新型二硒醚、硒醚化合物的合成及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕硒元素的性质,设计和合成了5个系列新颖的二硒醚或硒醚类化合物。按其用途分为两类:一是设计新型的手性二硒醚类化合物,转化成硒亲电试剂,研究其在不对称反应中的应用。二是应用硒元素作为硫元素的生物电子等排体,合成含硫抗肿瘤化合物的硒类似物,研究它们的生物活性。
     第一部分设计和合成了三个新颖的手性醚类二硒醚,以苯酚类化合物为起始原料,通过Mitsunobu反应引入乳酸乙酯作为手性源,经过还原、醚化、邻位锂化、硒化等反应,得到了手性二硒醚。这类二硒醚在二氯甲烷中进行苯乙烯及其衍生物的甲氧化硒化反应,其中C2对称的二硒醚2Vc表现了良好的效果,产物的产率为68%,非对映异构体比例dr高达94:6。并且研究了在不同的苯乙烯衍生物和不同种类的醇作为亲核试剂时的反应情况。
     第二部分设计和合成了四个新颖的手性酯类二硒醚,以二(2-羟基苯基)二硒醚作为起始原料,通过Mitsunobu反应引入乳酸酯类分子作为手性侧链,以80%左右产率一步反应得到了二硒醚。二硒醚3Ⅵb诱导的苯乙烯的甲氧化硒化反应中,产物的产率为62%,非对映异构体比例dr高达93:7。
     第三部分设计和合成了四个手性三蝶烯类化合物,首次合成了三蝶烯中心桥头位置9位卤化的不对称分子,并研究了这类化合物的硒化反应。通过氯化铜或N-氯代丁二酰亚胺在蒽类化合物的9位氯化,这类氯化蒽衍生物可以和原位生成的2,5-二甲氧基苯炔迅速进行Diels-Alder反应生成手性三蝶烯。9-氯代三蝶烯衍生物在丁基锂的作用下发生卤锂交换反应,但生成的碳负离子受周围基团的位阻效应的影响阻碍了硒化反应的进行,当位阻效应较小时,可以得到硒醚4Ⅴe',并且可以通过手性HPLC分析。
     第四部分合成了七个Bcl-2蛋白的抑制剂5-1的硒醚类似物及衍生物。抗肿瘤细胞活性测试表明,化合物Ia的活性并不如5-1,以Hela细胞为例,仅为其1/85。虚拟分子叠合发现,5Ⅰa的C-Se-C键角小于C-S-C的键角,且C-Se键长略大于C-S键长,另一方面,与二价硫醚中的硫原子相比,硒醚中硒原子形成氢键的能力要弱,这也是影响活性的因素。在这些衍生物中,含有苯硒基基团的化合物5Ⅰd显示了对K562细胞抑制活性,其IC50为12.4μM,同时这类衍生物对K562细胞的抑制能力要优于其他细胞。
     第五部分应用硒元素具有防治肿瘤和为氧、硫元素的生物电子等排体的性质,研究了向萘酰亚胺引入硒官能团的合成方法,合成了十个具有抗癌活性的含硫萘酰亚胺类化合物的硒取代物,抗肿瘤活性测试显示这类化合物具有中等强度的活性,IC50值在10-6-10-5M。通过紫外和荧光光谱研究与ctDNA嵌入性质,化合物6-17和硒化合物6Ⅲa具有类似的性质,并且也表现了相似的中等程度的抗肿瘤活性。苯基硒醚化合物中,萘酰亚胺上N原子的取代基对活性的影响较大,当取代基为N,N-二乙基乙胺时,活性表现最好,苯基上的取代基修饰效果并不明显。另外这类硒醚化合物显示对K562细胞的活性最强,并且这类化合物能够调节K562细胞的活性氧族(ROS)水平,造成RO水平先下降后升高,诱导K562细胞凋亡。
This dissertation is mainly focus on the properties of selenium element, design and synthesis of 5 series novel diselenides and selenides. The application of these compounds can be classified as chiral selenium electrophiles in stereoselective functionalization of alkenes, and as anticancer agents for selenium was bioisosteric element of sulfur.
     The first part:Three novel chiral diselenides with chiral ether were designed and synthesized. Started from phenol derivatives, after Mitsunobu reaction, reduction, etherification, ortho-Lithiation and selenation, these diselenides were prepared in an efficient synthesis. Methoxyselenenylation of styrene were successful when these diselenides were transferred to electrophile in dichloromethane, and among these diselenides, the C2-symmetric chiral diselenide 2Vc showed the highest selectivity, and yield was 68%, and the diastereomeric ratios (dr) was up to 94:6. The influence of different nucleophiles and different alkenes on the outcome of the selenenylation reaction was studied.
     The second part:Four new diselenides have been synthesized in one step from bis(2-hydroxyphenyl) diselenide with ester moieties as substituents of a stereogenic center, after Mitsunobu reaction. The selenium electrophile, generated from diselenide 3VIb had been successfully applied in methoxyselenenylation reactions with 62% yield and the diastereomeric ratios (dr) was up to 93:7.
