环境水体石油类污染现场检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源问题是二十一世纪我国乃至世界面临的主要问题。随着世界人口的增长及工农业生产的发展,需水量在日益增长,水已经变得比以往任何时候都要珍贵。与此同时,由于人类的生产和生活,导致水体的污染,水质恶化,使得有限的水资源更加紧张。长期以来,石油类物质一直是水和土壤中的重要污染源。它不仅对人的身体健康带来极大危害,而且使水质恶化,严重破坏水体生态平衡。因此各国都加强了油类物质对水体和土壤的污染的治理。目前,我国对于水中油含量的检测手段落后,与国际先进水平存在差距,传统的检测方法操作过程繁琐,容易引入误差,且不能现场作业。难以满足当今技术水平的要求。为了取得具有代表性的正确数据,使分析数据具有与现代测试技术水平相应的准确性和先进性,不断提高分析成果的可比性和应用效果,检测的方法和仪器是非常重要的。只有保证了这两方面才能保证快速和准确地测量出水中油类污染物含量,以达到保护和治理水污染的目的。因此,论文的目的就是开展水中油污染检测方法、技术和检测设备的研究,通过本课题的研究,探索出一套适合我国国情的水质污染现场检测技术和检测设备,以实现油类污染的现场检测,为地下水资源调查与评价、水资源保护以及农业发展提供科学依据。
     论文在简要分析地下水油类污染现场检测技术的基本理论-朗伯比尔定律的基础上,对实现石油类污染现场检测的方法原理进行研究,提出了系统测量的基本模型,设计了系统实现的总体方案及工作流程。针对基本模型在实现油污染现场检测中存在的问题,本文又提出了将径向基函数神经网络的软测量方法应用于油含量现场检测中的设计思路,利用神经网络很强的非线性逼近能力和学习能力,建立了目标系统的径向基函数神经网络模型,取得了很好的效果。论文运用了一些关键技术和思想,进行了系统的软硬件设计,在硬件设计中,采用气体滤波相关轮和窄带红外滤光片等技术,完成了光学系统的硬件设计,解决了红外探测器的信号衰减、气体浓度信号失真等关键问题。采用单片机智能控制方法和技术,实现了数据的采集、存储、传输、控制、运算等功能;在软件设计中,采用了嵌入式多任务内核(RTX51Tiny)作为其开发平台,扩展系统硬件功能,完善了抗干扰措施。最后,通过系统测试,验证了系统的准确性和可靠性。
     通过本文的研究,得到以下结论:
     论文通过对矿物油含量测量机理、光学系统、智能化检测技术以及基于神经网络的软测量方法等方面的研究,对油类污染现场检测的技术关键逐一进行了解决,最终探索出一套适合现场使用的检测方法,完成了检测系统的设计及一系列的试验测试。通过一系列试验测试表明,该系统符合设计要求。
     论文集先进的传感器技术、计算机技术、单片机技术及光学检测技术于一体,以此来实现地下水的油类污染的现场检测。研究中充分利用单片机技术,实现了检测系统的智能控制;此外,本文采用基于神经网络的软测量方法,对矿物油的吸光度与油的浓度所确立的目标系统进行建模,并利用神经网络很强的非线性逼近能力和学习能力,以实现本文的最终目标,提高检测系统的准确度和测量范围,简化了测量过程。因此,论文成果充分体现了创新性,为地下水石油类污染检测提供了新技术和新设备,开拓了新的思路。
     本项成果的推广应用,将会使我国地下水污染检测技术达到一个新的水平,为我国地下水污染检测整体水平的提高起到重要的促进作用。
The water resources question is the main matter in our country and even the world in the 21st century. Along with world population's growth and the industry and agriculture development, the requirement of water is growing day by day and the water has got more precious than the past. Meanwhile, as a result of humanity's production and the life, it causes the pollution of the water body and the water quality to worsen. It makes the limited water resources be less. Petroleum-series of Contaminants has been the important source of pollution in water and soil for a long time. It not only brings the enormous harm to person's health, but also destroys the water body ecological equilibrium seriously. Therefore many countries strengthen to fight against the pollution of Petroleum-series of Contaminants in the Environmental Water and soil. At present, the method of detecting Petroleum-series Contaminants in our country is backward. Between our country and the developed country has the gap. The operating process of the traditional examination method is tedious, easy to cause the error, and cannot in-site detect. It is difficult to satisfy the technical level’s wanting. In order to obtain the representative correct data to improve the accuracy of application, the examination method and the instrument is very important. Only we guaranteed the advance of the method and the precision of the instrument, we could guarantee detecting the contents of Petroleum-series Contaminants fleetly and truly. We can gain our ends for solving the problem of water pollution and conservation. Therefore the purpose of the essay is to study the method of detecting the Petroleum-series Contaminants in water and develop the device. Though the study of the essay, we will find out the detecting method, technique and device adopting to our country situation. Then we can realize the in-situ detecting the Petroleum-series Contaminants and provide the scientific basis for the research, evaluation and conservation of water resource, and development of agriculture.
