大口径舰炮链式供弹平台动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大口径舰炮在海陆军联合作战体系中有着重要的地位。为了保证大口径舰炮的持续战斗能力,在大口径舰炮的研制过程中必须考虑其供弹稳定性。针对该问题,本论文通过大口径舰炮链式供弹平台的动力学建模、仿真及优化研究分析供弹平台的动力学特性、找出引起炮弹晃动的主要因素,在此基础上进一步优化相关的系统参数以提高其供弹稳定性。本文主要工作内容包括以下几个方面:
     针对大口径舰炮链式供弹平台的结构,以供弹平台滚子链柔性铰多刚体模型、基于绝对节点坐标方法的扶弹板簧柔性模型以及基于Hertz接触理论的滚子-链轮/扶弹板簧-炮弹的点接触碰撞模型建立了大口径舰炮链式供弹平台含接触碰撞的刚柔混合动力学模型,并进一步研究了模型中柔性铰刚度系数确定和扶弹板簧预变形处理的方法。
     基于大口径舰炮链式供弹平台含接触碰撞的刚柔混合动力学模型,提出了供弹平台的滚子-链轮/扶弹板簧-炮弹的接触碰撞算法和扶弹板簧柔/刚转换方法。在接触碰撞算法中研究了考虑链轮完整齿廓的滚子与链轮接触碰撞快速搜索策略。在扶弹板簧柔/刚转换方法中研究了确定扶弹板簧柔/刚转换时间的方法。
     针对含接触碰撞的刚柔混合模型的大口径舰炮链式供弹平台动力学仿真,开发了ADAMS用户子程序。在此基础上,分别分析了供弹平台的频域和时域振动特性,获得了抱弹筒质量和扶弹板簧厚度对供弹平台固有振动频率和频率响应的影响以及供弹过程中供弹平台固有振动频率和频率响应的变化情况,得到了抱弹筒质量和扶弹板簧厚度对供弹平台滚子-链轮啮合冲击和供弹过程中各发炮弹晃动的影响。
     为了提高大口径舰炮链式供弹平台的供弹稳定性,对供弹平台的动力学优化进行了研究。以增加炮弹通过扬弹筒筒口瞬时弹底缘至扬弹筒内壁的最小间隙为优化目标,建立了大口径舰炮链式供弹平台的动力学优化模型。针对现有优化方法在对大口径舰炮链式供弹平台这类复杂的多体系统进行动力学优化所存在的不足,提出了用于供弹平台动力学优化的一种基于双种群遗传算法与粒子群算法的混合优化算法。通过自编程序将混合优化算法引入iSIGHT,在此基础上通过ADAMS/iSIGHT联合仿真实现了供弹平台的动力学优化。
Large-caliber naval guns have played a significant part in combined operations of navyand army in recent years. The shell feeding stability must be taken into account in the designof large-caliber guns to ensure the continued fighting ability. Aiming at the problem,dynamics modeling, simulation and optimization of the chain shell feeding platform oflarge-caliber naval guns were researched. Furthermore, its dynamics characteristics wereanalyzed to identify the main factors that cause shells rocking and then the system parameterswere optimized to improve shell feeding stability and reliability. The main contents is asfolllows:
     According to the structure of the chain shell feeding platform of large-caliber naval guns,a rigid-flexible hybrid dynamic model with contact-impact was established. The modelincludes the multi-body rigid model with flexible joints of the roller chain in shell feedingplatform, the flexible body model of shell-clasping leaf springs based on absolute nodalcoordinates method and points contact-impact model of the contact-impacts between rollersand sprockets and that between shell-clasping leaf springs and shell based on Hertz contacttheory. The methods on stiffness coefficient determination of felxible joints and thepre-defrorm process of shell-clasping leaf springs were studied afterward.
     Based on the rigid-flexible hybrid dynamic model with contact-impact, thecontact-impact algorithm and the flexible/rigid switching method of shell-clasping leafsprings were studied. In the contact-impact algorithm, a quick method to search thecontact-impact between the sprocket with complete tooth profile and roller was proposed. Inflexible/rigid switching method of shell-clasping leaf springs, the method to determine switchtime was researched.