     The third part:We designed and synthesized four chiral triptycene derivatives. These compounds consist of three different benzene rings tightly connected together at the bridgehead carbon atoms, and the 9-position was chloridized.9-chloro-anthracene derivatives were prepated from anthtacenes chloridized with CuCl2 or NCS. Diels-Alder reaction was the key reaction to form the triptycene scaffold, both benzoquinon and aryne were studied as dienphile. Lithiation were going well when treated these 9-chloro-triptycenes with butyl lithium, but the formed lithium compounds were difficult to selenized and could be ascribed to steric hindrance induced by substituents. One selenide 4V e' was prepared when steric hindrance is less, and this selenide could be separated by chiral HPLC techniques.
     The fouth part:Seven selenium analogues of Bcl2 protein family inhibitor 5-1 (8-oxo-3-thiomorpholin-4-yl-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile) were synthesized, and their anticancer activities were tested. Biological evaluation demonstrated that compound I a was obviously a much less potent cytotoxin compared with 5-1, e.g. about 85-fold less active against Hela cells. The disparity between 5 I a and 5-1 might be attributable to the longer carbon-selenium bond length and smaller selenium-carbon-selenium bond angle, and the poorer ability of the divalent selenium atom (relative to sulfur) to act as a hydrogen bond acceptor in the active site. But in these selenide derivatives, compound 5 I d had antiproliferative activity agaist K562 cell, with IC50 values of 12.4μM.
     The fifth part:A series of selenium analogues of two known sulfur compounds were synthesized, synthesis method was also studied and their anticancer activities were tested. The preliminary results shown that most of the compounds have moderate anticancer activities with the IC50 values of 10-6-10-5M. The selenide compound 6111a nearly had similar activity with its sulfur analogue 6-17. The DNA-binding study showed the two compounds had similar interaction with ct-DNA by using spectroscopic technique. The primary modification of the substitution in benzene ring was less successful, but the side chain on naphthalimide had notable effect, compound 6Ⅲe had a basic side chain with N,N-diethylamine and showed a little better activity than compound 6Ⅲa. More importantly, same with the fouth part, these selenide compounds exhibited stronger anticancer activities against K562 cell than others tested, and some compounds could adjust the reactive oxygen species (ROS) level in K562 cell, and induced apoptosis.
引文
[1]Wirth, T., Organoselenium Chemistry:Modern Developments in Organic Synthesis Top. Curr. Chem.2000,208:1-5.
    [2]徐辉碧硒的化学、生物化学及其在生命科学中的应用,1994华中理工大学社出版社,1.
    [3]Zhang, J.; Gao, X.; Zhang, L.; Bao, Y., Biological effects of a nano red elemental selenium. Biofactors.2001,15(1):27-38.
    [4]a) Scianowski, J., Convenient route to dialkyl diselenides from alkyl tosylates. Synthesis of di(cis-myrtanyl) diselenide. Tetrahedron Lett.2005,19(46):3331-3334. b) Saravanan, V.; Porhiel, E.; Chandrasekaran, S., Tetraethylammonium tetraselenotungstate:a new and efficient selenium transfer reagent for the chemoselective synthesis of functionalised diselenides. Tetrahedron Lett.2003,44(11):257-2260.
    [5]Krief, A.; Dumont, W.; Delmotte, C., Reaction of Organic Selenocyanates with Hydrooxides:The One-Pot Synthesis of Dialkyl Diselenides from Alkyl Bromides. Angew. Chem. Int. Ed.2000,39(9):1669-1672.
    [6]Tian, F.; Yu, Z.; Lu, S., Efficient Reductive Selenation of Aromatic Aldehydes to Symmetrical Diselenides with Se/CO/H2O under Atmospheric Pressure. J. Org. Chem.2004,69 (13):4520-4523.
    [7]a) Narender, M.; Reddy, M.; Kumar, V. P.; Reddy, V. P; Nageswar, Y.; Rao, K. R., Supramolecular Synthesis of Selenazoles Using Selenourea in Water in the Presence of β-Cyclodextrin under Atmospheric Pressure. J. Org. Chem.2007,72 (5):1849-1851. b) Reddy, V. P.; Kumar, A. V.; Rao, K. R., Unexpected C-Se Cross-Coupling Reaction:Copper Oxide Catalyzed Synthesis of Symmetrical Diaryl Selenides via Cascade Reaction of Selenourea with Aryl Halides/Boronic Acids. J. Org. Chem.2010,75 (24):8720-8723.
    [8]a) Feliciano, A. S.; Medarde, M.; Jose L. Lopez, J. L.; Salinero, M. A.; Rodriguez, M. L., Reaction of dienes with selenium dioxide.2. Unexpected 8-oxa-3-selenabicyclo[3.2.1]octanes from linalool. J. Org. Chem.1993,58 (27):7942-7944. b) Nguyen, T. M.; Guzei, I. A.; Lee, D., Novel Reactivity of SeO2 with 1,3-Dienes:Selenophene Formation. J. Org. Chem.2002,67 (18):6553-6556.
    [9]Hua, G.; Woollins, J. D., Formation and Reactivity of Phosphorus-Selenium Rings. Angew. Chem. Int. Ed.2009,48(8):1368-1377.
