环境规制与企业技术创新相互促进的机理与实证研究[J].财经理论与实践.2010,1:99-103.
    [139]何小刚,赵耀辉.技术进步、节能减排与发展方式转型——基于中国工业36个行业的实证考察[J].数量经济技术经济研究.2012,3:19-33.
    [140]江涛涛,郑宝华.低碳经济下中国区域全要素生产率的收敛性研究[J].经济问题.2011,12:31-35.
    [141]李光军,徐松,冯海波.企业实施清洁生产政策激励机制研究[J].环境科学和技术.2004,5:87-89.
    [142]李瑾.环境政策对技术变迁的作用机制研究[博士论文].上海:复旦大学.2009.
    [143]李廉水,周勇.技术进步能提高能源效率吗?一基于中国工业部门的实证检验[J].管理世界.2006,10:82-89.
    [144]林伯强,牟敦国.能源价格对宏观经济的影响—基于可计算一般均衡(CGE)的分析[J].经济研究.2008,11:88-101.
    [145]林毅夫,刘培林.经济发展战略对劳均资本积累和技术进步的影响——基于中国经验的实证研究[J].中国社会科学.2003,4:18-32.
    [146]孟斌,张景秋,王劲峰,张文忠,郝卫秋.空间分析方法在房地产市场研究中的应用——以北京市为例[J].地理研究.2005,24(6):956-965.
    [147]莫志宏,沈蕾.全要素生产率单要素生产率与经济增长[J].北京工业大学学报(社会科学版).2005,4:29-32.
    [148]仇元福,潘旭伟,顾新建.知识资本构成分析及其技术评价[J].中国软科学.2002,10:115-119.
    [149]沈斌,冯勤.基于可持续发展的环境技术创新及其政策机制[J].科学学与科学技术管理.2004,8:52-55.
    [150]沈小波,曹芳萍.技术创新的特征与环境技术创新政策——新古典和演化方法的比较[J].厦门大学学报(哲学社会科学版).2010,201(5):29-36.
    [151]史丹,李金隆.产业结构变动对能源消费的影响[J].经济理论与经济管理.2003,8:30-32.
    [152]舒元,才国伟.中国省际技术进步及其空间扩散分析[J].经济研究.2007,6:106-118.
    [153]宋海岩,刘淄楠,蒋萍.改革时期中国总投资决定因素的分析[J].世界经济文汇2003,1:44-56.
    [154]孙传旺,刘希颖,林静.碳强度约束下中国全要素生产率测算与收敛性研究[J].金融研究.2010,6:17-33.
    [155]王国印,王动.波特假说、环境规制与企业技术创新——对中东部地区的比较分析[J].中国软科学.2011,1:100-112.
    [156]王璐,杜澄,王宇鹏.环境管制对企业环境技术创新影响研究.中国行政管理[J]. 2009,284(2):52-56.
    [157]温家宝.2012年政府工作报告[Z].新华网http://news.xinhuanet.com/politics/20121h/2012-03/15/c 111660147.htm.
    [158]吴巧生,成金华.论环境政策工具[J].经济评论.2004,1:104-109.
    [159]吴巧生,王华.技术进步与中国能源——环境政策[J].中国地质大学学报(社会科学版).2005,1:46-54.
    [160]吴玉鸣.空间计量经济模型在省域研发和创新中的应用研究[J].数量经济技术经济研究.2006,5:74-130.
    [161]吴玉鸣,李建霞.中国省域能源消费的空间计量经济分析[J].中国人口、资源与环境.2008,18(3):93-98.
    [162]许健,吕永龙.中国环境技术产业化的现状与发展对策[J].环境科学进展.1999,7:13-21.
    [163]许庆瑞,吕燕,王伟强.中国企业环境技术创新研究[J].中国软科学.1995,5:16-20.
    [164]颜鹏飞,王兵.技术效率、技术进步与生产率增长:基于DEA的实证分析[J].经济研究.2004,12:55-65.
    [165]杨冕.生产要素/能源品种替代对中国节能减排的影响研究[博士论文].兰州:兰州大学.2011.
    [166]叶裕民.全国及各省区市全要素生产率的计算和分析[J].经济学家.2002,3:115-121.
    [167]岳书敬,刘朝明.人力资本与区域全要素生产率分析[J].经济研究.2006,4:90-96.
    [168]张军,吴桂英,张吉鹏.中国省际物质资本存量估算:1952-2000[J].经济研究.2004,10:35-44.
    [169]张继红,吴玉鸣,何建坤.专利创新与区域经济增长关联机制的空间计量经济学分析[J].科学学与科学技术管理.2007,1:83-89.
    [170]赵伟,马瑞永,何元庆.全要素生产率变动的分解——基于Malmquist生产力指数的实证分析[J].统计研究.2005,7:37-42.
    [171]赵细康.引导绿色创新——技术创新导向的环境政策研究[M].北京:经济科学出版社.2006.
    [172]赵玉民,朱方明,贺立龙.环境规制的界定、分类与演进研究[J].中国人口、资源与环境.2009,19(6):85-90.
    [173]钟晖,王建锋.建立绿色技术创新机制[J].生态经济.2000,3:41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700