二元推力矢量喷管的结构设计及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在现代空战中取得战场优势,在新型战斗机设计中采用高新技术提高改善现代战斗机的技术战术性能是十分必要的。
     本文根据某型发动机的特定工作条件,为某型发动机改装二元推力矢量喷管进行了改装设计,将发动机喷管设计成了由导流管、调节板和导流板三部分组成的一个喷管,该结构喷管结构简单,成本低,发动机改动少,使用方便,且系统的可靠性、可维修性很好,使用寿命也很高。本文利用有限元软件对设计喷管的各个组成部件进行了分析计算,分别得出了导流管、调节板和导流板的应力分布和位移分布特征。其中导流管的应力分布和位移分布跟传统的轴流式喷管大不相同,特别是最大位移的出现位置发生了很大变化,为此,本文对导流管局部部位进行了加厚处理,并对局部部位加装了加强框,经过局部加强框的加装和局部厚度的加厚,导流管的最大应力和最大位移分布得到改善,减小了导流管的最大应力值和最大位移值,并且,最大应力和最大位移出现的位置也发生了变化,通过改进方案的实施,导流管的结构能够胜任发动机出口气流的要求,满足飞机的安全要求。本文在设计导流板时考虑到飞机特定的工作状态,为了防止翼尖失速现象的出现,参照国外飞机二元推力矢量喷管的设计,将导流板设计成由三角形板和矩形板组成的导流板,并分别对不同宽度的矩形板和不同高度的三角形板的组合进行了分析计算,得到了导流板的最大应力和最大位移分布跟三角形高度和矩形宽度之间的关系,并根据这个关系提出了优化设计方案。
In order to achieve the superiority in the air in the modern battlefield, It is very necessary for us to improve the technical and tactics capability of the fighter in the design.
     The paper designed a dual-engine thrust-vectoring nozzle based on a certain type of the specific working conditions of the engine, the engine nozzle design will be a compose of the conductance, adjust board and the control board. The nozzle structure is good at simple structure, low cost, small engine changes, easy-to-use, and the system's reliability, high maintainability. The paper analysed the various components of the nozzle by using the finite element software and get the character of the composing part。The diversion of the displacement and the stress distribution is different with the distribution of traditional axial-flow nozzle, particularly the largest displacement of a great changes have taken place here。The paper dealing with a thicker and enhanced box on the diversion of local sites, the diversion of the maximum displacement and stress distribution has improved and reduced,the biggest stress and the maximum displacement position has also undergone a change, by improving the implementation of the programmer, the structure can meet the need of the engine on airflow and the safety requirements of the aircraft. This paper designed the control board as a diversion of the triangular and rectangular plates, to take into account the specific working conditions to prevent the emergence of the phenomenon wingtips stall, the United States aircraft reference to the dual thrust vectoring nozzle design。The paper analyse the control board composed of different width heights of the rectangular plates and triangular plate, get the greatest stress and displacement distribution of the control board, then we get the optimized design .
引文
[1]杨玉颖,航空轴对称推力矢量控制技术研究,[硕士学位论文],西安,西北工业大学,2000年。
    [2]离子鱼,蓄势待发的推力矢量技术,兵器,2006年,3:6~11页。
    [3]范文正李明,推力矢量喷管现状和发展趋势,航空科学技术,2006年,1:21~22页。
    [4]李振宇,美俄推力矢量技术差异谈,兵工科技,2007年,2:51~54页。
    [5]陶增元李军程邦勤,Thrust Vector Technique,the Vital Technology of Aircraft Propulsion System ,空军工程大学学报,2000年,1(02):86~91页。
    [6]M.D.Messina. Simulation Model of the F/A-18 High Angle- of-Attack Research Vehicle Utilized for the Design of Advanced Control Laws. NASA TM-110216,1996。
    [7]Berrier B L,M ason M L. Static Investigation of Post-Exit Vanes for Multiaxis Thrust Vectoring,AIAA 87-1834,1987。
    [8]Gar-Or B. Thrust vectoring for flight control& safety: a review. Intern .J .Turbo & Jet Engine,1 994,11.119-136。
    [9]Polities M,Dugge and Hodgkinson ,Guidance, navigation and control . Aerospace America, Vo1.30, No.12, December 1992 ,pp 18-19。
    [10]Mihaloew J R. Flight propulsion control integration for V/STOL ,Aircraft.(N ASA).Intern .J .Turbo& Jet Engine,Vol,9,1992。
    [11]Capone F J. Comparative investigation of multiple thrust vectoring nozzles ,AIAA,92-3263。
    [12]Karr C L. Two-dimensional thrust vectoring nozzle optimization techniques ,A IAA 91-0473。
    [13]Fiddell J H, Franke M. Confined jet thrust vector control nozzle studies,AIAA 90-2027。
    [44]Weir R A, Cowan J R. Development and test of electromechanical actuators for thrust vector control ,AIAA 93 -2458。
    [15]Gar-Or B. Mathematical phenomenology for thrust vectoring induced agility comparisons .J .Aircraft ,1993, Vole 30, No.2。
    [66]Johnson S. A simple dynamic engine model for use in a real- time aircraft simulation with thrust vectoring,AIAA 90-2166。
    [17]Khalid S J and Faherty M F. Propulsion system flight test analysis using modeling techniques,AIAA 90-3307。