    [10]Iwaoka, M.; Tomoda, S., Top. Curr. Chem. Ed.:T. Wirth,2000,208:55-80.
    [11]Sharpless, K. B.; Lauer, R. F., Mild procedure for the conversion of epoxides to allylic alcohols. First organoselenium reagent. J. Am. Chem. Soc.1973,95 (8):2697-2699.
    [12]Clive, D. L. J.; Kale, V. N., Generation of carbon-carbon double bonds from beta-oxygenated phenylseleno, phenylthio, and iodo species. A new use for the chlorotrimethylsilane-sodium iodide reagent. J. Org. Chem.1981,46 (2):231-234.
    [13]Miyashita, M.; Suzuki, T.; Yoshikoshi, A., Stereoselective total synthesis of (-)-picrotoxinin and (-)-picrotin. J. Am. Chem. Soc.1989,111 (10):3728-3734.
    [14]_Schmid, G. H., A Standard definition of the term "thiiranium ion". Phosphorus Sulfur 1988,36(3-4):197-200.
    [15]Mihelich, E. D., Stereoselective synthesis of highly substituted tetrahydrofurans through acid-catalyzed ring closure of selenyl diols. J. Am. Chem. Soc.1990,112 (24):8995-8997.
    [16]Pluim, H.; Wynberg, H., Alkaloid catalysed asymmetric synthesis. The addition of selenophenols to 2-cyclohexen-l-ones and conversion to optically active allylic alcohols. Tetrahedron Lett.1979,20(14):1251-1254.
    [17]Tomoda, S.; Iwaoka, M., Synthesis of selenium-containing binaphthyls and their application to the asymmetric ring-opening of cyclohexene oxide. J. Chem. Soc. Chem. Commun.1988,1988(19):1283-1284.
    [18]Nishibayashi, Y.; Singh, J. D.; Fukuzawa, S.; Uemura, S., Synthesis of chiral diferrocenyl dichalcogenides and their application to asymmetric nucleophilic ring opening of meso-epoxides. J. Chem. Soc, Perkin. Trans.1.1995,1995(22):2871-2876.
    [19]Wirth, T., Chiral Selenium Compounds in Organic Synthesis. Tetrahedron 1999,55(1): 1-28.
    [20]Procter, D. J.; Archer, N. J.; Needham, R. A.; Bell, D.; Marchington, A. P.; Rayner, C. M., Stereocontrolled synthesis of novel enantiomerically pure sulfides and selenides from (+)-camphor and (+)-camphor-10-sulfonyl chloride. Tetrahedron 1999,55(31):9611-9622.
    [21]J. Reich, H. J.; Reich,I. L.; Renga, J, M., Organoselenium chemistry, alpha.-Phenylseleno carbonyl compounds as precursors for alpha, beta-unsaturated ketones and esters. J. Am. Chem. Soc.1973,95 (17):5813-5815.
    [22]a) Marshall, J. A.; Royce, R. D., Synthetic studies on cembranolides. Stereoselective synthesis of a crassin acetate synthon. J. Org. Chem.1982,47 (4):693-698. b) Schreiber, S. L.; Santini, C., Cyclobutene bridgehead olefin route to the American cockroach sex pheromone, periplanone-B. J. Am. Chem. Soc.1984,106 (14):4038-4039.
    [23]Hiroi, K.; Shuko Sato, S., Asymmetric Synthesis with Organo-Selenium Compounds:A Facile Entry to Optically Active 4-Substituted 2-Cyclohexenones by Asymmetric Selenenylation of Ketones with Chiral Selenenamides. Synthesis 1985,1985(6/7):635-638.
    [24]Paulmier, C.; Outurquin, F., Jean-Christophe Plaquevent. Enantioselective a-selenenylation of 2-phenylpropanal. Tetrahedron Lett.1988,29(46):5899-5892.
    [25]Tiecco, M.; Carlone, A.; Sternativo, S.; Marini, F.; Bartoli, G.; Paolo Melchiorre, P., Organocatalytic Asymmetric a-Selenenylation of Aldehydes. Angew. Chem. Int. Ed.2007, 46(36):6882-6885.
    [26]Hess, L. C.; Posner, G. H., Asymmetric, Organocatalytic, Three-Step Synthesis of a-Hydroxy-(E)-β, y-unsaturated Esters. Org. Lett.2010,12 (9):2120-2122.
    [27]Wirth, T., Organoselenium Chemistry in Stereoselective Synthesis. Angew. Chem. Int. Ed.2000,39 (21):3742-3751.
    [28]Iwaoka, M.; Tomoda, S.; Nature of the Intramolecular Se…N Nonbonded Interaction of 2-Selenobenzylamine Derivatives. An Experimental Evaluation by 1H,77Se, and 15N NMR Spectroscopy. J. Am. Chem. Soc.1996,118 (34):8077-8084.
    [29]Wirth, T.; Fragale, G.; Spichty, M., Mechanistic Course of the Asymmetric Methoxyselenenylation Reaction. J. Am. Chem. Soc.1998,120 (14),3376-3381.