     The essay studies the theory of in-situ detecting the Petroleum-series Contaminants and proposes the system survey's fundamental model, designs the overall solutions and work flow of system realization on the basis of simply analyzing the elementary theory - Beer-Lambert law. In view of fundamental model have some faults on in-situ detecting the Petroleum-series Contaminants, this article also proposed a new designing thought. The thought is to apply the soft sensing method based on radial basis function (RBF) neural network to detect the Petroleum-series Contaminants in water. Applying the strong nonlinear approximate and studied ability of neural network, we have established the neural network model of system based RBF and had made the very good progress. The essay has utilized some key technologies and the thought to finish the system's software and hardware design. In the hardware design of optical system, we have applied some techniques including the gas filter theory of theory and the infrared narrow band filter to solve the key question involving infrared acquisition aid's signal attenuation, the gas strength signal distortion and so on. Using the Single chip computer (SCM) intelligent control method and technique, the system has realized functions including data gathering, memory, transmission, control, operation and so on. In the software design, the system has used the embedded multitasking kernel (RTX51Tiny) to become the development platform. It expands the system’s hardware function and consummates the ant jamming measure. Finally we have confirmed system's accuracy and the reliability through the system testing.
     We obtain the following conclusion through this article researching:
     This essay has resolved the key problem of in-situ detecting the Petroleum-series Contaminants through the study of theory of Contaminant content , the optical system, intellectualized examination technology as well as soft sense technique based on neural network. We have explored a set of methods fitting in-situ detecting the Petroleum-series Contaminants. Finally we have completed the detect system's design and a series of experiment. Through a series of indoor simulation and the field test ,it indicated that this set of methods and the detect system can meet the requirement of field observation long time.
     The essay integrated the advanced sensor technology, the computer technology, the SCM technology and optical detect technology and realized in-situ detect of the Petroleum-series Contaminants in water. During the study of this essay, we realized intelligent control of the detect system through making the best of the SCM technique. In addition, this essay sets up objective system modeling based on the neural network soft sense technique aiming at the gas’s absorbency and the density. The essay’s purpose is to improve the system's accuracy and the measuring range and simplify the measuring process. We realized the purpose through using nonlinear approximate ability and learning ability of neural network .Therefore, the paper’s achievement has manifested the innovation fully and provided the new technology and the new equipment for the detecting Petroleum-series contaminants in underground water.
     The popularization and application of this achievement will enable our country underground water condiment examination technology to achieve a new level. It will promote the whole detecting level of underground water condiment improvement in our country.
引文
[1] Essam El-Hinnawi,Manzur H·Hashmi,何奕工.全球水资源状况[J].世界环境,1988,(4):20-23.
    [2]江刚.世界人均水资源日趋短缺[J].中国环境科学,2003,23(4):430-431.
    [3]科司.世界水资源现状[J].水利水电技术,2003,34(4):40.
