聚苯胺修饰电极对多巴胺、尿酸、抗坏血酸的电化学区分效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺(PAn)原料廉价易得、合成简单、导电率高、稳定性好,一直是导电聚合物领域的研究热点。由于具有独特的掺杂行为和良好的电化学可逆性,所以在电分析化学领域已经进行了不少研究。多巴胺(DA)、尿酸(UA)、抗坏血酸(AA)均是存在于生命体内的小分子物质,分析体内这三种物质的含量具有重要的意义,三组分混合体系的电化学检测也一直是研究的热点之一。本文利用循环伏安法制备了聚苯胺修饰石墨电极,成功地实现了对DA、UA、AA的电化学区分,利用三组分的电催化氧化峰电流可实现三组分的同时检测。
     本论文主要开展了以下两方面的工作:
     1.采用电化学沉积的方法制备了聚苯胺修饰石墨(PAn/SG)电极,分析了苯胺在电极表面循环聚合的几个影响因素,实验结果表明最佳的聚合条件为:循环扫描的上限为+0.90 V,下限为-0.2 V,苯胺的浓度为0.020 mol/L,扫描周数为20周,扫描速度为0.05 V/s。通过改变不同的实验参数制得不同形貌的PAn膜,并通过循环伏安法、紫外光谱、扫描电镜对制得的PAn膜进行了表征,对反应机理进行了简单的探讨。该修饰电极能在空气中稳定存在。
     2.利用制备好的PAn/SG修饰电极,对多巴胺、尿酸、抗坏血酸的混合溶液进行同时测定。在0.5 mol/L的H2SO4溶液中,三者的氧化峰得到了很好的分离,多巴胺和尿酸之间的峰电位差为110 mV,多巴胺和抗坏血酸之间的峰电位差为250 mV。而且在一定的浓度范围内,三者的氧化峰电流各自与其浓度呈良好的线性关系,可实现三组分体系中任一成分的测定,重现性较好,检出限分别如下:DA是1.00×10~(-5) mol/L,UA是1.10×10~(-5) mol/L,AA是2.00×10~(-5) mol/L。采用循环伏安等技术研究了三组分的可逆性、吸附性,以及转移的电子数和参与反应的质子数,推测出各自的电极反应机理。
Polyaniline (PAn) has attracted considerable interesting due to its availability, simple synthesis, high conductivity and stability. Because Polyaniline film has a unique doping behavior and good electrochemical reversibility,a lot of research of PAn-film modified eleetrode in the analysis and testing has been conducted. Dopamine (DA)、uric acid (UA)、ascorbic acid (AA) are small molecules of life that present in the body,it is significant to analysis these three substances, the electrochemical detection of three mixed systems has also been one of the hot. In this paper, a polyaniline modified graphite electrodes was prepared by cyelic voltammetry, the peak potential of dopamine、uric acid and ascorbic acid were separate on the modified electrode, and can achieve simultaneous detection of three components.
     This paper mainly carried out the following two aspects:
     1. A new electrode of polyaniline modified graphite was prepared by electrochemical deposition, several factors affecting the polymerization of aniline on the electrode surface have been investigated. the experimental results showed that the best polymerization conditions are: the upper scanning potential of cyclic voltammetry is 0.95 V, the lower scanning potential is -0.2 V, the concentration of aniline is 0.020 mol/L, the scan weeks are 20, scanning rate is 0.05 V/s. Different PAn films were obtained by varying the experimental parameters, characterized them by cyclic voltammetry, UV, scanning electron microscopy and discuss the reaction mechanism simplely. The modified electrode can be stable in the air.
     2. Determinating the mixed solution of dopamine, uric acid, ascorbic acid by PAn / SG modified electrode. In the solution of 0.5 mol/L vitriol,the peak potential of these there component were separated on the electrode, the potential difference between dopamine and uric acid is 110 mV, the potential difference between dopamine and ascorbic acid is 250 mV. Their peck current was linear respond to their concentration. The detection limits are as follows: DA is1.00×10~(-5) mol/L,UA is 1.10×10~(-5) mol/L,AA is 2.00×10~(-5) mol/L. Discuss the reversible、adsorption、the electrons of transfered and the protons in the responses of three components by Cyclic voltammetry technique.
