高体积分数SiCp/Al复合材料精密磨削机理及表面评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC颗粒体积含量50%以上的高体积分数碳化硅铝基复合材料(SiCp/Al)不仅具有高比模量、低膨胀等优异性能,而且在密度、热导率、热变形系数等关键指标上优于SiC,已成为替代微晶玻璃、石英玻璃、SiC材料等的重要反射镜材料。由于SiCp/Al复合材料中SiC颗粒增强相与Al合金基体相截然不同的特性,其加工比单纯的金属和脆性材料更为困难,加工机理也更为复杂,已加工表面缺陷严重,常规的表面粗糙度也难以对其加工表面给予合理的评价。对其精密、超精密加工技术,加工机理及表面完整性进行研究具有重要的理论和实际意义。本文针对高体积分数SiCp/Al复合材料精密磨削加工难题,对其精密磨削机理、已加工表面缺陷特征、已加工表面的评价表征方法及高完整性表面形成机理和条件进行了深入系统的研究,主要研究内容如下:
     (1)研究了高体积分数SiCp/Al复合材料的磨削去除形式,应用SEM观察分析了SiCp/Al复合材料磨削表面缺陷及磨屑的形貌特征和类型,提出了其形成机理。应用压痕实验和压痕断裂力学理论研究了压痕深度、压痕作用位置及SiC颗粒形状对SiC颗粒裂纹产生的影响,进而提出了实现硬质SiC颗粒增强相塑性域去除的机理和条件。建立SiCp/Al复合材料塑性域磨削条件的三维非线性有限元模型,研究了磨粒钝球半径和压入深度对复合材料硬质增强相SiC颗粒脆-塑性转变的影响。
     (2)对高体积分数SiCp/Al复合材料进行了精密磨削实验。对湿式磨削、干式磨削、低温冷冻磨削和ELID磨削工艺条件下的磨削力作了对比研究,分析磨削深度、工件进给速度和磨削工艺条件对磨削力的影响规律,并研究磨削SiCp/Al复合材料时的磨削力分力比的变化规律,从而进一步的揭示SiCp/Al复合材料的去除机理。
     (3)研究了高体积分数SiCp/Al复合材料磨削表面的形成机理。研究了低温冷冻处理对SiCp/Al复合材料硬度、残余应力及界面结合情况的影响,在此基础上研究低温冷冻条件下高完整性表面的形成机理。在ELID精密磨削条件下,从磨粒的微刃性、等高性,钝化膜的作用及磨粒的微切削作用几方面,揭示ELID精密磨削条件下SiCp/Al复合材料的高完整性表面的形成机理。在低温冷冻磨削条件下的高完整性表面磨削加工机理及理论研究是一个新的探索。
     (4)针对SiCp/Al复合材料磨削加工表面形貌的特点及主要的缺陷形式,在对二维粗糙度评定参数与三维粗糙度评定参数表征方法,功率谱密度和表面分形维数表征方法的适用性进行比较后,建立能够真实反映SiCp/Al复合材料磨削加工表面微观形貌的表征参数体系,利用表面粗糙度三维评定参数和表面功率谱密度对SiCp/Al复合材料磨削加工表面的幅度特征和空间波长分布特征进行表征。在此基础上,对磨削加工SiCp/Al复合材料表面质量进行评价,分析磨削参数和磨削工艺条件对加工表面质量的影响,为工程生产实际提供参考依据和理论指导。
Not only owing to their superior thermo-physical properties such as high specific modulus and low thermal expansion, but also in the density, thermal conductivity and thermal deformation coefficient superior to that of SiC, SiC particles reinforced aluminum matrix (SiCp/Al) composites with high volume fraction containing more50%SiC particles are being widely used to replace the conventional materials such as glass, quartz glass and SiC material in space mirror material. Because of SiC particles and Al alloy matrix in SiCp/Al composites with distinct characteristics, compared to the monolithic alloys and ductile material, its processing is more difficult and its grinding mechanism is complex, which leads to much special surface morphology. Conventional surface roughness of machined surface is also difficult to give reasonable evaluation. Therefore, the studies on technology of the precision and ultra precision machining, machining mechanism and surface integrity have important theoretical and practical significance. Aiming to solve the precision and ultra precision grinding machining problems existing in processing SiCp/Al composites with high volume fraction, this paper makes a research on the precision and ultra precision grinding mechanism, surface defect characteristics, the evaluation methods of machined surface, high surface integrity formation mechanism and conditions, the main studies are as follows:
     1. The grinding removal model of SiCp/Al composites was established. The surface defects, chips morphology and type were observed with scanning electron microscope (SEM), and its formation mechanism was put forward. Based on indentation experiments and fracture mechanics theory, the effect of indentation depth, indentation position and the shape of SiC particle on crack formation of SiC particles have been investigated. And the ductile-regime removal mechanism and conditions of SiC particles were put forward. Three-dimensional nonlinear finite element model of ductile-regime grinding condition of SiCp/Al composites was established to analyze the influence of edge radius of grain and indentation depth on the ductile-brittle transition of hard and brittle SiC particles.