    [4]胡明秀.我国水资源现状及开发利用对策[J].武汉工业学院学报,2004,23(1):104-108.
    [5] Robert D. Prospects for a Supported Photocatalyst in the Detoxification of Drinking Water[J].Water Quality International,1998, 10(9):27-28.
    [6]程路连.国外水资源和水质污染状况[J].环境与可持续发展,1989,(9):17-21.
    [7] S J Rodvang,D M Mikalson, M C Ryan. Changes in Ground Water Quality in an Irrigated Area of Southern Alberta. Journal of Environmental Quality. Madison: Mar/Apr 2004.
    [8] Khaled A El-Tarabily. Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf . Dian Journal of Microbiology. Ottawa: Feb 2002.
    [9] Anonymous. Land-based activities account for most ocean oil pollution, reports says . Water Environment & Technology. Alexandria: Jul2002.
    [10] Alison C Carrigan. The bill of attainder clause: A new weapon to challenge the Oil Pollution Act of 1990. Boston College Environmental Affairs Law Review. Newton: Fall 2000.
    [11] Ryan, Martin, Meiman, Joe. An examination of short-term variations in water quality at a karst spring in Kentucky. Ground Water. Dublin: Jan 1996.
    [12]梁淑杰、李艳.浅层地下水污染动态分析[J].中国公共卫生管理,2004, 20( 6):15-18.
    [13]王玉和.浅论地下水污染[J].地下水,2004, 26(4):33-35.
    [14] GOULD JR. Proceedings of the InternationalConference on Oil Spill 2001[C] . Washington DC: Sheattle, Washington, API,2001. 577-584.
    [15] TSOCALIS E A, KOWENHOVEN T, PERAKISA. Experiences in sorbentmaterials treatment[ J]. Mar Technol Sname News,1994, 31: 79-93.
    [16] HICKS B N, CAPLAN JA. Bioremediation: A natural solution[J]. Pollution Engineering, 1993, 25(2): 30-33.
    [17]BOOPATHY R. Factors limiting bioremediation technologies[J]. Biosource Technology, 2000, 74: 63-67.
    [18]林奎,杨建立.“11. 14”重大油污事故处理工作存在的问题及对策[J].交通环保, 2002, 23(3): 33-35.
    [19]韩玉辰.英国油污染与防治措施简介[J].水运工程,1980,(2):56-57.
    [20]上田浩一,李美文.防止海洋石油污染的技术动态及今后研究方向[J].交通环保,1987,(1):38-42.
    [21]王辉,张丽萍.海洋石油污染处理方法优化配置及具体案例应用[J].海洋环境科学,2007, 26(5):408-412.
    [22] IEP DEVELOPS COST-EFFECTIVE OIL POLLUTION TREATMENT. Industrial Environment. Boston: Jul 1, 2005.
    [23] Marylin Lisowski. Clean Water: An Introduction to Water Quality and Water Pollution Control. The Journal of Environmental Education.Madison: Winter 2006.
    [24] Hodson, Cathryn Owano, Kilbourne, Angela. Groundwater monitoring and remediation. Pollution Engineering. Troy: Jul1996.
    [25] Michael Babb. Groundwater pollution takes center stage in Stockholm . Water Environment & Technology. Troy: Winter 1998.
    [26] Vikram M Vyas, Amit Roy, Panos G Georgopoulos, William Strawderman, David S Kosson. Development and Application of a Methodology for Determining Background Groundwater Quality at the Savannah River Site. Pittsburgh: Feb 2006.
    [27] Andy J Logan. Groundwater Pollution, Aquifer Recharge and Vulnerability . Alexandria: Dec 1998.
    [28]Clifford K. Ho and Charles F. Lohrstorfer, In Situ Monitoring of Vapor Phase TCE Using a Chemiresistor Microchemical Sensor,Ground Water Monitoring & Remediation 23,no.4/ Fall 2003。
    [29]刘令梅,霍树梅,阎季惠,等.国外海洋污染监测技术[J].海洋科学环境,2(2):142-153.
