匹配追踪的最佳原子选择策略和压缩感知盲稀疏度重建算法改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知(CS)理论能对信号实施远低于奈奎斯特速率的采样,是信号处理领域的又—重要成果。其中基于l0范数最小的匹配追踪重构算法,原子搜索主要采用贪婪优化,其关键点是:(1)最佳原子的选择策略和匹配准则;(2)信号稀疏度的准确估计。原子选择方式分为串行选择和并行选择两种;匹配准则分为当前残差逼近、当前最佳观测和全局重建误差最小准则。选择方式关系到匹配的效率和容错性,准则决定原子选择的方向和全局最优解的逼近程度。本文主要改善最佳原子的选择方法,并改进稀疏度未知信号的鲁棒性重建方案。
     本文的主要贡献包括:
     1)为提高原子选择准确度,提出了前向预测与回溯结合的正交匹配追踪(LABOMP)算法。在迭代初期用前向预测策略串行选择候选原子,在迭代后期通过触发阈值启动一个间隔回溯机制,剔除错选原子。实验证明,用LABOMP算法重建稀疏信号和可压缩语音信号,平均精确重建概率(MERP)比只使用前向预测策略的LAOMP算法平均提高了12.5%~31.3%,已选原子的全局最优解逼近能力明显提高。
     2)为提高LABOMP算法的收敛速度,提出正则化LABOMP算法(RLABOMP)。鉴于CS重建具有不适定的多个可用解,而且单次迭代的残差匹配有异于全局重建最优化匹配,保留多个性能相当的备选解是合理的。因此我们以最佳原子集内候选原子的公平选入为正则约束,保证同时选入性能相近的最优原子,以便在提高容错性的同时减少迭代次数。实验证明,对稀疏信号和可压缩语音信号,RLABOMP选取K个原子所需迭代次数为LABOMP的42.90%~54.28%,为LAOMP的62.85%~71.57%,但MERP相对LABOMP降低9.27%~25.12%,相对LAOMP提高1.91~10.80%,明显优于LAOMP算法,与LABOMP算法比则取得迭代效率与重建性能的折中。
     3)为同时提高原子选择准确度和计算速度,提出广义最佳正交匹配追踪(GOOMP)算法。其改进思路是:(1)采用当前观测信号最佳的匹配准则,保证所求解能使当前观测信号的匹配误差最小。(2)成批选入L个最优原子,保证选入原子集具备较高的算法容错能力。对稀疏信号,使用当前最佳观测准则的gOMP算法,其MERP提高了3.16%~10.8%,使用成批选入L个最优原子的OOMP算法完成精确重建所需迭代次数为OOMP算法的1/3,MERP提高31.26%~37.54%。
     此外,本文证明了GOOMP算法在K次迭代内完全重建原始信号的充分条件是:在保证正确原子不相关的前提下,后续待选正确原子与错误原子在己选原子张成的补空间中各自投影并归一化,投影并归一化后错误原子在所有投影并归一化后正确原子构成空间上的投影系数向量l1范数小于1。
     4)基于残差匹配和原子系数阈值判断,提出改进的盲稀疏度信号重构方案。首先分析了回溯型自适应正交匹配追踪(BAOMP)算法的原子选入阈值参数与稀疏度的关系,然后针对BAOMP算法迭代后期误选原子,引起的残差模值陡增,估计信号误差周期骤升的缺点,提出了改进的算法IBAOMP。当估计的观测信号能量与目标能量接近时,IBAOMP算法按80-20准则提高原子选入阈值,控制错误原子的选入和候选原子集的容量,非常有效地消除了误差周期性突增的现象。
     总的来说,本文原子选择方法和盲稀疏度压缩重建的研究工作给出了如下结果:
     具有间隔回溯机制的LABOMP算法有利于提高击中正确原子的概率,RLABOMP算法由于使用正则化原子选择方法可以明显提高LABOMP算法的收敛速度,而GOOMP算法既可以提高MERP又能减少计算时间。另一方面,对于盲稀疏度信号重建IBAOMP算法通过阈值调节机制,避免了稀疏度信息缺失时的重建盲目性,保证了估计信号逐步逼近目标信号。
Compressed sensing can sample signals at a rate far below Nyquist rate, and it's a new tool in signal processing. In the l0norm based algorithms, the atom matching pursuit mainly applied greedy search, their key techniques are (1) optimal atom selection and matching criteria;(2) accurate estimate of signal sparsity. Atom selection strategies can be divided into single atom hit and a batch selection of atoms, while criteria include residual matching, current best observation and global error minimization. In addition to the atom selection related to efficiency and fault tolerance, matching criteria determine directions of atom search which approaches an optimal solution. This thesis mainly focuses on efficient atom selection and robust reconstruction of sparsity unknown signals.