引文
[1]董绍俊,车光礼,谢远武著.化学修饰电极.北京:科学出版社.2003.1~1
    [2] R、F、Lane and A.T. Hubbard,J.pbys.Chem.,1973,77,1401
    [3] P.T.Moses.L.Wier and R.W.murray,Anal.Chem.,1975,47,1882
    [4]赵文元,王亦军,功能高分子材料化学.北京,化工工业出版社,1996
    [5] MacDiarmid A G.Chem. Engin. News. 1984, Sept 10:38
    [6] MacDiarmid A G. Chiang J C, Halpern M, Huang W S , Krawczyk J R, Mammone R J, Mu S L, Somasiri N L D, Wu W. Polym. Prepr. 1984, 25 (2):248
    [7] Lane R F,Hubbard A T.Electrochemistry of chemisorbed molecules.I.Reactants connected to electrodes through olefinic substituents.J.Phys.Chem.,1973,77(11):1401–1410
    [8] Moses P R,Wier L,Murray R W.Chemically modified tin oxide electrode.Anal. Chem. ,1975,47(12):1882–1886
    [9] Watkins B F,Behling J R,Kariv E,et al.Chiral electrode.J.Am.Chem.Soc.,1975,97(12):3549–3550
    [10] Fleischmann M,Oliver A,Robinson J.In situ X-ray diffraction studies of electrode solution interfaces.Electrochim.Acta,1986,31(8):899-906
    [11] Buschmann H W,Wilhelm S,Vielstich W.On the study of methanol oxidationby electrochemical sims. Electrochim.Acta,1986,31(8):939-642
    [12] Geske D H,Maki A H.Electrochemical generation of free radicals and their study by electron spin resonace spectroscopy;the nitrobenzene.J.Am.Chem.Soc.,1960,82(11):2671-2676
    [13] Farquharson S,Milner D,Tadayyoni M A,et al.Kinetics of simple inner and outer-sphere electrochemi- cal reactions at rotating silver electrodes as examined using surface-enhanced raman spectroscopy. J.Electroanal. Chem.,1984,178(1):143-152
    [14] Bewich A,Kunimatsu K,Pons B S.Infra red spectroscopy of the electrode-electrolyte interphase. Electrochim. Acta,1980,25(4):465-468
    [15] Buttry D A.Electroanalytical Chemistry(Bard A J.Ed.).New York:Marcwl Dekker,1991,17:1
    [16] Watkins B F,Behling J R,Miller L L,et al.Chiral electrode[J].J Am Chem Soc,1975,97(12):3549-3550.
    [17] Moses P R,Wier L,Murray R W.Chemically modified tin oxide electrode[J].Anal Chem,1975, 47(12): 1882-1886.
    [18] Buttry D A.Electroanalytical Chemistry(Bard A J.Ed.).New York:Marcwl Dekker,1991,17:1
    [20] Watkins B F,Behling J R,Miller L L,et al.Chiral electrode[J].J Am Chem Soc,1975,97(12):3549-3550.
    [21] Moses P R,Wier L,Murray R W.Chemically modified tin oxide electrode[J].Anal Chem,1975,47(12): 1882-1886.
    [18] Yoon H C,Kim H S.Multilayered assembly of dendrimers with enzymes on gold:thickness-controlled biosensing interface.Anal.Chem.,2000,72(5):922–926
    [19] Shepard V R,Armstrong N R.Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes.J.Phys.Chem.,1979,83(10):1268–1276
    [20] Millan K M,Mikkelsen S R.Sequence-selective biosensor for DNA based on electroactive hybridization indicators.Anal.Chem.,1993,65(17):2317–2323
    [21] Zhu Y F,Gao Y Q,Zhan D P,et al.Electrocatalytic oxidation of NADH with Meldola’s blue functionali- zed carbon nanotubes electrodes.Biosens.