     According to the dynamic simulation of shell feeding platform with rigid-flexible hybriddynamic model with contact-impact, ADAMS users subroutine was developed. On this basis,the frequency-domain and time-domain vibration characteristics of shell feeding platform areanalyzed. In frequency-domain analysis, the effect of the weight of shell container and thethickness of shell-clasping leaf spring on vibration frequency and frequency response of shellfeeding platform was discussed, and the variation of vibration frequency and frequency response in feeding process was obtained. In time-domain analysis, the effect of the weight ofshell container and the thickness of shell-clasping leaf spring on meshing impact betweenroller and sprocket as well as the rocking of each shell in feeding process were obtained.
     In order to improve the shell feeding reliability of feeding platform, the dynamicoptimization of shell feeding platform was performed. By defining the increase of theminimum clearance between shell bottom edge and inner wall of hoist at the moment whenshell passes its entrance as optimization objective, the dynamic optimization model wasestablished. Considering the shortcomings of existing optimization method in dynamicoptimization of the complex multi-body systems like shell feeding platform of large-caliberguns, a hybrid optimization algorithm of two-population genetic algorithm and particle swarmalgorithm is proposed. The hybrid optimization algorithm was introduced into iSIGHT byprograming, and then ADAMS/iSIGHT joint simulation was performed to accomplish shellfeeding platform dynamic optimization.
引文
[1]薛狍.浅谈我国大口径舰炮的发展.舰载武器,2007,15(5):34-37页.
    [2]赵红艳,董汉辉,孟昭香.大口径舰炮将重展雄风.指挥控制与仿真,2007,29(1):118-120页.
    [3]陈汀峰.对舰炮发展的思考.舰船科学技术,2007,29(1):3-10页.
    [4]陆佑方,冯冠民,王彬,齐朝晖.柔性多体系统动力学理论和应用力学的一个活跃领域.力学与实践,1994:16(2): l-9页.
    [5] Winfery R C. Elastic Link Meehanism Dynamics. Journal of Engineering for Industry,1971,93(1):268-272P.
    [6] Erdman A G, Sandor G N, and Oakberg R. G. A General Method for Kineto-elastodynamic Analysis and Synthesis of Mechanisms. ASME Journal of Engineering forIndustry,1972,94(4):1193-1205P.
    [7] Wang Y, Huston R L. A Lumped Parameter Method in the Nonlinear Analysis ofFlexible Multibody System. Computers and Structures,1994,50(3):421-432P.
    [8] Shabana A A. Flexible Multibody Dynamics: Review of Past and Recent Developments.Multibody System Dynamics,1997,2(1):189-222P.
    [9] Wu S C, Haug E J, Kim S S. A Variational Approach to Dynamics of FlexibleMechanical Systems. Mechanics of Structures and Machines,1989,17(1):3-32P.
    [10] Song J O, Haug E J. Dynamic Analysis of Planar Flexible Mechanisms. ComputerMethods in Applied Mechanics and Engineering,1980,24(1):359-381P.
    [11]朱大鹏.多体动力学框架下的大变形曲梁单元及其应用.北京:清华大学,2008:1-3P.
    [12] Shabana A A, Chang C W. Connection Forces in Deformable Multibody Dynamics.Computer and Structures,1989,33(1):307-318P.
    [13] Chang B, Shabana A A. Total Lagrangian Formulation for the Large DisplacementAnalysis of Rectangular Plates. International Journal for Numerical Methods inEngineering,1990,29(1):73-103P.
    [14] Shabana A A, Hussien H. Application of The Absolute Nodal Coordinate Formulationto Large Rotation and Large Deformation Problems. Journal of mechanical design,1998,120(2):188-195P.
    [15] Escalona, J L, Hussien H, Shabana A A. Application of The Absolute Nodal CoordinateFormulation to Multibody System Dynamics. Journal of Sound and Vibration,1998,214(5):833-851P.
    [16]田强,张云清,陈立平,覃刚.柔性多体系统动力学绝对节点坐标方法研究进展.力学进展,2010:40(2):189-202页.
    [17] Yoo W S, Dmitrochenko O, Pogorelov D Y. Review of Finiteelements using absoluteNodal Coordinates for Large-deformation Problems and Matching PhysicalExperiments. Proceedings of the ASME International Design Engineering TechnicalConferences and Computers and Information in Engineering Conference. Long Beach:ASME,2005:1285-1294P.
    [18]田强.基于绝对节点坐标方法的柔性多体系统动力学研究与应用.武汉:华中科技大学,2009:16-38页.