    [30]陈维仁.污染监测浮标的发展及其海洋环境污染监测中的应用,海洋科学环境,1997,16(3):66-70.
    [31]王东海,曹维峰.紫外分光光度法测定地下水系统中油类的标准油选定,中国环境监测,第15卷第6期,1999。
    [32]上田浩一.电磁感应式油水界面检测计.机电设备,1983,(3):24-33.
    [33]姜云柏,郭兴伟.EJK951型油水界面传感器在油田中的应用.应用科技,2002,29(5):24-29.
    [34]高翔,张培信,郭宏利.立罐油水界面中子测量仪的研制,同位素,2005,18(1):26-28.
    [35]熊勇,杨刚.不同红外分光法对水中污染油分析的研究[J].油气田环境保护,2002,12(4):19~21.
    [36]王彦,杨玉森,锁向荣.铁路企业含油工业废水中矿物油监测分析方法探讨[J].铁道劳动安全卫生与环保,1997, 24(3):191~195.
    [37]李幼锦,李秉森.地下水污染监测方法简介[J].应用能源技术,2004, 89(5):19~21.
    [38] Ryan,Martin,Meiman. An examination of short-term variations in water quality at a karst spring in Kentucky [J].Groubd Water, 1996, 34(1):23.
    [39]陈昆庆.JDS-10 6红外分光测油仪对水中油类的测定[J].矿业快报,2005,437(11):45~46.
    [40]谢争,朱林珍,周婷.非分散红外分光光度法测定饮食业油烟[J].环境监测管理与技术, 2004,16(4):30~31.
    [41]唐松林,刘建琳,高蓓蕾.红外法测定不同行业废水中石油类/动植物油[J].中国环境监测,2003,19(3):28~29.
    [42]杨振民,耿炜,王津.非分散红外法测油仪的现状及其在环境监测中的应用[J].现代科学仪器,1999,3:38~41.
    [43]Marylin Lisowski. An Introduction to Water Quality and Water Pollution Control[J].
    [44]王秉忱,杨天行.地下水污染地下水水质模拟方法[M].北京:北京师范学院出版社,1985.
    [45]叶为民、金麒、黄雨,等.地下水污染试验研究进展[J].水利学报,2005,36(2):251~255.
    [46]岳梅.淮南市区浅层地下水水质污染预测模型探讨[J].地下水,2002,2:77~78.
    [47]郑西来,钱会.地下水系统中石油污染物的吸附转移研究[J].勘察科学技术,1998,1:26~29.
    [48]于世林.分析方法的进展和检测中分析方法的正确选择(上)〔J〕,化工标准·计量·质量,2002,10:27~38.
    [49]李颖畅.紫外分光光度法测定地下水中NO3--N的含量[J].锦州师范学院学报(自然科学版),2002, 23(4期):8~9.
    [50]郑健.水体和土壤中矿物油的常用测量方法与仪器[J].分析仪器, 2002(3): 1~8.
    [51] LapezAvilaV,YoungR,KinR.. JAOAC,1993, Int76(3): 555-562.
    [52] ISO/TR 11046;1994(E). Soil quslity - Determina-tion ofmineral oil content - Method by infrared spectrometry and gas chromatogaphicmethod.
    [53]国家环境保护局水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002. 19~21.
    [54]时红,孙新忠,范建华,等.水质分析方法与技术[M].北京:地震出版社,2001.216~219.
    [52]刘建国,刘文清,魏庆农.环境监测技术及其发展方向[J].光电子技术与信息,2001,14(2):7~12.
    [53]吴邦灿.现代环境监测技术[M].北京:中国环境科学出版社,2002. 19~21.
    [54] GB/T 16488-1996,水质,石油类和动植物油的测定,红外光度法[S].
    [55]邓勃.仪器分析[M].北京:清华大学出版社,1991.219-237.
    [56]曲建翘,吴志宏,韩春生,等.便携式CO/CO2二合一不分光红外分析仪[J].现代科学仪器,1995,4:21~22.