    [22] Palecek E,Fojta M.Differential pulsed voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid components.Anal. Chem.,1994,66(9):1566–1571
    [23] Brandriss S,Margel S.Synthesis and characterization of self-assembled hydrophobic monolayer coatings on silica colloids.Langmuir,1993,9(5):1232–1240
    [24] Ogawa H,Chiher T,Taya K.Selective monomethyl esterification of dicarboxylic acids by use of monocarboxylate chemisorption on alumina.J.Am.Chem.Soc.,1985,107(5):1365–1369
    [25]陆琪,庞代文,胡深等.DNA修饰电极的研究-Ⅶ.共价键合和吸附DNA-SAM/Au修饰电极的制备及表征.中国科学(B辑),1999,29(4):341–347
    [26] Lee H,Kep L J,Hong H G,et al.Absorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces.J.Phys.Chem.,1988,92(9):2597–2601
    [27] Shigehara K,Oyama N,Anson F C.Electrochemical responses of electrodescoated with redox polymers. Evidence for control of charge-transfer rates across polymeric layers by electron exchange between incorporated redox sites.J.Am.Chem.Soc.,1981,103(10):2552–2558
    [28] Karyakin A A,Strakhovu A K,Yatsimirsky A K.Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions: Electropolymerization of substituted anilines. J.Electroanal. Chem., 1994,371(1–2):259–265
    [29]刘有芹,金松子,刘六战等.铁氰化锰修饰玻碳电极的制备及其电化学行为.分析化学, 2004, 32(7): 847–851
    [30] Millan K M,Saraullo A,Mikkelsen S R.Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode.Anal.Chem.,1994,66(18):2943–2948
    [31]朱明霞,全晓塞.化学修饰电极应用研究进展[J].宁夏农学院学报,1998,46:1363~1369.
    [32] Zen J M,Hsu C T.A selective voltammetric method for uric acid detection at Nafion-coated carbon paste electrodes[J].Talanta,1998,46:1363~1369.
    [33] Whiteley L D,Martin C R.Perfluorosulfonate ionomer film coated electrodes as electrochemical sensors: fundamental investigations.Anal.Chem.,1987,59(14): 1746-1751
    [34] Gehron M J,Toth A B.Voltammetric behavior of iron(II)at electrodes modified with quaternized poly(4-vinylpyridine) crosslinked with bathophenanthrolinedisulfonic acid.Anal. Chem.,1986, 58(7): 1488-1492
    [35] Lin Y H,Lu F, Tu Y,et al.Glucose biosensors based on carbon nanotube nanoelectrode ensembles[J]. Nano Lett.2004.4:191~195.
    [36] Zhao Y F,Gao Y Q,Zhan D P,et al.Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode[J].Talanta,2005,66:51~57.
    [37] Zare H R,Nasirizadeh N,Ardakani M M.Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode.Appliccation to the simultaneous determination of ascorbic acid,dopamine and uric acid[J].J. Electroanal.Chem,2005,577:25~33.
    [38]张玉忠,赵红,袁悼斌。大黄酸玻碳修饰电极对血红蛋白的催化还原[J].高等学校化学学报,2003,23(3):391一393.