     2. A series of experiments for the surface grinding process were conducted on SiCp/Al composites with high volume fraction by diamond grinding wheel, in order to investigate the effect of different grinding conditions (wet, dry, cryogenic and ELID grinding conditions) and various grinding parameters on the grinding force and grinding force ratio during grinding of SiCp/Al composites. These studies further revealed the grindability and removal mechanism of SiCp/Al composites.
     3. The surface formation mechanism of high integrity surface in ductile grinding under cryogenic and ELID grinding conditions was studied. The formation mechanism of high integrity surface was studied under cryogenic grinding condition on the basis the analysis of micro-area hardness, two-phase residual stress and interface combination status before and after freezing treatment. Micro edge and equal high properties of wheel grains, passive film and micro-cutting effect of grains revealed formation mechanism of high integrity surface under the ELID precision grinding conditions. The grinding mechanism and theoretical research of high integrity surface under cryogenic conditions is a new exploration.
     4. According to surface morphology characteristics and typical defects of the SiCp/Al composites, comparative analysis of characterization method of two-dimensional roughness and three-dimensional roughness, power spectrum density and surface fractal dimension were made in this paper. The objective characterization parameter system of SiCp/Al composites grinded surface was established. The three dimensional evaluation parameters of surface roughness and surface power spectrum density respectively indicate the amplitudes characteristics and spatial wavelength distribution characterization of SiCp/Al composites grinding surface. Based on the characterization system, machined surface quality of SiCp/Al composites was evaluated. The influence of grinding parameters and grinding conditions on machined surface quality was analyzed, which contributes to references and theoretical guidance for practical application.
引文
[1]Lloyd D J. Particle reinforced aluminum and magnesium matrix composites. International Materials Reviews,1994,39(1):1-23.
    [2]Izciler M, Muratoglu M. Wear behavior of SiC reinforced 2124 al alloy cmposite in RWAT system. Journal of Materials Processing Technology,2003,132(1-3):67-72.
    [3]Eliosson J, Somclstrom R. Applications of aluminum matrix composite. Key Engineering Materials,1995,104(10):3-5.
    [4]Neite G, Mieke S. Thermal expansion and dimensional stability of an aluminum fibre reinforced aluminum alloys.Materials Science and Engineering A,1991,148:85-89.
    [5]Cui Yan, Wang Lifeng, Ren Jianyue. Multi-functional SiC/Al composites for aerospace applications. Chinese Journal of Aeronautics.2008 (21):578-584.
    [6]全燕鸣,叶邦彦.复合材料的切削加工表面结构与表面粗糙度.复合材料学报,2001,18(4):128-132.
    [7]全燕鸣,周泽华.硬脆颗粒增强铝基复合材料的已切削加工表面形貌及影响因素.中国机械工程,1998,9(7):10-11.
    [8]Caroline J E, Andrewes, His-Yung Feng. Et al. Machining of an aluminum/SiC composite using diamond inserts. Materials Processing Technology,2000,102:25-29.
    [9]Durante S, Rutelle G, Rabezzana F. Aluminum based MMC machining with diamond-coated cutting tools. Surface and Coatings Technology,1997,94-95:632-640.
    [10]HungN P, Boey F Y C, Khor K A.Machinability of aluminum alloys reinforced with silicon carbide particulates. Materials Processing Technology,1996,56:966-977.