    [57]王志坚.MUV87-1多功能智能化紫外光检测仪的研究及其应用研究[D].北京:中国科学技术信息研究所,1998.
    [58]陈彦萼.水质分析仪[M].北京:化学工业出版社,1991.198-199,204-207.
    [59]林大泉,王玉纯.用红外分光光度法测定水体中石油烃含量的研究[J].中国环境监测,1990,6(2):11~14.
    [60]启文齐.中国水中油类监测存在的问题与解决办法研究[J].中国环境监测,1999,(4):13-21.
    [61]韩子兴.红外光度法测定水中矿物油的技术和应用[J].中国环境监测,2000,(3):20-24.
    [62]王静芳,赵云英,周玉深.荧光法与紫外分光光度法测定海水中石油[J].海洋环境科学(MARINE ENVIRONMENTAL SCIENCE),1985,4(2):78~83.
    [63]苏先功,卫静芳.荧光分光光度法测定海水中的微量石油[J].海洋环境科学,1985, 2(4):83~95.
    [64]王静芳,赵宕典.荧光分光光度法测定海水中微量石油的影响因素[J].海洋环境科学,2004,3(3):42~45.
    [65]曹文棋.红外光度油份仪的校准及标准溶液[J].现代仪器,1998,6:36~37.
    [66]朱炎坤.分光光度计灵敏度、杂散光的测定[J].现代仪器,1998,2:39~40.
    [67]陈国珍,黄贤智.紫外一可见光分光光度法(上册)[M].北京:原子能出版社,1983.242-244.
    [68]冯胜.吸光光度法的发展及应用[M].广州:广东科技出版社,1990.36-50.
    [69]罗度尧,邓延悼.分光光度分析[M].北京:科学出版社,1992.152-155.
    [70]孙毓庆.分析化学实验[M].北京:人民卫生出版社,1994.101.
    [71]邱丽芳,周立华,彭志刚.径向基函数神经网络[J].湖南省工业职业技术学院学报,2002,2(1):8~10.
    [72]焦李成.神经网络的应用与实现[M].西安:电子科技大学出版社,1993.
    [73]王亮,邵惠鹤.RBFNN软测量的嵌入式系统仿真与实现[J].控制工程,2006,13(6):536~539.
    [74]Kleinbaum D G,KupperL L.M uller K E.Applied regression analysis and other multivariable methods[M].Second Edition Boston PW S-KEN T Publishing Company, 1987.
    [75]Billings S A ,Jamaluddin H B ,Chen S .Properties of neural network swith applications to modelling dynamic systems [J].Int J of Control, 1992, 55(1 ): 193~224.
    [76] Zheng G L,Billings S A.Radial basis function network configuration using mutual information and the orthogonal least squares algorithm [J]. Neural Networks , 1996, 9 ( 9 ): 1619~1637.
    [77] Billing S A, Chen S, KorenbergM J. Identification of M IMO nonlinear system s using a forward regression orthogonal estimator [J]. Int J of Control, 1989, 49 (6 ): 2157~2189.
    [78]徐秉铮,张百灵,韦岗.神经网络理论与应用[M].广州:华南理工大学出版社, 1994. 320-321.
    [79] Chen S, Cowan C F N,Grant P M. Orthogonal least squares learning algorithm for radial basis function networks [J].IEEE Trans on NeuralNetworks,1991, 2(2): 302~309.
    [80]王学仁,王松桂.实用多元统计分析[M].上海:上海科学技术出版社,1996.
    [81] Reed R. Pruning A lgorithms-A Survey[J]. IEEE Transactions on Neural Networks,1993,4 (5):740~747.
    [82] Fahlman S E,Lebiere C. The Cascade-correlation Learning Architecture[J]. Advances in Neural Information Processing Systems,1989,2:519~526.
    [83] Fogel D B. An Information Criterion for Optimal Neural Network Selection[J ]. IEEE Transactions on Neural Networks, 1991, 2 (5 ):490~497.