    [39] Wang J,Hutchins L D. Anal. Chem. Chem. 1986,58:1019
    [40]施国跃,周红国,陆华,等。微渗析活体取样-NiHCF修饰电极色谱电化学检测的研究[J].分析化学,1998,26(7):814-818
    [41]王卓,周真,郭宗文等.[J].理工大学学报,2002,7(2):54-56
    [42]黄菲.抗精神病类药物电化学传感器研究:(博士学位论文).上海:复旦大学,2007
    [43]孙元喜,冶保献,周性尧。聚中性红膜修饰电极的电化学特性及其电催化性能[J].分析化学,1998,26(2):166-169
    [44] Starodub N F,Starodub V N.[J].Ukr Biokhim Zh,2003,75(4):37-44
    [45]韩璐.基于化学修饰电极的环境污染物电化学检测:(硕士学位论文).济南:山东大学,2009
    [46]纪效波.化学修饰电极及其在痕量元素分析中的应用研究:(硕士学位论文).武汉:武汉大学,2004
    [47] H D Sun,Z K Tang,et al.[J].Appl.Phys.A1999,69:381
    [48]杨勤燕.环境与食品安全检测中新型化学修饰电极的研究与应用:(硕士学位论文).上海:华东师范大学,2010
    [49]曾立平.新型化学修饰电极的制备及其应用于食品中重金属检测的方法研究:(硕士学位论文).上海:复旦大学,2009
    [50] MacDiarmidA G, Chiang J C, Huang W, Humphrey B D, Somasiri N L D. Mol. Cryst. Liq. Cryst. 1985,125:309
    [51] A.GMacdiallnid,J.C.Chiang,A.F.Richter,A.J.Epstein.Polyanline:a new concept In eonducting polymers. Synthetic Metals,1987,18:285-290
    [52] Wei,Y.;Hariharan,R.;Patel,S.A.Macromolecules 1990,23,758.
    [53] Savita,P.; Sathyanarayana,D.N.Synth.Met.2004,145,113.
    [54] Santhos,P.; Sankarasubramanian,M.; Thanneermalai,M.:GoPalan,A.; Vasudevan,T. Mater.Chem.Phys.2004,85,316.
    [55] Savita,P.;Sathyanarayana,D.N.J.Polym.Sci.PartA:Polym.Chem.2005,43,3040.
    [56] Jing X B,Wang L X,Wang X H,et al.,Synthesis,structhesis,structure,properties and applications of conducting polyaniline,Acta Polym.Sin.,2005,5:655-663.
    [57] Menardo C,Nechtschein M,Rousseau A,et al.,Investigation on the structure of polyaniline:C n.m.r.and titration studies,Synth.Met.,1998,25:311-322.
    [58] Cao Y,Qiu J,Smith P,Effect of solvents and co-solvents on the processibility of polyaniline:1. solubility and conductivity studies,Synth.Met.,1995,69:187-190.
    [59] Prokes,J.;Stejskal,J.;Krivka,I.;Tobolkova,E.Synth.Met.1999,102。,1205.
    [60] Sulimenko,T.;Stejskal,J.;Prokes,J.Journal of Colloid and Interface Science 2001,236,328.
    [61]马利,刘昊,甘孟瑜,等。乳液法合成磺基水杨酸掺杂纳米聚苯胺[J].表面技术,2006,35 (4):42-45.
    [62]唐晓辉,李永舫,方世璧.二硫二磺酸掺杂聚苯胺电化学性能的研究[J].物理化学学报,1998,14 (3):214-218.
    [63] KOUL S,CHANDRAR,DHAWAN A J Conducting polyan iline composite for ESD and EM I at101 GHz[J].Polymer,2000(41):9305-9310.
    [64]苏静,王庚超,邓惠山,等.掺杂质子酸的类型对聚苯胺结构和电导率的影响[J].功能高分子学报,2002,(2):122-126.
    [65]张柏宇,高治,苏小明.聚苯胺的掺杂及其导电性能研究[J].石化技能与应用,2005,(1):11-13.
    [66] HUANG J,WAN M X.Temperature and pressure dependence of corr ductivity of polyaniline synthesized by in suit doping polymerization in the presence of organic function acid as dopants[J].Solid State Communications,1998,104 (4):255-259.
    [67]杨庆浩,王杨勇,程光旭.复合磺酸体系原味聚合聚苯胺性能研究[J].材料工程,2005(5):30-33.
    [68] Rao,P.S.;Subrahmanya,S.;Sathyanarayana,D.N.Synth.Met.2002,128,311.
    [69] Karatchevtesva,I.;Zhang,Z.;Hana,J.;Luca,V.Chem.Mater.2006,18,4908.
    [70] Zeng X R,Ko T M,Structure-conductivity relationships of iodine-doped polyaniline,J.Polym.Sci.,Part B:Polym.,1998,35:1991-2001.
    [71] Zhang,G..R.;Zhang,A.J.;Wang,H.;Liu,X.L.;Lu,J.-X.Acta Polymerica Sinica 2008,1,47(in Chinese).