    [30]a) Tomoda, S.; Iwaoka, M., Synthesis of selenium-containing binaphthyls and their application to the asymmetric ring-opening of cyclohexene oxide. J. Chem. Soc. Chem. Commun.1988,1988(19):1283-1284. b) Tomoda, S.; Fujita, K.; Iwaoka, M., Double differentiation in asymmetric methoxyselenenylation of trans-β-methylstyrene J. Chem. Soc. Chem. Commun.1990,1990(2):129-131. c) Tomoda, S.; Fujita, K.; Iwaoka, M., Asymmetric Trans-Addition Reactions Using Chiral Selenobinaphthyls. Phosphorus. Sulfur. 1992,67(1-4):247-252.
    [31]a) Deziel, R.; Goulet, S.; Grenier, L.; Bordeleau, J.; Bernier, J., Asymmetric selenomethoxylation of olefins involving a chiral C2 symmetrical electrophilic organoselenium reagent. J. Org. Chem.1993,58(14):3619-3621. b) Deziel, R.; Malenfant, E.; Belanger, G, Practical Synthesis of (R,R)-and (S,S)-Bis[2,6-bis(1-ethoxyethyl)phenyl] Diselenide. J. Org. Chem.1996,61 (5):1875-1876.
    [32]a) Fujita, K.; Murata, K.; Iwaoka, M.; Tomoda, S., Asymmetric intramolecular selenoetherification and selenolactonization using an optically active diaryl diselenide derived from D-mannitol. J. Chem. Soc. Chem. Commun.1995,1995(16):1641-1642. b) Fujita, K.; Murata, K.; Iwaoka, M.; Tomoda, S., Design of optically active selenium reagents having a chiral tertiary amino group and their application to asymmetric inter- and intramolecular oxyselenenylations. Tetrahedron 1997,53(6):2029-2048.
    [33]a) Nishibayashi, Y.; Singh, J. D.; Uemura, S.; Fukuzawa, S., Synthesis of chiral diferrocenyl diselenides and their application to asymmetric reactions. Tetrahedron Lett.1994, 35(19):3115-3118. b) Fukuzawa, S.; Takahashi, K.; Kato, H.; Yamazaki, H., Asymmetric Methoxyselenenylation of Alkenes with Chiral Ferrocenylselenium Reagents. J. Org. Chem.1997,62 (22):7711-7716.
    [34]Wirth, T., Asymmetric Reaction of Arylalkenes with Diselenides. Angew. Chem. Int. Ed.1995,34(16):1726-1728. b) Wirth, T., Chiral Selenium Compounds:Versatile Reagents in Organic Synthesis. Liebigs Ann.1997,1997(11):2189-2196.
    [35]Wirth, T.; Fragale, G., Asymmetric Addition Reactions with Optimized Selenium Electrophiles. Chem. Eur. J.1997,3(11):1894-1902.
    [36]Back. T. G.; Dyck, B. P.; Parvez, M.,1,3-Diselenetanes and 1,3-Dithietanes Derived from Camphor. Formation, Structure, Stereochemistry, and Oxidation to Selenoxide and Sulfoxide Products. J. Org. Chem.1995,60 (3):703-710.
    [37]Deziel, R.; Malenfant, E.; Thibault, C.; Frechette, S.; Gravel, M.,2,6-Bis[(2S)-tetrahydrofuran-2-yl]phenyl diselenide:An effective reagent for asymmetric electrophilic addition reactions to olefins. Tetrahedron Lett.1997,38(27):4753-4756.
    [38]Fragale, G.; Wirth, T., New and Efficient Selenium Reagents for Stereoselective Selenenylation Reactions. Chem. Commun.1998,1998(17):1867-1868.
    [39]Tiecco. M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A., New nitrogen containing chiral diselenides:synthesis and asymmetric addition reactions to olefins. Tetrahedron:Asymmetry 2000,23(11):4645-4650.
    [40]a) Tiecco, M.; Testaferri, L.; Bagnoli, L.; Marini, F.; Temperini, A.; Tomassini, C. Claudio Santi, C., Efficient asymmetric selenomethoxylation and selenohydroxylation of alkenes with a new sulfur containing chiral diselenide. Tetrahedron Lett.2000,41(17): 3241-3245. b) Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnol, L Temperini, A., Preparation of a New Chiral Non-Racemic Sulfur-Containing Diselenide and Applications in Asymmetric Synthesis. Chem. Eur. J.2002,8(5):1118-1124.
    [41]Back T. G.; Moussa, Z.; Parvez, M., Asymmetric Methoxyselenenylations and Cyclizations with 3-Camphorseleno Electrophiles Containing Oxime Substituents at C-2. Formation of an Unusual Oxaselenazole from an Oxime-Substituted Selenenyl Bromide. J. Org. Chem.2002,67 (2):499-509.
    [42]Freudendahl, D. M.; Iwaoka, M.; Wirth, T., Synthesis of New Sulfoxide-Containing Diselenides and Unexpected Cyclization Reactions to 2,3-Dihydro-1,4-benzoselenothiine 1-Oxides. Eur. J. Org. Chem.2010,2010(20):3934-3944.
    [43]Back, T. G.; Dyck, B. P.; Nan, S., Asymmetric electrophilic methoxyselenenylations and cyclizations with 3-camphorseleno derivatives. Tetrahedron 1999,55(11):3191-3208.