    [84]骆中华,刘瑞兰,苏宏业,等.基于PLS快速剪枝法的RBF神经网络软测量模型建模方法和应用[J].化工自动化及仪表,2005, 32(3):19~21.
    [85]吴志敏.基于新型PID神经网络的自适应控制系统研究[J].科学技术与工程,2008,8(1):76~79.
    [86]Sun F C, Sun Z Q. Stable neural network-based adaptive control forsampled-data nonlinear systems[J].IEEE Trans on Neural Networks,1998; 9(5) : 956—968.
    [87]Ku C C,LeeKY.Diagonal recurrentneuralnetworks fordynamic sys-tem contro.l[J]. IEEE Trains onNeural Network, 1993; 6(1): 144—156.
    [88]牛玉刚,赵建从,杨成梧.一种新型神经网络控制器的研究[J].系统工程与电子技术, 2000,22(6): 45~83.
    [89]韩京清.非线性P1D控制器[J].自动化学报, 1994, 20(6): 487—190.
    [90]朱春波,包钢,程树康,等.基于比例阀的气动伺服系统神经网络控制方法的研究[J].中国机械工程, 2001,12(l2): 1412—1414.
    [91]李盼盼,缴锡云,马海燕,等.土壤含水率与像素颜色之间关系的BP人工神经网络模型[J].中国农学通报, 2008,24 (1):463~466.
    [92]马海燕.膜沟灌溉入渗规律试验研究[D].南京:河海大学,2007:39- 40.
    [93]Shaw J N, West L T, Radcliffe D E, et al. Preferential flow and pedotransfer functions for transport properties in sandy Kandiudults[J].Soil Science Society America Journal, 2000, 64: 670-687.
    [94] Vervoort R W, Dabney S, M, Romkens M J M. Tillage and row position effects on water and solute infiltration charactersties[J]. Soil Science Society America Journal, 2001, 65: 1227-1234.
    [95]Yasuda H, Berndtsson R, Persson H, et al. Characterizing preferentialtransport during flood irrigation of a heavy clay soil using the dye Vitasyn Blau[J]. Geoderma, 2001, 100: 49-66.
    [96]Forrer, I. Solute transport in an unsaturated field soil: Visualization and quantification of flow patterns using image analysis [D]. Eidgenossische Technische Hochschule, Zurich, Switzerland, 1997:51-56.
    [97]Forrer, I, Papritz, A, Kasteel, R, et al. Quantifying dye tracers in soil profiles by image processing [J]. European Journal of soil Science,2000, 51: 313-322.
    [98] Stadler D, M Stahli, P Aeby, et al. Dye tracing and image analysis for quantifying water infiltration into frozen soils [J]. Soil Science Society America Journal, 2000, 64: 505-516.
    [99]Kasteel R, M Burkhardt, S Giesa, et al. Characterization of field tracer transport using high-resolution images[J]. Vadose Zone Journal,2005, 4: 101–111.
    [100]白雪梅,徐建新. BP神经网络在农业水资源评价中的应用[J].节水灌溉, 2000,(4): 36-38.
    [101] Magnus Persson. Accurate dye tracer concentration estimations usingimage analysis [J]. Soil Science Society America Journal, 2005, 69:967-975.
    [102]飞思科技产品研发中心编著.神经网络理论与MATLAB7实现[M].北京:电子工业出版社, 2006: 100-108.
    [103]刘国冬,丁晶. BP网络用于水文预测的几个问题探讨[J].水利学报, 1997,(1): 65-70.
    [104]邓兴升,王新洲.动态神经网络在变形预报中的应用[J].武汉大学学报·信息科学版(Geomatics and Information Science of Wuhan University),2008,33(1):93~96.
    [105] Martin M. On-Line Support Vector Machines for Function Approximation[R]. Tech. Rep. LSI-02-11-R. Software Department, Universitat Politecnicade Catalunya, Catalunya, Spain,2002.
    [106] Ma Junshui, Theiler J, Perkins S. Accurate On-line Support Vector Regression[J]. Neural Computation,2002(15):2683-2703.