    [19] Shabana A A, Yakoub R Y. Three Dimensional Absolute Nodal Coordinate Formulationfor Beam Elements: Theory. Journal of mechanical design,2001,123(4):606-613P.
    [20] Yakoub R Y, Shabana A A. Three Dimensional Absolute Nodal Coordinate Formulationfor Beam Elements: Implementation and Applications. Journal of Mechanical Design,123(4):614-621P.
    [21] Sugiyama H, Suda Y. A Curved Beam Formulation using the Absolute NodalCoordinates. Proceedings of the Institution of Mechanical Engineers,2007,221(2):219-231P.
    [22] Dombrowski V S. Analysis of Large Flexible Body Deformation in Multibody Systemsusing Absolute Coordinates. Multibody System Dynamics,2002,8(4):409-432P.
    [23] Shabana A A. Computational Continuum Mechanics. New York: Cambridge UniversityPress,2008:51-75P.
    [24] Rooth E K. Dynamics of a System of Rigid Bodies. New York: Dover Publications Inc.,1960.
    [25]赵振,刘才山,陈滨.步进冲量法.北京大学学报(自然科学版),2006,42(1):41-46页.
    [26] Cottle R W, Pang J P, Stone R E. The Linear Complimentarily Problem. AeademicPress, London,1992.
    [27]曾晋春.车载式火炮刚柔耦合发射动力学研究.南京:南京理工大学,2010:4-10页.
    [28] Wosle M, Pfeifer F. Dynamic of Multibody Systems Containing Dependent UnilateralConstraints with Friction. Journal of Vibration and Control,1996,2(2):161-192P.
    [29] Dubowsky, Freudenstein F. Dynamic Analysis of Mechanical Systems with Clearances.Part l: Formulation of Dynamic Model. Journal of Engineering for Industry,1971,93(1):305-309P.
    [30] Yigit A S, Usloy A G. Spring Dashpot Models for the Dynamics of Radically RotatingBeam with Impact. Journal of Sound and Vibration,1990,143(3):515-525P.
    [31] Schiehlen W, Seifried R, Eberhard P. Elastoplastic Phenomena in Multibody ImpactDynamics. Computer Methods in Applied Mechanics and Engineering,2006,195(50-51):6874-6890P.
    [32]张军,刘迎曦.基于有限元法的轮轨蠕滑特性研究.力学学报,2003,35(6):707-710页.
    [33]张云波.多体动力学接触与碰撞建模研究.武汉:华中科技大学,2007:2-7页.
    [34]柳江.基于虚拟样机技术悬架系统性能分析和优化设计.上海:上海交通大学,2007:62-63页.
    [35] Haug E J, Wehage R A, Barman N C. Design Sensitivity Analysis of Planar Mechanismand Machine Dynamics. Journal of Mechanical Design,1981,103(3):560-570P.
    [36] Tak T, Kim S S. Design sensitivity of multibody dynamic systems. Iowa: TheUniversity of Iowa,1990:9-16P.
    [37] Ider S K, Oral S. Optimum Design of Flexible Multibody Systems with DynamicBehavior Constraints. European Journal of Mechanics A/Solids,1996,15(2):351-359P.
    [38]丁洁玉.基于多体系统的灵敏度分析及动态优化设计.上海:上海交通大学,2008:6-7页.
    [39]穆歌,毛保全,闰述军.动力学优化设计的发展综述.火炮发射与控制学报,2003,S1:100-102页.
    [40] Schulz M, Brauchli H. Two Methods of Sensitivity Analysis for Multibody Systemswith Collisions. Mechanism and Machine Theory,2000,35(10):1345-1365P.
    [41] Li S, Petzold L. Software and Algorithms for Sensitivity Analysis of Large-scaleDifferential Algebraic Systems. Journal of Computational and Applied Mathematies.2000,125(l-2):131-146P.
    [42] Li S, Petzold L, Zhu W. Sensitivity Analysis of Differential-algebraic Equations: AComparison of Methods on a Special Problem. Applied Numerieal Mathematies.2000,32(2):161-174P.
    [43] Anderson K S, Hsu Y. Analytical Fully-Recursive Sensitivity Analysis for MultibodyDynamic Chain Systems. Multibody System Dynamies.2002,8(1):1-27P.
    [44] Anderson K S, Hsu Y. Order-(n+m) Direct Differentiation Determination of DesignSensitivity for Constrained Multibody Dynamic Systems. Structural andMultidiseiplinary Optimization,2004,26(3-4):171-182P.