    [44]Wang, X.; Houk, K. N.; Spichty, M.; Wirth, T., Origin of Stereoselectivities in Asymmetric Alkoxyselenenylations. J. Am. Chem. Soc.1999,121 (37):8567-8576.
    [45]a) Fujita, K.; Murata, K.; Iwaoka, M.; Tomoda, S., Design of optically active selenium reagents having a chiral tertiary amino group and their application to asymmetric inter- and intramolecular oxyselenenylations. Tetrahedron 1997,53(6):2029-2048. b) Tiecco, M.; Testaferri, L.; Santi, C.; Marini, F.; Bagnoli, L.; Temperini, A., Asymmetric selenomethoxylation of alkenes with camphorselenenyl sulfate. Tetrahedron Lett.1998, 39(18):2809-2812.
    [46]Wirth, T.; Kulicke, K. J.; Fragal, G., Chiral Diselenides in the Total Synthesis of (+)-Samin. J. Org. Chem.1996,61 (8):2686-2689.
    [47]Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A., Asymmetric Azidoselenenylation of Alkenes:A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen-Containing Compounds. Angew. Chem. Int. Ed.2003, 42(27):3131-3133.
    [48]Okamoto, K.; Nishibayashi, Y.; Uemura, S.; Toshimitsu, A., Asymmetric Carboselenenylation Reaction of Alkenes with Aromatic Compounds. Angew. Chem. Int. Ed. 2005,44(23):3588-3591.
    [49]Zhao, X.; Yu, Z.; Xu, T.; Wu, P.; Yu, H., Novel Bronsted Acid Catalyzed Three-Component Alkylations of Indoles with N-Phenylseleno-phthalimide and Styrenes. Org. Lett.2007,9(25):5263-5266.
    [50]Okamoto, K.; Nishibayashi, Y.; Uemura, S.; Toshimitsu, A., Stereospecific carbon-carbon bond formation by the reaction of a chiral episelenonium ion with aromatic compounds. Tetrahedron Lett.2004,5(32):6137-6139.
    [51]Lipshutz, B. H.; Gross, T., (2,4,6-Triisopropylphenyl)selenium Bromide (TIPPSe-Br). An in Situ-Generated Reagent for Effecting Highly Selective Ring Closures of Homoallylic Alcohols to Substituted Tetrahydrofurans. J. Org. Chem.,1995,60 (12):3572-3573.
    [52]Yang, J.; Tummatorn, J.; Slegeris, R.; Tlais, S. F.; Dudley, G. B., Synthesis of the Tricyclic Core of Aldingenin B by Oxidative Cyclo-Ketalization of an Alkyne-Diol. Org. Lett. 2011,13 (8):2065-2067.
    [53]Khokhar, S. S.; Wirth, T., Selenocyclizations:Control by Coordination and by the Counterion. Angew. Chem. Int. Ed.2004,43(5):631-633.
    [54]a) Denmark, S. E.; Edwards, M. G., On the Mechanism of the Selenolactonization Reaction with Selenenyl Halides. J. Org. Chem.2006,71 (19):7293-7306. b) Denmark, S. E.; Collins, W. R., Lewis Base Activation of Lewis Acids:Development of a Lewis Base Catalyzed Selenolactonization. Org. Lett.2007,9 (19):3801-3804.
    [55]a) Denmark, S. E.; Collins, W. R.; Cullen, M. D., Observation of Direct Sulfenium and Selenenium Group Transfer from Thiiranium and Seleniranium Ions to Alkenes J. Am. Chem. Soc.2009,131 (10):3490-3492. b) Denmark, S. E.; Kalyani, D.; Collins. W. R., Preparative and Mechanistic Studies toward the Rational Development of Catalytic, Enantioselective Selenoetherification Reactions. J. Am. Chem. Soc.2010,132 (44):15752-15765.
    [56]a) Wirth, T.; Fragale, G, Stereoselective Isoquinoline Alkaloid Synthesis with New Diselenides. Synthesis 1998,1998(2):162-166. b) Deziel, R.; Malenfant, E.; Thibault, C., Asymmetric arene-alkene cyclizations mediated by a chiral organoselenium reagent. Tetrahedron Lett.1998,33(31):5493-5496.
    [57]Davis, F. A.; Stringer, O. D.; McCauley. J. P., Asymmetric oxidation of achiral selenides to optically active selenoxides:Stereochemistry of the allyl selenoxide-selenenate [2,3] sigmatropic rearrangement. Tetrahedron 1985,41(24):4747-4757.
    [58]Shimizu, T.; Kobayashi, M., Optically active selenoxides:chromatographic separation and absolute configuration. J. Org. Chem.1987,52 (15):3399-3403.
    [59]a) Komatsu, N.; Nishibayashi, Y.; Sugita, T.; Uemura, S., The first example of asymmetric selenoxide elimination:application to the synthesis of chiral allenes. J. Chem. Soc., Chem. Commun.1992,1992(1):46-47. b) Nishibayashi, Y.; Singh, J. D.; Fukuzawa, S.; Uemura, S., Synthesis of [R,S;R,S]-and [S,R;S,R]-Bis[2-[1-(dimethylamino) ethyl]ferrocenyl] Diselenides and Their Application to Asymmetric Selenoxide Elimination and [2,3]Sigmatropic Rearrangement. J. Org. Chem.1995,60 (13):4114-4120.