    [107]邓兴升.大坝变形分析与预报的模糊神经网络方法研究[D].武汉:武汉大学,2004.
    [108]刘瑞林,朱广生.用神经网络建立孔隙度预测模型[J].江汉石油学院学报,1993,15(1):28~31.
    [109]Lippmann R P.An introduction to computing with neurai net[J].IEEE.ASSP Magazine.1987,4:4~22.
    [110]McCormack M D.Neural compution in gephysics.The Leading Edge.1991,10(1):11~15.
    [111]朱广生.地震双波法预测孔隙度。江汉石油学院学报,1992,14(1):27~32.
    [112]Rumelhart D E,Hinton G E,Williams R J.Learning internal representations by error propagation.in:Rumelhart D E,McClellandeds J L.Parallel distributed processing.M A:Bradford books/MIT Press.1986,319~362.
    [113]Hecht-Nielsen R.Theory of the back propagation neural network[J].IJCNN.1989,1539~1606.
    [114]Han D H,Nur A,Morgan D.Effect of porosity and clay content on velocities in sandstone[J].Geophysics.1986,51(11):2093~2107.
    [115]R.J.凯斯.光探测器与红外探测器[M].北京:科学出版社,1984.
    [116]徐瀚,张晓莹,孙彤.分光光度法测定水中锰及影响因素[J].高师理科学刊,2003,23(3):31~33.
    [117]王春,秦永惠.催化动力学光度法测定水中微量锰[J].分析化学,2003,26(10):1288.
    [118]吕琳琳.水中锰钴镍铅快速测定的方法研究[D].东北大学, 2006.
    [119]胡卫平.催化动力学分析在食品检测中的应用研究[D].河南大学, 2004.
    [120]王碧英,李兵,李鸿业.分光光度法直接测定水中亚硫酸盐的研究[J].化学研究,1999,10(2):44~46.
    [121] Stephens B G,et al.Anal Chem.,1964,36(7):1308.
    [122]美国公共卫生协会等编著,宋仁元等译.水和废水标准检验法[M].北京:中国建筑工业出版社,1985.415.
    [123]李鸿业,李日文.铁(Ⅲ)还原为铁(Ⅱ)过程中光化学作用的研究[J].水系污染与保护,1993,(3):90.
    [124]张莉,杨桂朋.海洋中铁、锰、铜等过渡金属元素的光化学研究进展[J].海洋科学,2000,24(10):33~36.
    [125]张丹丹.非分散红外光度法测定饮食业油烟的排放浓度[J].环境工程,2001,19(3):51~53.
    [126]奚旦立.环境监测[M].北京:高等教育出版社,1996:78~80.
    [127]尚丽平,史锦珊.全光纤荧光水中矿物油浓度测量技术研究[J].传感技术学报,2000,2:132~136.
    [128]陈国珍.荧光分析[M].北京:科学出版社,1975,12~25.
    [129]占细雄,林君,周志恒.近红外光谱仪中的微弱信号检测技术[J].仪器仪表学报,2002,23(3):29~31.
    [130]曹茂永,王霞,孙农亮.仪用放大器AD620及其应用[J].电测与仪表,2000,37(418):49~52.
    [131]王彦文,刘清.基于MAX275的有源带通滤波器的设计与应用[J].武汉理工大学学报(交通科学与工程版), 2005,39(1):72~75.
    [132]李小英,陈子龙.低噪声带通滤波器精确设计与MATLAB[J].仿真声学与电子工程,2003,(72):25~28.
    [133]沈国治.集成状态变量滤波器MAX274/275[J].电子技术,1994(6):20~23.
    [134]李建歧,常蕾.LC带通滤波器在低压电力线载波通信中的应用[J].电测与仪表,2003,40(456):33~37.
    [135]杨福宝.基于遗传算法的FIR数字滤波器的优化设计[J]..武汉理工大学学报(交通科学与工程版),2002,26(4):478~480.