     Main contributions include:
     1) To improve the accuracy of atom selection, a look-ahead and backtracking orthogonal matching pursuit (LABOMP) algorithm is proposed. In early iterations a set of candidate atoms is chosen by look ahead verification, on the contrary, an interval backtracking mechanism is triggered by a threshold in later iterations to prune error atoms. Experiments show that, for sparse signals and compressive voice, the mean exact reconstruction probability (MERP) of LABOMP is12.5%~31.3%higher than that of LAOMP, where the latter uses only the look-ahead strategy, which indicates the probability of finding a global solution is improved.
     2) For rapid convergence of LABOMP, a regularized LABOMP (RLABOMP) algorithm is proposed. Note that the CS reconstruction is an ill-posed solution and the difference between criterion of residual matching and criterion of global matching, multiple'good' atoms could be regarded as equivalent candidate. Thus an equal opportunity constraint is introduced to regularize the recruitment of candidate atoms to include the atoms with similar performances, to promote fault tolerance and accelerate the convergence. Experiments show that the number of iterations of RLABOMP for choosing K atoms is42.90%~54.28%of that of LABOMP and62.85%~71.57%of that of LAOMP. However, MERP of RLABOMP is9.27%~25.12%lower than that of LABOMP and1.91%~10.80%higher than LAOMP. Obviously RLABOMP is better than LAOMP and balances the efficiency and the reconstruction performance comparing to LABOMP.
     3) To increase the accuracy and speed of atom selection, a generalized optimal orthogonal matching pursuit (GOOMP) algorithm is proposed. Improvements are (1) using optimal matching criterion of current observation signal to guarantee the solution can minimize matching error.(2) selecting L optimal atoms in batch to guarantee higher fault-tolerant ability. For sparse signals gOMP algorithm using current best observation criteria improves its MERP by3.16%~10.80%, OOMP algorithm selecting L optimal atoms in batch exactly reconstruct signals with number of iterations which is one third of that of OOMP, and improves MERP by31.26%~37.54%.
     Furthermore, this thesis proves the sufficient condition of GOOMP algorithm exactly reconstructing original signals in K iterations is:On the premise of the independence of correct atoms, unselected atoms are projected into complement space spanned by selected atoms and then normalized, then each projected and normalized error atom is projected into space spanned by all projected and normalized error atoms, each l1norm of projecting coefficient vector is smaller than1.
     4) Based on residual matching and atom coefficients thresholding, an improved reconstruction algorithm for blind sparsity signal is proposed. Firstly, the relationship between atom selecting threshold and sparsity in backtracking-based adaptive orthogonal matching pursuit (BAOMP) algorithm is analyzed. Then aimed at shortcomings of steep rise of residual norms and estimated signal errors aroused by selected error atoms in later iterations of BAOMP, an improved algorithm IBAOMP is proposed. When the energy of estimated signal is closed to that of target signal, by increasing atom selecting threshold according to80-20principle to control error atom selections and capacity of candidate atom set, IBAOMP effectively eliminate the phenomenon of periodic steep rise of errors.
     In conclusion, the researches in this thesis on atom selecting methods and blind sparsity signal reconstruction in CS give the following results:
     LABOMP with the interval backtracking mechanism improves the probability of hitting correct atoms, by using regular atom selection method, RLABOMP algorithm significantly improves convergence speed of LABOMP, and GOOMP algorithm can not only improve MERP but also reduce the computation time. Besides, for blind sparsity signals, IBAOMP algorithm avoids reconstruction blindness when sparsity information is missing by threshold adjustment mechanism, and ensures the estimated signal gradually approaching target signal.
引文
[1]Kotel'nikov V A. On the carrying capacity of the ether and wire in telecommunications[A]. Material for the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svyazi RKKA, Moscow[C].1933.
    [2]Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006, 52(4):1289-1306.
    [3]Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine,2008,25(2):21-30.
    [4]Eldar Y, Michaeli T. Beyond bandlimited sampling[J]. IEEE Signal Processing Magazine,2009,26(3):48-68.
    [5]Joel A. Tropp, Stephen J. Wright. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE,2010,98(6):948-958.