    [72] Yang,H.;Bard,A.J. J.Electroanal.Chem.1992,339,423.
    [73] Stejskal,J.;Kratochvil,P.;Spirkovat,M.Polymer 1995,36,4135.
    [74] S.P.Armes,M.Aldissi.Potassium iodate oxidation route to polyaniline:an optimization study.Polymer,1991,32:2043-2048.
    [75] Y.Cao,A.Andreatta,A.J,Heeger,P.Smith.Influence of chemical polymerization conditions on the properties of polyaniline.Polymer,1989,30:2305-2311.
    [76] J.Stejskal , A.Riede , D.Hlavata , J.Proke , M.Helmstedt , P.Holler.The effect of polymerization temperature on molecular weight,crystallinity,and electrical conductivity of polyaniline.Synthetic Metals,1998,96:55-61.
    [77] Osterholm J E,Cao Y,Klavetter F,et al.,Emulsion polymerization of aniline, Synth. Met., 1993,55:1034~1039
    [78]易德莲,秦晓蓉,刘娟,等.聚苯胺修饰铂电极的研究.[J]武汉科技大学学报,2006,29(1):59-60
    [79]元西敏,杜艳芳等.聚苯胺在离子液体中的电合成及其电催化性质.[J]华东师范大学学报,2005,3(3):53-56
    [80]姚萌.聚苯胺薄膜修饰电极及其电致变发射率器件的制备及性能研究:(工学硕士学位论文).国防科学技术大学研究生院,2008
    [81]赵玮婷.导电高分子聚苯胺的合成与掺杂及其对导电性能的研究:(硕士学位论文).北京:北京化工大学,2005
    [82]旷亚非,游军等. Pt修饰聚苯胺-WO3复合膜电极对甲醛的电催化氧化.湖南大学学报,2007,34(3):57-60
    [83]李颖,夏清明,左铖等.纳米结构聚苯胺/PVP复合纤维及气敏传感器特性研究.化学世界,2009,346-348
    [84]宋继霞,韩冬雪,李雯等.聚苯胺纳/微米结构薄膜的制备及对pH传感的影响.高等学校化学学报,2010,31(8):1688-1692
    [85] Lukachova LV,Karyakina E E,Karyakin A A,Gorton L. The improvement of Polyaniline Glueose biosensor stability using enzyme immobilization from water-organi mixtures with a high content of organic solvent.Sens Actuator B.1997,44:356一360.
    [86]傅谊,马建标,何炳林.聚苯胺膜修饰电极对儿茶酚及对苯二酚的催化氧化.分析测试学报,1998,17(5):43-46
    [87]周海晖,焦树强等. Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化.物理化学学报,2004,20(1):9-14
    [88]李念兵,向斌等.聚苯胺Ni2+膜修饰电极对甲醇的电催化氧化研究.合精细化工,2000,21(17):102-103
    [89]吴婉群,罗维忠.聚苯胺(PAn)和聚吡咯(PPy)膜电极对Hg(Ⅰ),Sn(Ⅱ)氧化的电催化行为.西南师范大学学报,1993,18(4):446-451
    [90]万其进,王刚等.聚苯胺掺杂磷钼杂多酸膜修饰电极的制备及其电化学性能研究.湖北师范学院学报,1999,19(3):6-8
    [91]王宝兴,董绍俊.同多酸和杂多酸修饰微电机的电化学研究.分析化学研究报告,1996,24:382-386
    [92]李法彬,王启回,周建平.离子掺杂聚苯胺电极对抗坏血酸电催化氧化的促进作用.温州师范学院学报,2004,25(5):14-16
    [93] Li Genxi,Gu Quanrong,Zhu Jiangin,et al. Anal Lett,1999,32(3):2545
    [94]冯真真;努丽燕娜;杨军物理化学学报,2007,23(3)327.
    [95]吴丹,朱超,强骥鹏,王杨勇.工程塑料应用,2006,4(9):70-73.