    [11]Paulo Davim J, Monteiro Baptista A. Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. Materials Processing Technology,2000, 103:417-423.
    [12]El-Gallab M, Sklad M. Machining of Al/SiC particulate metal-matrix composites performance. Materials Processing Technology,1998,83:151-158.
    [13]Manna A, Bhattacharayya B. A study on machinability of Al/SiC-MMC. Processing Technology, 2003,140:711-716.
    [14]Lin J T, Bhattacharyya D, Ferguson W G. Chip formation in the machining of Al/SiC particle reinforced aluminium matrix composites. Composites Science and Technology 1998,58:285-291.
    [15]El-Gallab M, Sklad M.Machining of Al/SiC particulate metal matrix composites Part II: Workpiece surface integrity. Materials Processing Technology,1998,83:277-285.
    [16]El-Gallab M, Sklad M. Machining of Al/SiC particulate metal matrix composites Part III: comprehensive tool wear models. Materials Processing Technology,2000,101:10-20.
    [17]Hung N P, Boey F Y C, Khor K A. Machinability of cast and powder-formed aluminum alloys reinfored with SiC particles.Materials Processing Technology,1995,48:291-297.
    [18]Mariam S, EI-Gallab M. Machining of particulate metal matrix composites:(dissertation). Canada: McMaster University,1999.
    [19]Mariam S.El-Gallab M, Mateusz P.et al.Machining of aluminum/silicon carbide particulate metal matrix composites Part IV:Residual stresses in the machined workpiece. Materials Processing Technology,2004,152:23-34.
    [20]李德溥,姚英学,袁哲俊.颗粒增强金属基复合材料加工技术进展.工具技术,2006,40(10):3-9.
    [21]Anand Ronald B, Vijayaraghavan L, Krishnamurthy R. Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites. Materials and Design.2009 30(3):679-686.
    [22]Di Ilio A, Paoletti A. A comparison between conventional abrasives and superabrasives in grinding of SiC-aluminium composites. International Journal of Machine Tools and Manufacture, 2000,40(2):173-184.
    [23]Shy-Wen Lan, Chung D D L, Shaping metal-matrix composites by thixotropic machining. Journal of Materials Processing Technology,1996,58 (1):67-69.
    [24]N P Hung, L J Yang, K W Leong. Electrical discharge machining of cast metal matrix composites. Journal of Materials Processing Technology,1994,44(3-4):229-236.
    [25]全燕鸣,周泽华,张发英.SiC颗粒增强铝基复合材料的切削加工特性及适用刀具.东南大学学报,1994,26(5):59-66.
    [26]叶邦彦,刘伟,徐进等.颗粒增强复合材料加工表面粗糙度及刀具设计.中国机械工程,2004,38:99-102.
    [27]全燕鸣,周泽华.金属基复合材料和难加工材料的切削加工.华南理工大学学报,1998,26(4):27-32.
    [28]李德溥,李志奎.颗粒增强铝基复合材料磨削加工表面质量与磨削力研究.现代制造工程,2009,(9):93-95.
    [29]李德溥.SiC颗粒增强铝基复合材料磨削中砂轮磨损与加工质量研究.金刚石与磨料磨具工程,2009,(3):77-80.
    [30]刘江省,李德溥,姚英学.电镀金刚石砂轮端面磨削A12024/SiCp试验研究.现代制造工程,2008,(9):92-95.
    [31]周明,李英杰,李丹.电镀金刚石砂轮磨削加工SiC颗粒增强铝基复合材料的研究.金刚石与磨料磨具工程,2008,(5):39-43.
    [32]Anand Ronald B, Vijayaraghavan L, Krishnamurthy R. Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites. Materials and Design,2009, 30(3):679-686.
    [33]Pramanik A, Zhang L C, Arsecularatne J A. Deformation mechanisms of MMCs under indentation.Composites Science and Technology.2008,68(6):1304-1312.
    [34]A Di Ilio, Paoletti A, V Tagliaferri.et al. An experimental study on grinding of silicon carbide reinforced aluminum alloys. Int. J. Manufact,1996,36 (6):673-685.
    [35]郭成,程羽,尚春阳等.颗粒增强铝合金基复合材料断裂与强化机理.复合材料学报, 2001,18(4):54-57.