    [6]Gedalyahu K, Eldar Y C. Time-delay estimation from low-rate samples:A union of subspaces approach[J]. IEEE Transactions on Signal Processing,2010,58(6): 3017-3031.
    [7]Gedalyahu K, Tur R, Eldar Y C. Multichannel sampling of pulse streams at the rate of innovation[J]. IEEE Transactions on Signal Processing,2011,59(4):1491-1504.
    [8]Mishali M, Eldar Y C. Blind multiband signal reconstruction:Compressed sensing for analog signals[J]. IEEE Transactions on Signal Processing,2009,57(3):993-1009.
    [9]Mishali M, Eldar Y C. From theory to practice:Sub-Nyquist sampling of sparse wideband analog signals [J]. IEEE Journal of Selected Topics in Signal Processing, 2010,4(2):375-391.
    [10]Mishali M, Eldar Y C, Dounaevsky O, et al. Xampling:Analog to digital at sub-Nyquist rates[J]. IET Circuits, Devices & Systems,2011,5(1):8-20.
    [11]Matusiak E, Eldar Y C. Sub-Nyquist sampling of short pulses[J]. IEEE Transactions on Signal Processing,2012,60(3):1134-1148.
    [12]Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist:Efficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory,2010,56(1): 520-544.
    [13]Tropp J A, Wakin M B, Duarte M F, et al. Random filters for compressive sampling and reconstruction[A].2006 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)[C]. Toulouse:2006:Ⅲ.
    [14]Tur R, Eldar Y C, Friedman Z. Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing,2011, 59(4):1827-1842.
    [15]Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine,2008,25(2):83-91.
    [16]Mahalanobis A, Muise R. Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems[J]. IEEE Transactions on Aerospace and Electronic Systems,2009,45(3):1167-1180.
    [17]Robucci R, Gray J D, Chiu L K, et al. Compressive sensing on a CMOS separable-transform image sensor [J]. Proceedings of the IEEE,2010,98(6): 1089-1101.
    [18]Chen W, Wassell I J. Energy-efficient signal acquisition in wireless sensor networks:a compressive sensing framework[J]. IET Wireless Sensor Systems,2012,2(1):1-8.
    [19]Davenport M A, Hegde C, Duarte M F, et al. Joint manifolds for data fusion[J]. IEEE Transactions on Image Processing,2010,19(10):2580-2594.
    [20]Haupt J, Bajwa W U, Rabbat M, et al. Compressed sensing for networked data[J]. IEEE Signal Processing Magazine,2008,25(2):92-101.
    [21]Mota J F C, Xavier J, Aguiar P M Q, et al. Basis Pursuit in sensor networks[A].2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)[C]. Pittsburgh, PA, USA:2011:2916-2919.
    [22]Montefusco L B, Lazzaro D, Papi S, et al. A fast compressed sensing approach to 3D MR image reconstruction[J]. IEEE Transactions on Medical Imaging,2011,30(5): 1064-1075.
    [23]Murphy M, Alley M, Demmel J, et al. Fast 11-SPIRiT compressed sensing parallel imaging MRI:scalable parallel implementation and clinically feasible runtime [J]. IEEE Transactions on Medical Imaging,2012,31(6):1250-1262.
    [24]Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[J]. IEEE Signal Processing Magazine,2008,25(2):72-82.
    [25]Wei D, Mona A S, Olgica M, et al. Compressive sensing DNA microarrays[EB/OL]. EURASIP Journal on Bioinformatics and Systems Biology.2009/2013-04-06. http://downloads.hindawi.com/journals/bsb/2009/162824.pdf.
    [26]Shishkin S L. Fast and robust compressive sensing method using mixed hadamard sensing matrix[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2012,2(3):353-361.
    [27]Yang Z, Zhang C, Xie L. Robustly stable signal recovery in compressed sensing with structured matrix perturbation[J]. IEEE Transactions on Signal Processing,2012,60(9): 4658-4671.
    [28]Do T T, Gan L, Nguyen N H, et al. Fast and efficient compressive sensing using structurally random matrices[J]. IEEE Transactions on Signal Processing,2011,60(1): 139-154.
    [29]Haltmeier M. Stable signal reconstruction via 11-minimization in redundant, non-tight frames[J]. IEEE Transactions on Signal Processing,2012,61(2):420-426.
    [30]Qiu K, Dogandzic A. Sparse signal reconstruction via ECME hard thresholding[J]. IEEE Transactions on Signal Processing,2012,60(9):4551-4569.