    [18]Syed S A, Erhart J J and King F W,Application of CFD pitch /yaw thrust vectoringspherical convergent flap nozzles,AIAA 90-2023。
    [19]Gal-Or B. Vectored propulsion. Super maneuverability and robot aircraft,Springer Veriag ,New York,1990。
    [20]Froth R E. Thrust vectoring to eliminate the vertical stabilizer ,A D A079852。
    [21]Warley D H,Analysis of control surface augmentation in high- performance aircraft by thrust vectoring ,AD 769495。
    [22]K Gal-Or B. maximizing thrust-vectoring control power and agility metrics. Jof Aircraft,1992,29(4)。
    [23]Paul W. Herrick, Fighter Aircraft Affordability, Survivability and Effectiveness Through Multi-Function Thrust-Vectoring Nozzles,Inter-national Journal of Turbo &Jet-Engines ,V o1.9,No .l , 1 992。
    [24]R. Mishler & T. Wilkinson. Emerging Airframe/Propulsion Integration Technologies at General Electric,AIAA 92-3335。
    [25]B. Gal-Or, V. Sherbaum, M. Lichtsinder and M. Turgemann,Complete Thrusting Vectoring Control for Future Civil Jets .F- 22 Superiority Fighter and Cruise Missles Part I: Vectored F-22,F -16 and F-15.International Journal of Turbo& Jet-Engine ,V ol.10 ,No.l, 1993。
    [26]McLafferty G H, Peterson J H. Results of test of a rectangular vectoring/reversing nozzle on F-100 engine .AIAA 83一1285。Capone F J, Reubush D E. Effect of thrust vectoring and wing maneuver devices on transonic aero propulsive characteristics of a supersonic fighter .N ASA-TP-2119.1 983。
    [27]Capone F J, Mason M L. Militaries aircraft control power from thrust vectoring at high angles of attack .N ASA-TM一87741,1986。
    [28]贾东兵陈锐,轴対称矢量喷管设计与试验技术研究,航空发动机,2002年,1:1~3页。
    [29]艾尔王衍洋屈香菊,气动推力矢量控制面融合方式研究,飞行力学,2005年,23(4):20~24页。
    [30]张相毅王如根杨帆,双股气流对流体控制矢量喷管的影响,固体火箭技术,2007年,30(4):295~298页。
    [31]Pavlenko, Viktor Fedorovich. Power plants with in-flight thrust vector deflection .Jan.1987。
    [32]Rock S M. Integrated flight/propulsion control-Requirements and issues .J an.1 990。
    [33]Weiss C, Mcdowel l P, Watts S. STOVL control integration program .N ASA-CR-195358.1994。
    [34]Trittler G, Eckert E, Goeing M. Optimization aspects of an ejector type hypersonic thrust nozzle .A SME9 2-GT-402。
    [35]Lewis W J. Propulsion systems for supersonic V/STOL aircraft .A SM E 89 -GT-309。
    [36]Miller E H. Performance of a forward swept wing fighter utilizing thrust vectoring .A IAA 83-2482.1 983。
    [37]Weir R A, Cowan J R. Development and test of electro mechanical actuators for thrust vector control. AIAA93 -2 4 58, 1993。
    [38]Mclafferty G H, Peterson J L. Results of tests of a rectangular vectoring/reversing nozzle on an FIN engine , A IAA 83-1285,1983。
    [39]Pollard J E. Beam-centroid tracking instrument for ion thruster’s .A D-A293654. May 1995。
    [40]Ward B D, Lewis W J. Advantages of thrust vectoring for STOVL .A IAA 87-1708.J un.1 987。
    [41]Cavalleri R, Tiarn W, Lewis Lynn. Experimental and theoretical comparison of the Probe Thrust Vector Control concept , AIAA 91-2476.J un.1991。
    [42]Wakefield Michael E. The integrated modular engine-c on figurations ,applications and benefits .A IAA 92-1551,May 1992。
    [43]Johnson Steven A. A simple dynamic engine model for use in a real- time aircraft simulation with thrust vectoring,N ASA - TM -4240.P resented at the AIAA/SAE/ASME/ASEE Joint Propulsion Conference ,Orlando ,F L,1 6-18 Jul,1990。
    [44]Capone F J, Mason Mary L. Militaries aircraft control power from thrust vectoring at high angles of attack .A IAA 86-1779.Jun,1986。
    [45]Puttre Michael. Thrust vectoring nozzles give pilots an edge .Mechanical Engineering ,V o1.115,N o.3 p64-67,M ar.1 993。
    [46]Pahle J W, Bundick W T, Yeager J C, Beissner F L. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle .N ASA-TM-110228.J un.1 996。
    [47]刘大响陈光,航空发动机-飞机的心脏,北京,航空工业出版社,2003年:1~300页。
    [48]Geidel H A, Improved agility for modern fighter aircraft,H --T h rust vectoring engine nozzles. IN: International Symposium on Air Breathing Engines,8 'h Cincinnati, OH,June14 -19, 1987,Proceedings。
    [49]Bowers A H, Pahle J W. Thrust vectoring on the NASA F一18 high alpha research vehicle .N ASA-TM-4771.Nov.1 996。
    [50]Gal Or B. Vectored propulsion, super maneuverability and robot aircraft .J an.1990.276p。
    [51]Schinstock D L, Scott D A. Controller design for EMA in TVC incorporating force feedback .S ept.1 998.