    [45] Ding J Y, Pan Z K, Chen L Q. Second Order Adjoint Sensitivity Analysis of MultibodySystems Described by Differential-algebraic Equations. Multibody System Dynamies,2007,18(4):599-617P.
    [46]潘振宽,赵维加.多体系统动力学设计灵敏度分析与动态优化设计方法.青岛大学学报(工程技术版),2002,17(4):2-11页.
    [47] Haupt R L, Haupt S E. Practical Handbook of Genetic Algorithm. Third Edition. NewYork: CRC Press.1999:569-609P.
    [48] Potts J C, Giddens T D, Yadav S B. The Development and Evaluation of an ImprovedGenetic Algorithm Based on Migration and Artificial Selection IEEE Transactions,24(1):73-86P.
    [49] Zhu Huming, Jiao Licheng, and Pan Jin. Multi-population Genetic Algorithm forFeature Selection. Proceeding of Advances in Natural Computation, Xi'an,2006:480-487P.
    [50] Dziedzicki K, Lebkowski A, Smierzchalski R. A Competitive MultipopulationEvolutionary Algorithm for Ship Trajectory Planning. Evolutionary Computation andGlobal Optimization,2008,165(1):67-76P.
    [51] Zegordi S H, Nia M A B. A Multi-population Genetic Algorithm for TransportationScheduling. Transportation Research,2009,45(6):946-959P.
    [52] Cochran J K, Horng S M, Fowler J W.. A Multi-Population Genetic Algorithm to SolveMulti-objective Scheduling Problems for Parallel Machines. Computers and OperationsResearch,2003,30(7):1087-1102P.
    [53]章定国.航炮弹链中的干涉问题研究.南京理工大学学报,1997,21(1):82-85页.
    [54]杨军荣.弹链供弹阻力研究.南京理工大学学报,1997,21(4):352-365页.
    [55]丁浩.弹链的间隙动力学特性研究.舰船科学技术,2004,26(5):40-42页.
    [56]彭峰生.弹链力学性能研究.火炮发射与控制学报,2002,1(3):25-29页.
    [57]石明全.某火炮自动供输弹系统和全炮耦合的发射动力学研究.南京:南京理工大学,2003:19-50页.
    [58]余周.某型飞机环形弹带受力分析.火炮发射与控制学报,2007,1(3):40-43页.
    [59]魏志芳.自适应扬供弹系统的动力学运动学仿真.系统仿真技术及其应用,2004,26(5):411-414页.
    [60]姜铁牛.30mm自动炮弹链供弹特性匹配.南京:南京理工大学,2007:1-3页.
    [61]王光建,姜铁牛.弹链系统间隙铰多体动力学模型仿真与试验.机械工程学报,2008,44(5):238-241页.
    [62]赵瑞学.某战车炮自动机关键技术研究.南京:南京理工大学,2011:21-47页.
    [63] Veikos N M, Freudenstein F. On the Dynamic Analysis of Roller Chain Drives: PartI-Theory. Proceedings of the22nd Biennial Mechanisms Conference. Scottsdale,1992:431-439P.
    [64] Veikos N M, Freudenstein F. On the Dynamic Analysis of Roller Chain Drives: PartII-Case Study. Proceedings of the22nd Biennial Mechanisms Conference, Scottsdale,1992:441-450P.
    [65] Choi W, Johnson G E, Hayek S I, et al. Vibration of Roller Chain at Low Medium andHigh Operation Speeds. Mechanical Engineering and Applied Mechanics,1998,252(1):21-52P.
    [66] Pedersen S L, Hansen J M, Ambrosio J A C. A Roller Chain Drive Model IncludingContact with Guide-bars. Multibody System Dynamics,2004,12(3):285-301P.
    [67] Pedersen S L. Simulation and analysis of Roller chain drive systems. Kgs.Lyngby:Technical University of Denmark,2004:19-55P.
    [68] Xu Lixin, Yang Yuhu, Chang Zongyu, et al. Dynamic Modeling of a Roller Chain DriveSystem Considering the Flexibility of Input Shaft. Chinese Journal of MechanicalEngineering,2010,23(3):367-374P.
    [69]宁长江.基于多自由度系统模型的链传动横向振动研究.长春:吉林大学,2006:14-34页.