    [60]Komatsu, N.; Matsunaga, S.; Sugita, T.; Uemura, S., Asymmetric selenoxide elimination leading to chiral alkyl and aryl cyclohexylidenemethyl ketones. J. Am. Chem. Soc.1993,115 (13):5847-5848.
    [61]Davis, F. A.; R. Reddy, T., Asymmetric oxidation of simple selenides to selenoxides in high enantiopurity. Stereochemical aspects of the allyl selenoxide/allyl selenenate rearrangement. J. Org. Chem.1992,57 (9):2599-2606.
    [62]Komatsu, N.; Nishibayashi, Y.; Uemura, S., Asymmetric [2,3] sigmatropic rearrangement via chiral selenoxide with sharpless oxidants. Tetrahedron Lett.1993,34(14): 2339-2342.
    [63]Reich, H. J.; Yelm, K. E., Asymmetric induction in the oxidation of [2.2]paracyclophane-substituted selenides. Application of chirality transfer in the selenoxide [2,3] sigmatropic rearrangement. J. Org. Chem.1991,56 (19):5672-5679.
    [64]Nishibayashi, Y.; Singh, J. D.; Fukuzawa, S.; Uemura, S., Synthesis of [R,S;R,S]- and [S,R;S,R]-Bis[2-[1-(dimethylamino)ethyl]ferrocenyl] Diselenides and Their Application to Asymmetric Selenoxide Elimination and [2,3]Sigmatropic Rearrangement. J. Org. Chem.1995,60 (13):4114-4120.
    [65]Ken-ichi, F.; Mitsuhiro, K.; Hirobumi, U.; Akihiro, O.; Yoshikazu, I.; Yoichi, T. Asymmetric [2,3]Sigmatropic Rearrangement of Optically Active Allylic Selenides. Synlett. 1998,1998(9):987-988.
    [66]a) Nishibayashi, Y.; Chiba, T.; Ohe, K.; Uemura, S., High chirality transfer in chiral selenimides v/a[2,3]sigmatropic rearrangement. J. Chem. Soc., Chem. Commun.1995, 1995(12):1243-1244. b) Kurose, N.; Takahashi, T.; Koizumi, T., Asymmetric [2,2 Sigmatropic Rearrangement of Chiral Allylic Selenimides. J. Org. Chem.1996,61 (9 2932-2933.
    [67]Takada, H.; Miyake, Y.; Ohe, K.; Uemura, S., Catalytic asymmetric imidation c selenides into selenimides. Chem. Commun.1998,1998(15):1557-1558.
    [68]Fukuzawa, S.; Takahashi, K.; Kato, H.; Yamazaki, H., Asymmetri Methoxyselenenylation of Alkenes with Chiral Ferrocenylselenium Reagents. J. Or^ Chem.1997,62 (22):7711-7716.
    [69]a) Browne, D. M., Niyomura, O.; Wirth, T., Catalytic Use of Selenium Electrophiles i Cyclizations. Org. Lett.2007,9 (16):3169-3171. b) Shah, A.; Khan, Z. A.; Choudhary, N. Loholter, C.; Schafer, S.; Marie, G. P. L.; Farooq, U.; Witulski, B.; Wirth, T., Org Lett.2009,11 (16):3578-3581. c) Schafer, S.; Wirth, T., A Versatile and Highly Reactiv Polyfluorinated Hypervalent Iodine(Ⅲ Compound. Angew. Chem. Int. Ed.2010,49(15) 2786-2789.
    [70]Nishibayashi, Y.; Singh, J. D.; Arikawa, Y.; Uemura, S.; Hidai, M., Rhodium(Ⅰ)-iridium(Ⅰ)-, and ruthenium(Ⅱ)-catalyzed asymmetric transfer hydrogenation of ketones usinj diferrocenyl dichalcogenides as chiral ligands. J. Organomet. Chem.1997,531(1-2):13-18.
    [71]Wirth, T., Enantioselective alkylation of aldehydes catalyzed by new chiral diselenides Tetrahedron Lett.1995,36(43):7849-7852.
    [72]Fukuzawa, S.; Tsudzuki, K., Ferrocenylseleno amino alcohols as new catalysts for the highly enantioselective alkylation of aldehydes. Tetrahedron:Asymmetry 1995,6(5) 1039-1042.
    [73]Braga, A. L.; Paixao, M. W.; Liidtke, D. S.; Silveira, C. S.; Rodrigues, O. D. E. Synthesis of New Chiral Aliphatic Amino Diselenides and Their Application as Catalysts fo: the Enantioselective Addition of Diethylzinc to Aldehydes. Org. Lett.,2003,5 (15) 2635-2638.
    [74]Braga, A. L.; Vargas, F.; Sehnem, J. A.; Braga, R. C., Efficient Synthesis of Chira a-Seleno Amides via Ring-Opening Reaction of 2-Oxazolines and Their Application in the Palladium-Catalyzed Asymmetric Allylic Alkylation. J. Org. Chem.2005,70(22) 9021-9024.