    [96] Bermard M C,Goff A H L,Bich V T,Zeng W. Study by optical multichannel analysis of the Eleetrochromic phenomena in polyaniline doped with camphorsulfonic acid. Synth Met.1996,81:215-219.
    [97] Paligova,M.;Vilcakova,J.J.Physica,2004,335(3-4),421-429.
    [98]汪晓芹,廖晓兰,等.聚苯胺及其复合材料研究现状.应用化学,2002,33(1):4~8
    [99]曾幸荣;龚克成.合成材料老化及应用,2001,(4),8.
    [100] Rajendra P K,et al.J Electrocheem Soc,2002,149(11):1393.
    [101]王怀友,孙悦,唐波.分光光度法测定多巴胺[J].分析试验室,2003,22(1):45-47]
    [102] Guan C L, Ouyang J, Li Q Let al. Simultaneous determination of catecholamines by ion chromatography with direct conductivity detection[J]. Talanta, 2000, 50(6): 1197-1203
    [103]杜凌云,王术皓,林世蕾.流动注射协同化学发光法测定盐酸多巴胺[J].分析试验室,2005,24(7):88-90
    [104]林祥钦,康广凤,柴颖. Nafion/胆碱双层膜碳纤维电极探测小白鼠大脑内的多巴胺[J].分析化学, 2008,36(2): 157-161
    [105]张亚,张宏芳,郑建斌. Nafion-离子液体-修饰碳糊电极在抗坏血酸和尿酸存在下选择性测定多巴胺[J].分析试验室, 2008,27(12): 34-37
    [106]赵红,张玉忠,袁倬斌.多巴胺在聚2,4,6-三甲基吡啶修饰电极上的电化学行为[J].分析化学,2002,30(6): 650-653
    [107]孙延一,吴康兵,胡胜水.多壁碳纳米管-Nafion化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺[J].高等学校化学学报, 2002,23(11): 2067-2069
    [108]郑娜,侯书荣,周霞,李向军,袁倬斌.聚磺基水杨酸/碳纳米管修饰电极在抗坏血酸共存时测定多巴胺[J].分析试验室,2009,28(5): 6-10
    [109]李卫娟,罗世忠.镍纳米粒子-离子液体修饰碳糊电极的制备及其对多巴胺的测定[J].分析测试学报,2009,28(11):1287-1290
    [110]陈贤光,张素娟,欧阳良琪,邹小勇. L-半胱氨酸自组装电极循环伏安法测定多巴胺[J].分析试验室, 2007,26(4): 30-33
    [111]刘云.食品、生物样品和药物中抗坏血酸的检测[J].化学试剂,1994,16(5):282-288
    [112]任旺,丁杰,张英.抗坏血酸在聚肉桂酸修饰电极上的电催化氧化[J].化学传感器,2008,28(3):58-61
    [113]袁军华,陈艳玲,宋琳娜.抗坏血酸在聚甲苯胺蓝膜修饰的玻碳电极上的电催化氧化及流动注射分析[J].理化检验-化学分册,2003,39(12): 691-693
    [114]王亚珍,郑武. L-半胱氨酸自组装金电极测定鲜橙多中抗坏血酸的含量[J].化学传感器, 2008,28(3): 53-57
    [115]刘海燕,王艳玲,张国荣.壳聚糖修饰电极上的铁氰根离子对抗坏血酸的电催化氧化作用[J].分析试验室, 2003,22(1): 5-8
    [116] FiliSetti-Cozz,i CarpitaN C. Measurement of Urnic-Acids without interference from neutral sugars [J]. Anal. Biochem.,1991, 197: 157~162
    [117] Ferraris S P, LewH, Elsayed NM. Simultaneous determination of inosine,hypoxanthine,xanthine and Uric-acid and the effect of metal chelators[J]. Anal. Biochem.,1991, 195: 116~121
    [118]李平,吴守国,张汉昌,马超雄.尿酸在普鲁士蓝修饰电极上的电化学行为及其分析应用[J].分析化学, 2005,33(1): 77-79
    [119]池永明,李将渊,马曾燕.多壁碳纳米管-聚茜素红膜修饰电极测定人尿中的尿酸[J].药物分析杂志, 2009,29(3): 494-497
    [120]孙登明,胡文娜,马伟.聚L-精氨酸修饰电极的制备及对尿酸的测定[J].应用化学,2008,25(8): 913-917
    [121]张雷,林祥钦.单分子层γ-氨基丁酸共价修饰玻碳电极同时测定多巴胺、尿酸和抗坏血酸[J].高等学校化学学报, 2003,24(4): 591-594
    [122]李晓娟,赫春香.铁氰化镍/银复合修饰电极的制备及对氟康唑的电催化作用[J].高师理科学刊,2009,29(1):68-71
    [123] Syed AA,Dinesan M K Polyailine-A novel polymeric material [J] Talanta,1991,38:815-837.