    [31]Ramirez A B, Arce G R, Otero D, et al. Reconstruction of sparse signals from dimensionality-reduced cauchy random projections[J]. IEEE Transactions on Signal Processing,2012,60(11):5725-5737.
    [32]Friedman J, Hastie T, Tibshirani R. The elements of statistical learning[M]. New York: Springer Series in Statistics,2001.
    [33]Qiu K, Dogandzic A. Variance-component based sparse signal reconstruction and model selection[J]. IEEE Transactions on Signal Processing,2010,58(6):2935-2952.
    [34]Ogmen H, Herzog M H. The geometry of visual perception:Retinotopic and nonretinotopic representations in the human visual system[J]. Proceedings of the IEEE, 2010,98(3):479-492.
    [35]Mallat S. A wavelet tour of signal processing [M]. Academic press,1999.
    [36]DeVore R A. Nonlinear approximation[A]. Acta numerica[C].1998:51-150.
    [37]Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory,2005,51(12):4203-4215.
    [38]Needell D, Tropp J A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis,2009,26(3): 301-321.
    [39]Sun Q. Sparse approximation property and stable recovery of sparse signals from noisy measurements[J]. IEEE Transactions on Signal Processing,2011,59(10):5086-5090.
    [40]Duffy B, Carr H, Moller T. Integrating isosurface statistics and histograms [J]. IEEE Transactions on Visualization and Computer Graphics,2013,19(2):263-277.
    [41]Zhong P, Wang R. Learning sparse CRFs for feature selection and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2008, 46(12):4186-4197.
    [42]Nguyen N H, Tran T D. Exact recoverability from dense corrupted observations via 11-Minimization[J]. IEEE Transactions on Information Theory,2013,59(4): 2017-2035.
    [43]Peyvandi S, Amirshahi S H, Hernandez-Andres J, et al. Generalized inverse-approach model for spectral-signal recovery [J]. IEEE Transactions on Image Processing,2012, 22(2):501-510.
    [44]Studer C, Kuppinger P, Pope G, et al. Recovery of sparsely corrupted signals[J]. IEEE Transactions on Information Theory,2011,58(5):3115-3130.
    [45]Quer G, Masiero R, Pillonetto G, et al. Sensing, compression, and recovery for WSNs: sparse signal modeling and monitoring framework[J]. IEEE Transactions on Wireless Communications,2012,11(10):3447-3461.
    [46]Fletcher A K, Rangan S, Goyal V K. Ranked sparse signal support detection[J]. IEEE Transactions on Signal Processing,2012,60(11):5919-5931.
    [47]Bazerque J A, Mateos G, Giannakis G B. Basis pursuit for spectrum cartography [A]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)[C].2011:2992-2995.
    [48]Schmidt A, Moura J M F. Distributed field reconstruction with model-robust basis pursuit[A].2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)[C]. Kyoto:2012:2673-2676.
    [49]Temlyakov V N, Zheltov P. On performance of greedy algorithms[J]. Journal of Approximation Theory,2011,163(9):1134-1145.
    [50]Dumitrescu B. Sparse total least squares:Analysis and greedy algorithms [J]. Linear Algebra and its Applications,2013,438(6):2661-2674.
    [51]Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of Sciences, 2003,100(5):2197-2202.
    [52]Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory,2001,47(7):2845-2862.
    [53]Tropp, J A. Greed is good:algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory,2004,50(10):2231-2242.
    [54]Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [J]. IEEE Transactions on Information Theory, 2006,52(1):6-18.
    [55]Fuchs J J. On sparse representations in arbitrary redundant bases [J]. IEEE Transactions on Information Theory,2004,50(6):1341-1344.
    [56]Tropp J A. Just relax:convex programming methods for identifying sparse signals in noise[J]. IEEE Transactions on Information Theory,2005,52(3):1030-1051.
    [57]Candes E J, Tao T. Near-optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Transactions on Information Theory,2006,52(12): 5406-5425.
    [58]Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics,2006,59(8): 1207-1223.
    [59]Cohen A, Dahmen W, DeVore R. Compressed sensing and best k-term approximation[J]. Journal of the American Mathematical Society,2009,22(1): 211-231.
    [60]Gribonval R, Nielsen M. Sparse representations in unions of bases [J]. IEEE Transactions on Information Theory,2003,49(12):3320-3325.
    [61]Rudelson M, Vershynin R. On sparse reconstruction from Fourier and Gaussian measurements[J]. Communications on Pure and Applied Mathematics,2008,61(8): 1025-1045.