    [75]a) Hong, I. S.; Greenberg, M. M., Efficient DNA Interstrand Cross-Link Formation from a Nucleotide Radical. J. Am. Chem. Soc.2005,127(11):3692-3693. b) Hong, I. S.; Ding, H.: Greenberg, M. M., Radiosensitization by a Modified Nucleotide that Produces DNA Interstrand Cross-Links under Hypoxic Conditions. J. Am. Chem. Soc.2006,128(7) 2230-2231.c) Weng, X.; Ren, L.; Weng,L.; Huang, J.; Zhu, S.; Zhou, X.; Weng L., Synthesis and Biological Studies of Inducible DNA Cross-Linking Agents. Angew. Chem. Int. Ed.2007 46(42):8020-8023. d) Schiesser. C. H., Taming the free radical shrew-learning to control homolytic reactions at higher heteroatoms. Chem. Commun.2006,2006(39):4055-4065.
    [76]a) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T., Recent Advances in Organoselenium Chemistry. Eur. J. Org. Chem.2009,2009(11):1649-1664. b) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T., Green Chemistry with Selenium Reagents:Development of Efficient Catalytic Reactions. Angew. Chem. Int. Ed.2009,48(45):8409-8411.
    [77]a) Nicolaou, K. C.; Cao, G.; Pfefferkorn, J. A.; Selenium-Based Solid-Phase Synthesis of Benzopyrans Ⅱ:Applications to Combinatorial Synthesis of Medicinally Relevant Small Organic Molecules. Angew. Chem. Int. Ed.2000,39(4):739-743. b) Uehlin, L.; Wirth, T., Novel Polymer-Bound Chiral Selenium Electrophiles. Org. Lett.,2001,3 (18):2931-2933.
    [78]a) Shahzad, S. A.; Wirth, T., Fast Synthesis of Benzofluorenes by Selenium-Mediated Carbocyclizations. Angew. Chem. Int. Ed.2009,48(14):2588-2591. b) Shahzad, S. A.; Vivant, C.; Wirth, T., Selenium-Mediated Synthesis of Biaryls through Rearrangement. Org. Lett., 2010,12 (6):1364-1367. c) Shahzad, S. A.; Venin, C.; Wirth, T., Diselenide-and Disulfide-Mediated Synthesis of Isocoumarins. Eur. J. Org. Chem.2010,2010(18): 3465-3472.
    [79]Mugesh, G.; Mont, W.; Sies, H., Chemistry of Biologically Important Synthetic Organoselenium Compounds. Chem. Rev.2001,101(7):2125-2179.
    [80]Gieselman, M.; Zhu, Y.; Zhou, H.; Galonic, D.; Donk, W. V., Selenocysteine Derivatives for Chemoselective Ligations. ChemBioChem 2002,3(8):709-716.
    [81]Engman, L.; Hallberg, A., Expedient synthesis of ebselen and related compounds. J. Org. Chem.1989,54 (12):2964-2966.
    [82]Bhabak, K. P.; Mugesh, G., Functional Mimics of Glutathione Peroxidase:Bioinspired Synthetic Antioxidants. Acc. Chem. Res.2010,43 (11):1408-1419.
    [83]Nogueira, C. W.; Zeni, G.; Rocha, J. B. T., Organoselenium and Organotellurium Compounds:Toxicology and Pharmacology. Chem. Rev.2004,104(12):6255-6285.
    [84]a) Combs, G. F.; Gray, W. P., Chemopreventive Agents:Selenium. Pharmacol. Ther. 1998,79(3):179-192. b) Ganther, H. E., Chemopreventive Agents:Selenium. Carcinogenesis 1999,20(9):1657-1666. c) Zeng, H.; Combs, G. F., Selenium as an anticancer nutrient:roles in cell proliferation and tumor cell invasion. J. Nutr. Biochem.2008,19(1):1-7. d)尹红星,张殊佳,郑学仿,杨兰义.硒的抗肿瘤作用研究综述.大连大学学报.2008,29(6):18-25.
    [85]Rayman, M. P., Selenium in cancer prevention:a review of the evidence and mechanism of action. P. Nutr. Soc.2007,64 (04):27-542.
    [86]a) Mautner, H. G, The Synthesis and Properties of Some Selenopurines and Selenopyrimidines. J. Am. Chem. Soc.1956,78 (20):5292-5294. b) Mautner, H. G.; Chu, S.; Jaffe, J. J.; Sartorelli, A. C., The Synthesis and Antineoplastic Properties of Selenoguanine, Selenocytosine and Related Compounds. J. Med. Chem.1963,6 (1):36-39.
    [87]a) Ito, H.; Wang, J.; Shimura, K.; Sakakibara, J.; Ueda, T., Antitumor effect of a new organic selenium compound,6-phenyl-7 (6H)-isoselenazolo [4,3-d] pyrimidone (ISP), on the growth of P388 mouse leukemia. Anticancer Res.1990,10(4):891-5. b) Kumar, Y.; Green, R.; Borysko, K. Z.; Wise, D. S.; Wotring, L. L.; Townsend, L. B., Synthesis of 2,4-disubstituted thiazoles and selenazoles as potential antitumor and antifilarial agents.1. Methyl 4-(isothiocyanatomethyl)thiazole-2-carbamates,-selenazole -2-carbamates, and related derivatives. J. Med. Chem.1993,36 (24):3843-3848.