    [36]全燕鸣,周泽华.硬脆颗粒增强金属基复合材料切削区的变形.华南理工大学学报(自然科学版),1998,26(4):4-6.
    [37]葛英飞.SiC颗粒增强铝基复合材料超精密车削的基础研究:(博士学位论).南京:南京航空航天大学,2007.
    [38]宫能平,周元鑫,夏源明.应变率对SiC颗粒增强铝基复合材料拉伸性能的影响.力学季刊,2000,21(4):415-420.
    [39]潘立,谢伟东.陶瓷材料磨削加工的技术研究与发展现状.机械,2003,30(6):4-7.
    [40]Mekeown P A,Carlisle K, Shore P.et al. Ultr-precision high stiffness CNC grinding machines for duetile mode grinding of brittle materials. Precision Engineering,1991,13(3):238.
    [41]Qi H S, Rowe W B, Mills B. Experimental investigation of contact behaviour in grinding. Tribology International,1997,30(4):283-294.
    [42]Kim J D, Choi I H. Micro surface phenomenon of duetile cutting in the ultrasonic vibration cutting of optical plastics. Journal of Materials processing Technology,1997,68(1):89-98.
    [43]万珍平,刘亚俊,汤勇.玻璃的脆塑性域高效精密切削.机械科学与技术,2005,24(2):2]7-220.
    [44]赵奕,周明,董申等.脆性材料塑性域超精密加工的研究.高技术通讯,1999,(4):59-62.
    [45]匡仁军,铝复合材料SiCp/Al窄槽磨削技术研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [46]全燕鸣,周泽华.硬脆颗粒增强金属基复合材料的切屑形成机理.华南理工大学学报,1998,26(8):27-30.
    [47]周泽华.金属切削理论.北京:机械工业出版社,1992.
    [48]陈平.超声振动车削SiCp/Al材料的切屑形态特征.现代制造工程,2006(1):84-86.
    [49]王大镇,李波,闫勇刚.SiC增强铝基复合材料的切屑形貌与变形.设计与研究,2009,11:13-16.
    [50]Quan Y M, Zhou Z H, Ye B Y. Cutting process and chip appearance of aluminum matrix composites reinforced by SiC particle. Journal of Materials Processing Technology.1999,91:231-235.
    [51]Joshi S S.Analysis of chip breaking during orthogonal machining of Al/SiCp composites.Journal of Materials Machining Technology.1999,88:90-96.
    [52]Kannan S, Kishawy H A. Tribological aspects of machining aluminium metal matrix composites. Journal of materials processing technology 2008,198:399-406.
    [53]Mariam S. EI-Gallab M. Machining of particulate metal matrix composites:(dissertation). Canada: McMaster University,1999.
    [54]Zhaowei Zhong. Grinding of alumina/aluminum composites. Journal of Materials Processing Technology,2002, (123):13-17.
    [55]Zhong Z W.Grinding of aluminium-based metal matrix composites reinforced with A12O3 or SiC particles. Int J Adv Manuf Technol.2003, (21):79-83.
    [56]Kwak J S, Kim Y S. Mechanical properties and grinding performance on aluminum-based metal matrix composites.Journal of Materials Processing Technology,2008,201(1-3):596-600.
    [57]Zhang B, Zheng X L, Tokura H. et al. Grinding induced damage in ceramics. Journal of Materials Processing Technology,2003,132 (1-3):353-364.
    [58]Sanjay Agarwal P, Venkateswara R. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. International Journal of Machine Tools & Manufacture,2008, (48):698-710.
    [59]Huang H, Liu Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. International Journal of Machine Tools and Manufacture,2003,43 (8):811-823.
    [60]Yakup Y, Muammer N. A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture,2008.48(9):947-964.
    [61]陈秉均,杨南祥.局部冷冻磨削表面残余应力的研究.磨料磨具与磨削,1994,(1):16-18.
    [62]Nguyen T, Zarudi I, Zhang L C. Grinding-hardening with liquid nitrogen Mechanisms and technology. International Journal of Machine Tool s& Manufacture,2007,47:97-106.
    [63]朱波,张飞虎,袁哲俊.低温ELID磨削钛合金磨削力的实验研究.机械工艺师,2000,(12):44-45.