    [62]Zhang Y. On theory of compressive sensing via 11-minimization:Simple derivations and extensions[R]. Houston, United States:Rice University,2008.
    [63]Donoho D L, Tanner J. Counting faces of randomly-projected polytopes when the projection radically lowers dimension[J]. Journal of the American Mathematical Society,2009,22(1):1-53.
    [64]Xu W, Hassibi B. On sharp performance bounds for robust sparse signal recoveries [A]. IEEE International Symposium on Information Theory [C]. Seoul:2009:493-497.
    [65]Chen L, Chen J, Gu Y. Greedy pursuits:Stability of recovery performance against general perturbations [A].2012 International Conference on Computing, Networking and Communications (ICNC)[C]. Maui, HI:2012:897-901.
    [66]Liu E, Temlyakov V N. The orthogonal super greedy algorithm and applications in compressed sensing[J]. IEEE Transactions on Information Theory,2011,58(4): 2040-2047.
    [67]Mileounis G, Kalouptsidis N. A sparsity driven approach to cumulant based identification and order determination[J]. Signal Processing,2013,93(7):1892-1899.
    [68]Dong W, Shi G, Li X, et al. Image reconstruction with locally adaptive sparsity and nonlocal robust regularization[J]. Signal Processing:Image Communication,2012, 27(10):1109-1122.
    [69]Mallat S G, Zhifeng Zhang. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [70]DeVore R A, Temlyakov V N. Some remarks on greedy algorithms[J]. Advances in computational Mathematics,1996,5(1):173-187.
    [71]梁巍,阙沛文,陈亮,et al.基于残差比阈值的迭代终止条件匹配追踪稀疏分解方法[J].上海交通大学学报,2010,44(2):171-175.
    [72]Wu R, Huang W, Chen D-R. The exact support recovery of sparse signals with noise via orthogonal matching pursuit[J]. IEEE Signal Processing Letters,2012,20(4): 403-406.
    [73]Fletcher A K, Rangan S. Orthogonal matching pursuit:A brownian motion analysis[J]. IEEE Transactions on Signal Processing,2011,60(3):1010-1021.
    [74]Cai T T, Wang L. Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise[J]. IEEE Transactions on Information Theory,2011,57(7):4680-4688.
    [75]Ding J, Chen L, Gu Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing,2012,61(2):398-410.
    [76]Zakharov Y V, Nascimento V. Orthogonal matching pursuit with DCD iterations[J]. Electronics Letters,2012,49(4):295-297.
    [77]Hussain Z, Shawe-Taylor J, Hardoon D R, et al. Design and generalization analysis of orthogonal matching pursuit algorithms [J]. IEEE Transactions on Information Theory, 2011,57(8):5326-5341.
    [78]Davis G M, Mallat S G, Zhang Z. Adaptive time-frequency decompositions[J]. Optical Engineering,1994,33(7):2183-2191.
    [79]Cotter S F, Adler R, Rao R D, et al. Forward sequential algorithms for best basis selection[A]. IEE Proceedings on Vision, Image and Signal Processing,[C].1999: 235-244.
    [80]Hsieh S H, Lu C S, Pei S C. Fast OMP:Reformulating OMP via iteratively refining 12-norm solutions[A].2012 IEEE Statistical Signal Processing Workshop[C].2012: 189-192.
    [81]Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property[J]. IEEE Transactions on Information Theory,2010,56(9): 4395-4401.
    [82]Livshitz E. On efficiency of orthogonal matching pursuit[EB/OL]. arXiv preprint arXiv:1004.3946.2010/2013-03-20. http://arxiv.org/abs/1004.3946.
    [83]Zhang T. Sparse recovery With orthogonal matching pursuit under RIP[J]. IEEE Transactions on Information Theory,2011,57(9):6215-6221.
    [84]Bechler P, Wojtaszczyk P. Error estimates for orthogonal matching pursuit and random dictionaries[J]. Constructive Approximation,2011,33(2):273-288.
    [85]Mo Q, Shen Y. A remark on the restricted isometry property in orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2012,58(6):3654-3656.
    [86]Wang J, Shim B. On the recovery limit of sparse signals using orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing,2012,60(9):4973-4976.
    [87]Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to non-linear system identification[J]. International Journal of Control,1989,50(5): 1873-1896.
    [88]Davies M E, Eldar Y C. Rank awareness in joint sparse recovery[J]. IEEE Transactions on Information Theory,2012,58(2):1135-1146.
    [89]Rebollo-Neira L, Lowe D. Optimized orthogonal matching pursuit approach[J]. IEEE Signal Processing Letters,2002,9(4):137-140.