    [70]庄泓刚.步进传动链动力学建模研究.天津:天津大学,2006:14-25页.
    [71] Wang K W. On the Stability of Chain Drive Systems Under Periodic SprocketOscillations. Journal of Vibration and Acoustics,1992,114(2):119-126P.
    [72] Wang K W. On the Tmpact Intensity of Vibrating Axially Moving Roller Chains.Journal of Vibration and Acoustics,1992,114(7):397-403P.
    [73] Liu S P, Wang K W, Hayek S I, et al. A Global-local Integrated Study of Roller ChainMeshing Dynamics. Journal of Sound and Vibration,1997,203(1):41-62P.
    [74] Zheng H, Wang Y Y, Liu G R, et al. Efficient Modeling and Prediction of MeshingNoise from Chain Drives. Journal of Sound and Vibration,2001,245(1):133-150P.
    [75] Zheng H, Wang Y Y, Quek K P. A Refined Numerical Simulation on Dynamic Behaviorof Roller Chain Drives. Shock and Vibration,2004,11(5-6):573-584P.
    [76] Xu Lixin, Yang Yuhu, Chang Zongyu, Liu Jianping. Modal Analysis on TransverseVibration of Axially Moving Roller Chain Coupled with Lumped Mass. Journal ofCentral South University of Technology,2011,18(1):108-115P.
    [77] Hippmann G, Arnold M, Schittenhelm M. Efficient simulation of bush and roller chandrives. European Congress on Computernational Methods in Applied Science andEngineering Thematic Conference,2005,6(1):1-18P.
    [78] Nigro N J, Bhatia S P. Equivalent One-dimensional System for Analysis of Taper LeafSprings. Journal of Engineering for Industry,1976,98(1):39-42P.
    [79] Rowland F T. Manual on Design and Application of Leaf Springs. Warrendale: SAEInternational,1980.
    [80] Dunaevskii B I. Calculation of Solid Beams and Flat Springs (Leaf Springs) of VaryingCrosssection. Soviet Engineering Research,1981,61(4):36-38P.
    [81] Milliken W F, Milliken D L. Chassis Design: Principles and Analysis. Warrendale:Professional Engineering Publishing Ltd,2002.
    [82] Rill G, Kessing N, Lange O, Meier J, Leaf Spring Modelling for Real TimeApplications. Proceedings of International Association of Vehicle System Dynamics18th Symposium, Atsugi,2003:1-7P.
    [83] Zahavi E. Analysis of a Contact Problem in Leaf Springs. Mechanics ResearchCommunications,1992,19(1):21-27P.
    [84] Li Q, Li W, A Contact Finite Element Algorithm for the Multileaf Spring of VehicleSuspension Systems. Proceedings of the Institution of Mechanical Engineers,2004,218(3):305-314P.
    [85] Omar M A, Shabana A A. Multibody System Modeling of Leaf Springs. Journal ofVibration and Control,2004,10(11):1601-1638P.
    [86] Sugiyama H, Shabana A A, Omar M A, Loh W Y. Development of Nonlinear ElasticLeaf Spring Model for Multibody Vehicle Systems. Computer Methods in AppliedMechanics and Engineering,2006,195(50-51):6925-6941P.
    [87]郑银环.汽车钢板弹簧计算模型研究.武汉:武汉理工大学,2005:77-92页.
    [88]许立新.滚子链传动系统动力学理论与实验研究.天津:天津大学,2010:26-27页.
    [89] Nakanishi, Shabana A A, Toshikazu. Contact Forces in the Non-linear DynamicAnalysis of Tracked Vehicles. International Journal for Numerical Methods inEngineering,1994,37(8):1251-1275P.
    [90] Hu Shenghai, Guo Bin, Deng Kunxiu, et al. An efficient contact analysis for rollerchain. International Conference on Mechatronics and Intelligent Materials. Switzerland:Trans Tech Publications Ltd,2011:290-294P.
    [91] Troedsson I, Vedmar L. A Method to Determine the Static Load Distribution in a ChainDrive. Journal of Mechanical Design,1999,121(3):402-408P.
    [92] Troedsson I, Vedmar L. A Method to Determine the Dynamic Load Distributionin aChain Drive. Journal of Mechanical Engineering Science,2001,215(5):569-579P.
    [93]许立新.滚子链传动系统动力学理论与实验研究.天津:天津大学,2010:26-27页.