    [64]万宏强.低温切削技术及其应用研究.煤矿机械,2007,(3):90-92.
    [65]孙建国,刘镇昌,李久立.液氮冷却在磨削加工中的应用.机械工艺师,2001,(2):35-36.
    [66]宋宏文.强冷磨削——钛合金磨削新技术.航天工艺,2001,(6):13-15.
    [67]张曙灵,赵允岭.低温冷冻状态下金属切削性能研究,煤矿机械,2006,27(7):117-118.
    [68]汤铭权.切削难加工材料的有效方法——切削技术.械科学与技术,1997,(6):1-5.
    [69]高大晓.ELID磨削砂轮的电火花精密整形与氧化膜状态识别:(硕士学位论文).天津:天津大学,2008.
    [70]Murata R, Okano K, Tsutsumi C, Grinding of structural ceramics. Milton C Shaw Grinding Symposium PED,1985,16:261-272.
    [71]Hitoshi Ohmori, Takeo Nakagawa. Analysis of surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels. Annals of the CIRP,1995,44(1):287-290.
    [72]Hitoshi Ohmori, Weimin Lin, Sei Moriyasu.et al. Microspherical lens fabrication by cup grinding wheels applying ELID grinding. RIKEN Review.2001(34):3-5.
    [73]周曙光,关佳亮.ELID镜面磨削技术综述.制造技术与机床,2001, (2):38-40.
    [74]张春河,袁哲俊,张飞虎等.在线电解修整(ELID)超精密镜面磨削的影响因素初探.金刚石与磨料磨具工程,1996,93(3):21-23.
    [75]朱波,袁哲俊,张飞虎等ELID超精密磨削钢结硬质合金及其表面质量分析.中国机械工程,2000,11(8):866-868.
    [76]关佳亮,袁哲俊,张飞虎等.ELID精密镜面磨削用新磨削液的研制.哈尔滨工业大学学报, 1998,30(5):69-71.
    [77]关佳亮,袁哲俊,张飞虎ELID精密镜面内孔磨削技术的应用.制造技术与机床,1998,(1):25-26.
    [78]张飞虎,张春河,欧海涛等.在线电解修整镜面磨削中砂轮耐用度的研究.哈尔滨工业大学学报,1999,31(6):9-11.
    [79]毛起广.表面粗糙度的评定和测量.北京:机械工业出版社,1991.88-97.
    [80]林滨,黄新雁,魏莹等.加工表面微观形貌测量理论方法及评价.制造业自动化,2006,28(8):14-18.
    [81]losif D, Rosea S V. Highly conduetive multiwall carbon nanotube and epoxy composites produced by threeroll milling. Carbon,2009.47(8):1958-1968.
    [82]杨东军,艾传智,赵福令.复合材料车削表面2D分析和3D分析的对比研究.机械设计与制造,2006,(1):133-134.
    [83]Lin T Y.Blunt L, Stout K J. Determination of proper frequency bandwidth for 3D topograp hy measurement using spectral analysis.Partl:isotropic surfaces.Wear,1993,166(2):221-232.
    [84]Stout K J, Blunt L, Dong W.et al.Development of methods for the charaeterisation of roughness in three dimensions. London:Pentonpress,2000:221-241.
    [85]Mainsah E,Stout E J. Report on the Second International workshop on the development of method for characterization of roughness in 3D. Brussels:LEB Official report circulated by BCR,1993.
    [86]Lawson J K, Aikens D M, English R E. Power spectral density specifications for high-power laser systems. ProcSPIE,1996,2775:34-356.
    [87]许乔,顾元元,柴林等.大口径光学元件波前功率谱密度检测.光学学报,2001,21(3):344-347.
    [88]沈卫星,徐德衍.强激光光学元件表面功率谱密度函数估计.强激光与粒子束,2000,12(4):392-396.
    [89]Tobben H. Ringel G, Kratz F. et al. The use of power spectral density (PSD) to specify optical surfaces. SPIE,1996 (2775):240-250.
    [90]徐德衍,沈卫星,林尊琪.光学轮廓仪对光学元件表面空间波长回应的研究.光学学报,1998,18(12).