    [136]丁士心,庄严.一种实用相敏检波器电路的设计[J].计量技术,1999,12:32~34.
    [137]高海生,杨文焕.单片机应用技术大全[M].成都:西南交通大学出版社,1996.
    [138] Tenney R R,Sandel N R.Detection with distributed sensor[J].IEEE Trans.On AES,1981,17(4):501~510.
    [139]宁海,尹青山.低功耗16位A/D转换器AD7705及其应用[J].2006,239(6):366.
    [140]赵海兰,朱剑,赵祥伟.DS1302实时显示时间的原理与应用[J].电子技术,2004,1:43~46.
    [141]王红庆,郭英杰,李春明. X25045芯片及其应用[J].世界产品与技术,2003,12:64~65.
    [142]李秀元,刘希梅.可编程看门狗监控EZPROM一X25045及其应用[J].山东电子,2001,3:19~21.
    [143]史延龄,邹来智,王正兰. X25045与单片机的接口及编程[J].仪器仪表用户,2002,9(1):42~45.
    [144]郭凌. EEPROM芯片X25045与MCS-51单片机的接口及应用[J].电子与自动化,1999,4:38~41.
    [145]李文江,张岩,汪玉凤.内置HD61202点阵式液晶显示模块接口设计与编程[J].液晶与显示, 2004 ,19(2):138~141.
    [146]余华芳,刘健.单片机与液晶显示模块的软硬件接口技术[J].液晶与显示,2003,18(2):125-129.
    [147]杨雷,刘晓,魏春雪.液晶显示器的接口技术及其抗干扰措施[J].液晶与显示,2003,18(2):121-124.
    [148]薛明军,张辉,赵敏. LM2575系列开关稳压集成电路及其应用[J].国外电子元器件,2001,1:67~68.
    [149]李朝青. PC机及单片机数据通讯技术[M].北京:北京航空航天大学出版社,2002,103~107.
    [150]刘秋平.嵌入式操作系统[J].科技创新导刊,2007,33:12.
    [151]高治军,薛春燕,马斌.智能住宅小区无线网络系统的研究与设计[J].低压电器,2007,20:18~22.
    [152] HONG Xiaoyan, XU Kaixin, GERLA M. Scalable Routing Protocols forMobile Ad hoc Networks[ J]. IEEE Network, 2002, 16(4): 11-21.
    [153]MAK S.AModel of InformationManagement for Construction Using Information Technology[ J]. Automation in Construction, 2001(10): 22-28.
    [154]PETRIOLIC.ConfiguringBlueStars:Multihop Scatternet Formation for Bluetooth Networks [ J]. IEEE Transactions on Computers, 2003(6): 45-51.
    [155] HONG Xiaoyan, XU Kaixin, GERLA M. ScalableRouting Protocols forMobile Ad Hoc Networks[ J]. IEEE Network, 2002(11): 87-90.
    [156]阳艳,蒋礼,杨科灵,等.嵌入式操作系统RTX51Tiny的分析及应用[ J].计算机技术与发展, 2006,16(6):89~91.
    [157] Stepner D, Rajan N, Hui D. Embedded Application Design Using a Real-Time OS[A]. Proceedings of the 1999 36th Annual Design Automation Conference (DAC)[C]. New Orleans, LA, USA:IEEE,1999.151-156.
    [158]李仕涌,谭南林.多任务操作系统在嵌入式系统开发中的应用[J].北方交通大学学报, 2002,26(4):79-82.
    [159]赵学军.单片机实时嵌入式操作系统微内核的设计[J].桂林电子工业学院学报, 2002,22(3):76-79.
    [160]刘天泉,黄海,王树青. RTX51在运动控制系统中的应用[J].机电工程, 2004,21(1):30-32.
    [161]李小文,万家富,梁慧冰.μC/OS-II在MCS-51系列中的应用[J].微计算机应用, 2003,24(5):274-277.
    [162]沙春芳.PROTEUS VSM在单片机系统仿真中的应用[J].现代电子技术,2004,(24) :60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700