    [124]颜流水,魏洽,王承宜,刘冬如,马海永.聚苯胺膜的电化学合成机理及掺杂行为[J].功能材料,2000,31(5):548-554.
    [125]侯丽波,贾梦秋,胡刚.聚苯胺薄膜电极的制备及性能研究[J].北京化工大学学报,2004,31(4):65~69.
    [126] Mehilner,D.M.;Admas,R.N.;J.Am.Chcm.Soc.,1962,84,3168
    [127]孙东豪,穆绍林,本案的电锯和研究[J].苏州丝绸工学院学报.1999,19(3):21-25.
    [128] Genies E M,Lapkowski M,Pejjeau J F. J Electroanal. Chem. 1988,249:97
    [129] Huang W S,Humphrey B D, MacDiarmid A G. J Chem. Soc. Farady Trans. I. 1986,82:2385
    [130]李国铮,王士勋,聚苯胺修饰电极的研究[J].山东大学学报,1986,2(21):90-91
    [131]沈鹤柏等.全国第五届电化学会议论文集189:2A06
    [132] Kobayashi T,et al,Electroanal chem..,1984;177:281
    [133]李根喜,方惠群,陈洪渊,聚苯胺修饰电极制备过程中几个问题的探讨[J].分析实验室。1994,13(3):16-17
    [134]Stiwell,D.E.;Park,S.M.:J.Eloctrochem.Soc.,1988,135,2254
    [135]魏守强,陆嘉星,张五昌,苯胺电化学聚合机理的研究[J].合成化学,1994,2(3):259-260
    [136] Dong S,Zhang D,Li Z.Chem. Lett.1922,3:129
    [137] Xuan Y,PANI D C,Zhao N N,et a1,White electroluminescence from a poly(N-vinylcarbazole)layer doped with CdSe/CdS core-shell quantum dots, Nanotechnology,2006,17:4966
    [138]刘晶晶,张存中,吴锋等,聚苯胺颗粒电极的制备与其电化学行为,化学研究,2007,18(4):93~97
    [139] Shreepathi S ,Holze R.Langmuir ,2006 ,22 :5196~5204
    [140] Haba Y,Segal E ,Narkis M,T itelman G I. Synth Met ,1999 ,106 :59~66
    [141] K ohut2Svelko N ,Reynaud S ,Francois J . Synth Met ,2005 ,150 :107~114
    [142] Rao P S ,Subrahmanya S ,Sathyanarayana D N. Synth Met ,2002 ,128 :311~316
    [143] Macdianmid A G,Epstein A. Synth Met ,1994 ,65 :103~116
    [144] Malinauskas A ,Holze R. Synth Met ,1998 ,97 :31~36
    [145] Malem F, Mandler D. Self 2assembled Mo nolayers in Electrtoanalytical Chemistry: Applicatio n of Co 2mercapto Carbox ylic AcidMo nolayers for the Electrochemical Detection of Dopamine in the Presence of a High Co ncentration of Ascorbic acid [ J] . Anal Chem. , 1996, 65: 37.
    [146] Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry[J]. Electroanal. Chem. 1974,52:355-393
    [147] Burke S K, Xu Y L, Margerum D W. Inorganic Chem istry, 2003, 42: 5807~5817

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700