    [94] Shabana A A. Computational dynamics. Third Edition. New York: John Wiley&SonsLtd,2010:376-399页.
    [95]洪嘉振.计算多体动力学.北京:高等教育出版社,1999:108-127页.
    [96] Nallathambi A K, Rao C L, Srinivasan S M. Large Deflection of Constant CurvatureCantilever Beam under Follower Load. International Journal of Mechanical Sciences,2010,52(3):440-445P.
    [97] Belytschko T, Kam W, Moran L B. Nonlinear Finite Elements For Continua AndStructures. Third Edition. New York: John Wiley&Sons Ltd,2000:569-609P.
    [98]赵荣国.楔环连接结构静力接触行为与动力学特性研究.绵阳:中国工程物理研究院,2004:19-34页.
    [99]彼得艾伯哈特,胡斌.现代接触动力学.南京:东南大学出版社,2003:200-208页.
    [100] Cummins S J, Cleary P W. Using distributed contacts in DEM. Applied MathematicalModelling,2011,35(4):1904-1914P.
    [101] Lankarani H M, Nikravesh P E. Continuous Contact Force Models for Impact Analysisin Multibody Systems. Nonlinear Dynamics,1994,5(2):193-207P.
    [102] RecurDyn/Solver Theoretical Manual. Seoul/Korea: Function Bay Inc.,2009.
    [103]刘丽兰,刘宏昭,吴子英等.机械系统中摩擦模型的研究进展.力学进展,2008,39(2):201-213页.
    [104] Popov V L. Contact Mechanics and Friction. Berlin: Springer-Verlag,2010:569-609P.
    [105] Gerstmayr J, Shabana A A. Analysis of Thin Beams and Cables using the AbsoluteNodal Coordinate Formulation. Nonlinear Dynamics,2006,45(1-2):109-130P.
    [106] Gerstmayra J, Irschikb H. On the Correct Representation of Bending and AxialDeformation in the Absolute Nodal Coordinate Formulation with an Alastic LineApproach. Journal of Sound and Vibration,2008,318(3):461-487P.
    [107] Dibold M, Gerstmayr J, Irschik H. A Detailed Comparison of the Absolute NodalCoordinate and the Floating Frame of Reference Formulation in Deformable MultibodySystems. Journal of computational and nonlinear dynamics,2009,4(2):1-10P.
    [108] Dmitrochenko O. Finite Elements using Absolute Nodal Aoordinates forLarge-deformation Flexible Multibody Dynamics. Journal Journal of Computationaland Applied Mathematics archive,2008,215(2):368-377P.
    [109]李彬,刘锦阳.大变形柔性梁系统的绝对节点坐标方法.上海交通大学学报,2005,39(5):827-831页.
    [110]刘铖,田强,胡海岩.基于绝对节点坐标的多柔体动力学高效计算方法.力学学报,2010,42(6):1197-1204页.
    [111]虞磊,赵治华,任启鸿,任革学.基于绝对节点坐标的柔性体碰撞仿真.清华大学学报(自然科学版),2010,50(7):1135-1140页.
    [112]马易志.柔性多体系统接触碰撞的理论和实验研究.上海:上海交通大学,2008:18-23页.
    [113] Zhu Ling. Development of guidelines for deaformable and rigid swithch in LS-DYNAsimulation. Lincoln: University of Nebraska Lincoln,2009:79-96P.
    [114]白金泽. LS-DYNA3D理论基础与实例分析.北京:科学出版社,2005.
    [115]瞿叶高,程志强,卜长根,刘宝林. ADAMS二次开发技术在气动潜孔锤虚拟样机建模中的应用.系统仿真学报,2009,21(10):2951-2955页.
    [116]宿月文,朱爱斌,陈渭,谢友柏.履带机械地面力学建模及牵引性能仿真与试验.西安交通大学学报,2009,43(9):42-45页.
    [117]梁思率,张和明. ADAMS二次开发技术在分布式仿真中的应用系统仿真学报.系统仿真学报,2009,21(10):2940-2944页.
    [118]裴未迟,李耀刚,李运红.基于虚拟样机技术-ADAMS的冲击力模型.河北理工大学学报,2008,30(4):59-63页.
    [119]姜伟.基于约束拓扑变换的大规模复杂多刚体系统振动分析.武汉:华中科技大学,2008:1-3页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700