    [90]Barron A R, Cohen A, Dahmen W, et al. Approximation and learning by greedy algorithms[J]. The Annals of Statistics,2008,36(1):64-94.
    [91]Natarajan B K. Sparse approximate solutions to linear systems[J]. SIAM Journal on Computing,1995,24(2):227-234.
    [92]Saikat Chatterjee, Dennis Sundman. Look ahead orthogonal matching pursuit[A].2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)[C]. Pittsburgh, PA, USA:2011:4024-4027.
    [93]Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stage wise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2011,58(2):1094-1121.
    [94]Schnass K, Vandergheynst P. Average performance analysis for thresholding[J]. IEEE Signal Processing Letters,2007,14(11):828-831.
    [95]Blumensath T, Davies M E. Stagewise weak gradient pursuits[J]. IEEE Transactions on Signal Processing,2009,57(11):4333-4346.
    [96]Blumensath T, Davies M E. Gradient pursuits[J]. IEEE Transactions on Signal Processing,2008,56(6):2370-2382.
    [97]Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):310-316.
    [98]Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics,2007,9(3):317-334.
    [99]Blumensath T, Davies M E. Iterative thresholding for sparse approximations[J]. Journal of Fourier Analysis and Applications,2008,14(5):629-654.
    [100]Wei Dai, Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory,2009,55(5):2230-2249.
    [101]Kingsbury N G, Reeves T. Iterative image coding with overcomplete complex wavelet transforms[A]. Visual Communications and Image Processing 2003[C].2003: 1253-1264.
    [102]Portilla J. Image restoration through 10 analysis-based sparse optimization in tight frames[A].16th IEEE International Conference on Image Processing[C].2009: 3909-3912.
    [103]Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis,2009,27(3):265-274.
    [104]Lange K, Hunter D R, Yang I. Optimization transfer using surrogate objective functions[J]. Journal of Computational and Graphical Statistics,2000,9(1):1-20.
    [105]Meka R, Jain P, Dhillon I S. Guaranteed rank minimization via singular value projection[J]. arXiv preprint arXiv:0909.5457,2009.
    [106]Garg R, Khandekar R. Gradient descent with sparsification:an iterative algorithm for sparse recovery with restricted isometry property [A]. Proceedings of the 26th Annual International Conference on Machine Learning[C]. Canada:2009:337-344.
    [107]Blumensath T. Sampling and reconstructing signals from a union of linear subspaces[J]. IEEE Transactions on Information Theory,2011,57(7):4660-4671.
    [108]Lee K, Bresler Y, Junge M. Subspace methods for joint sparse recovery [J]. IEEE Transactions on Information Theory,2012,58(6):3613-3641.
    [109]Wang J, Kwon S, Shim B. Generalized orthogonal matching pursuit[J]. IEEE Transaction on Signal Processing,2012,60(12):6202-6216.
    [110]Tian W, Rui G. Blind sparsity weak subspace pursuit for compressed sensing[J]. Electronics Letters,2012,49(5):369-370.
    [111]Do T T, Lu G, Nam N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[A].2008 42nd Asilomar Conference on Signals, Systems and Computers[C]. USA:IEEE,2008:581-587.
    [112]刘亚新,赵瑞珍,胡绍海,et al.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717.
    [113]Wu H, Wang S. Adaptive Sparsity Matching Pursuit Algorithm for Sparse Reconstruction[J]. IEEE Signal Processing Letters,2012, PP(99):1-1.
    [114]Honglin Huang, Anamitra Makur. Backtracking-Based Matching Pursuit Method for Sparse Signal Reconstruction[J]. IEEE Signal Processing Letters,2011,18(7): 391-394.
    [115]Onose A, Dumitrescu B. Cyclic adaptive matching pursuit[A].2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)[C].2012: 3745-3748.
    [116]Ambat S K, Chatterjee S, Hari K V S. Fusion of greedy pursuits for compressed sensing signal reconstruction[A]. Signal Processing Conference (EUSIPCO),2012 Proceedings of the 20th European[C].2012:1434-1438.
    [117]Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12): 4655-4666.
    [118]Blumensath T, Davies M E. On the difference between orthogonal matching pursuit and orthogonal least squares[R]. Edinburgh,UK:University of Edinburgh,2007.
    [119]Jonathan Richard Shewchuk. An Introduction to the conjugate gradient method without the agonizing pain[J]. School of Computer Science Carnegie Mellon University Pittsburgh,PA:1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700