    [52]Tiarn W, Cavalleri R. CFD evaluation of an advanced thrust vector control concept .A IAA 90-1900.J un.1 990。
    [53]Johnson S A. Aircraft ground test and subscale model results of axial thrust loss caused by thrust vectoring using turning vanes .N AS A - TM -4341.Jan.1 992。
    [54]Orme J S, Sims R L. Selected performance measurements of the F-15 active ax symmetric thrust-vectoring nozzle .Nov.1998。
    [55]Catton J, Franker M. Two-dimensional thrust vector control nozzle, AIAA 91-2101。
    [56]曲东才,Development for Thrust Vector Control Technology and Analysis for Critical Technology ,航空科学技术,2002年,3:30Development for Thrust Vector Control Technology and Analysis for Critical Technology 32页。
    [57]琚春光刘宇,环喉环簇喷管推力矢量控制研究,固体火箭技术,2007年,30(4):306~310页。
    [58]吴雄张为华王中伟等,燃气推力矢量控制发动机内流场数值模拟,固体火箭技术,2007年,30(3):191~195页。
    [59]琚春光刘宇廖云飞,固体塞式喷管二次喷射推力矢量控制,推进技术,2007年,28(1):78~81页。
    [60]张相毅杨帆,二元喷管射流推力矢量控制技术研究,飞航导弹,2007年,2:42~45页。
    [61]李军,推力矢量发动机燃气舵气动性能分析,航空学报,2006年,27(6):1005~1008页。
    [62]华玉光徐浩军刘凌等,带推力矢量作战飞机常规机动性能评估,飞行力学,2006年,24(4):6~13页。
    [63]马会民樊思齐卢燕,Real-time mathematical model for turbofan engine with thrust-vectoring nozzle ,推进技术,2001年,22(5):376~379页。
    [64]张相毅王如根徐学毅等,二元喷管流体矢量控制方案数值研究,航空动力学报,2007年,22(9):1435~1438页。
    [65]李军刘献伟赵瑞学,推力矢量发动机燃气舵绕流场数值分析,南京理工大学学报,2005年,29(5):532~535页。
    [66]李军刘献伟,推力矢量发动机射流场的数值分析,导弹与制导学报,2005年,25(4):80~82页。
    [67]尚义,航空燃气涡轮发动机,北京,航空工业出版社,1995年:47~105页。
    [68]饶寿期,有限元法和边界元法基础,北京,北京航空航天大学出版社,1990年:11~50页。
    [69]杜平安,有限元网格划分的基本原则,机械设计与制造,2000年,1:34~36页。
    [70]刘兵山黄聪,Patran从入门到精通,北京,中国水利水电出版社,2003年:12~100页。
    [71]吴雄,气体二次喷射推力矢量控制的影响面优化设计,航空动力学报,2007年,22(9):1569~1572页。
    [72]WANG Hay Tao万小朋侯明善,The Affection of Thrust Vector on Aircraft's Maneuver Performance ,导弹与制导学报,2005年,25(4):450~453页
    [76]Gal Or B. Novel, post-stall, thrust-vectored F-15 Revs: Laboratory and flight tests. A D-A225717.A pr.1 990。
    [73]陶春虎张卫方等,航空用钛合金的失效及预其防,北京,国防工业出版社,2002年:1~34页。
    [74]杨健,钛合金在飞机上的应用,航空制造技术,2006年,11:41~43页。
    [75]张相毅,Computational analysis of fluidic vector control concepts for binary nozzle ,航空动力学报,2007年,22(9):1435~1438页。
    [76]龚俊杰,几轮轮毂的应力应变场分析及优化设计,[硕士学位论文],南京,南京航空航天大学,2000年。
    [77]张海涛,Turbulent combustion flow field calculation for afterburner with heat shied ,航空动力学报,2007年,22(8):1241~1246页。
    [78]陈大光张津朱之丽等,飞机推进系统技术与设计,北京,航空工业出版社,1992年:173~190页。
    [79]周小青金如山等,航空燃气涡轮发动机,北京,宇航出版社,1992年:43~190页。
    [80]许鑫华叶卫平,计算机在材料科学中的应用,北京,机械工业出版社,2003年:61~94页。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700