    [91]刘耀红,滕霖,李大琪等.功率谱密度(PSD)在评价超精密光学表面中的应用研究.航空精密制造技术,2006,42(6):1-3.
    [92]徐宁,侯仰海,邢彦峰.利用ACF和PSD对微观表面特性研究.机械研究与应用,2004,17(5):54-56.
    [93]Aikens D M, Wolfe C R, Lawson J K.The use of power spectral density(PSD) functions in specifying optics for the National Ignition Facility.Proc.of SPIE,1995,2576:281-292.
    [94]任寰,卓志云,蒋晓东等.波前功率谱密度函数评价方法探讨.强激光与粒子束,2002,14(2):279-282.
    [95]柯宏发,杨俊,张耀辉等.用二维功率谱密度分析工程表面特征.工具技术,1997,31(8):38-41.
    [96]吴贤莉.基于功率谱密度的车削质量控制.航空精密制造技术,1999,35(1):23-24.
    [97]Liu Y H, Teng L. Application of power spectral density to specify optical super-smooth surface. Proc. of SPIE.2006,6150:311-315.
    [98]Bakucz P. Kruger S R. A new wavelet filtering for analysis of fraetal engineering surfaces.Wear, 2009:266(5):539-542.
    [99]Vandenberg S, Osborne C F. Digital image processing techniques, fraetal dimensionality and seale-space applied to surface roughness.Wear,1992,159(1):17-30.
    [100]葛世荣,索双富.表面轮廓分形维数计算方法的研究.摩擦学学报,1997,17(4):354-362.
    [101]葛世荣,陈国安.磨合表面形貌变化的特征粗糙度参数表征.中国矿业大学学报,1999,28(3):204-207.
    [102]陈国安,葛世荣.粗糙表面测量轮廓的分形插值模拟.摩擦学学报,1998,18(4):346-350.
    [103]李成贵,董申.三维表面粗糙度参数的矩表征.计量学报,2001,22(3):168-173.
    [104]李成贵.粗糙表面轮廓相关性的倒谱分析,机械工程学报,2004,40(5):87-91.
    [105]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003.1-70.
    [106]朱波.钢结硬质合金与钛合金ELID磨削技术及机理的研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [107]邓朝晖,张璧,孙宗禹等.陶瓷磨削材料去除机理的研究进展.中国机械工程,2002,13(18):1608-1611.
    [108]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社,2001.142-250.
    [109]Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding:A new technology for machining brittle materials. ASME Journal of Engineering for Industry,1991,113:184-189.
    [110]S.马尔金.磨削技术理论与应用.蔡光起,巩亚东,宗贵亮译.沈阳:东北大学出版社,2002.1-137.
    [111]郑建新,徐家文,吕正兵.陶瓷材料延性域磨削机理.硅酸盐学报,2006,34(1):102-105.
    [112]Malkin S, Hwang T W.Grinding mechanisms for ceramics. Annals of the CIRP,1996, 45(2):569-580.
    [113]Lawn B R, Swain M V. Microfracture beneath point indentation in brittle solids. J. Mater. Sci.. 1975,10:113-122.
    [114]Patten J A, Jacob J. Comparison between numerical simulations and experiments for single-point diamond turning of single-crystal silicon carbide. Journal of Manufacturing Processes,2008. 10(1):28-33.
    [115]Zhang W, Subhash G. An elastic-plastic-cracking model for finite element analysis of indentation cracking in brittle materials. International Journal of Solids and Structures,2001, 38(34-45):5893-5913.
    [116]Yoshinoa M, Aokia T, Chandrasekaran N. et al. Finite element simulation of plane strain plastic-elastic indentation on single-crystal silicon. International Journal of Mechanical Sciences, 2001,43(2):313-333.
    [117]束德林.金属力学性能.北京:机械工业出版社,1987.
    [118]张定铨.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社,1999.74-79.
    [119]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社,2001.142-250.
    [120]Dong W P, P J Sullivan, K J Stout.Comprehensive study of parameters for charaeterising three-dimensional surface topography:Parameters for characterising amplitude and some functional properties. Wear,1994,178(1):29-43.
    [121]张贤达.信号分析与处理.北京:清华大学出版社,2011.
    [122]Jean M. Bennet T, Recent developments in surface roughness characterization. Engng. Opt..1993. 6(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700