    [88]Cho, S. I.; Koketsu, M.; Ishihara, H.; Matsushita, M.; Nairn, A. C.; Fukazawa, H.; Uehar. Y., Novel compounds,'1,3-selenazine derivatives'as specific inhibitors of eukaryotic elongation factor-2 kinase. Biochim. Biophys. Acta.2000,1475(3):207-215.
    [89]a) Hu. J.; Engman, L.; Cotgreave, I. A., Redox-active chalcogen-containi g glutathione peroxidase mimetics and antioxidants inhibit tumour promoter-induced downregulation of gap junctional intercellular communication between WB-F344 liver epithelial cells. Carcinogenesis 1995,16(8):1815-1824. b). Engman, L.; Cotgreave, I.; Angulo, M.; Taylor, C. W.; Paine-Murrieta, G. D.; Powis, G., Diaryl chalcogenides as selective inhibitors of thioredoxin reductase and potential antitumor agents. Anticancer Res.1997,17(6):4599-605. c). Plano, D.; Baquedano, Y.; Moreno-Mateos, D.; Font, M.; Jimenez-Ruiz, A.; Palop, J. A.; Sanmartin, C., Selenocyanates and diselenides:A new class of potent antileishmanial agents. Eur. J. Med. Chem.2011,46(8):3315-3323.
    [90]Reddy, B. S.; Rivenson, A.; Kulkarni, N.; Upadhyaya, P.; el-Bayoumy, K., Chemo-prevention of colon carcinogenesis by the synthetic organoselenium compound 1,4-phenylenebis(methylene) selenocyanate. Cancer Res.1992,52(20):5635-5640.
    [91]Amouri, H.; Moussa, J.; Renfrew, A. K.; Dyson, P. J.; Rager, M. N.; Chamoreau, L.-M., Discovery, Structure, and Anticancer Activity of an Iridium Complex of Diselenobenzoquinone. Angew. Chem. Int. Ed.2010,49 (41),7530-7533.
    [92]Fuks, L.; Anuszewska, E.; Kruszewska, H.; Krowczynski, A.; Dudek, J.; Sadlej-Sosnowska, N., Platinum(II) complexes with thiourea derivatives containing oxygen, sulfur or selenium in a heterocyclic ring:computational studies and cytotoxic properties. Transition. Met.Chem.2010,35 (6),639-647.
    [93]Das, D.; Roy, G.; Mugesh, G., Antithyroid Drug Carbimazole and Its Analogues: Synthesis and Inhibition of Peroxidase-Catalyzed Iodination of L-Tyrosine J. Med. Chem. 2008,51(22):7313-7317.
    [94]Sharma, A. K.; Sk, U. H.; He, P.; Peters, J. M.; Amin, S., Synthesis of isosteric selenium analog of the PPARβ/δ agonist GW501516 and comparison of biological activity. Bioorg. Med. Chem. Lett.2010,20 (14),4050-4052.
    [95]Desai, D.; Salli, U.; Vrana, K. E.; Amin, S., SelSA, selenium analogs of SAHA as potent histone deacetylase inhibitors. Bioorg. Med. Chem. Lett.2010,20 (6),2044-2047.
    [96]Desai, D.; Madhunapantula, S. V.; Gowdahalli, K.; Sharma, A.; Chandagaludoreswamy, R.; El-Bayoumy, K.; Robertson, G. P.; Amin, S., Synthesis and characterization of a novel iNOS/Akt inhibitor Se,Se'-1,4-phenylenebis (1,2-ethanediyl)bisisoselenourea (PBISe)-against colon cancer. Bioorg. Med. Chem. Lett.2010,20(6):2038-2043.
    [97]Garud, D. R.; Ando, H.; Kawai, Y.; Ishihara, H.; Koketsu, M., Synthesis of Novel Selenapenams, Selenacephems, and Selenazepines Using a 2-(Trimethylsilyl)ethyl Protection Approach. Org. Lett.2007,9(22):4455-4458.
    [98]Jeong, L. S.; Tosh, D. K.; Kim, H. O.; Wang, T.; Hou, X.; Yun, H. S.; Kwon, Y.; Lee, S. K.; Choi, J.; Zhao. L. X., First Synthesis of 4'-Selenonucleosides Showing Unusual Southern Conformation. Org. Lett.2008,10(2):209-212.
    [99]Jeong, L. S.; Tosh, D. K.; Choi, W. J.; Lee, S. K.; Kang, Y.-J.; Choi, S.; Lee, J. H.; Lee, H.; Lee, H. W.; Kim, H. O., Discovery of a New Template for Anticancer Agents:2'-deoxy-2'-fluoro-4'-selenoarabinofuranosyl-cytosine (2'-F-4'-Seleno-ara-C). J. Med. Chem.2009,52(17):5303-5306.
    [100]a) Liu, H.; Pinto, B. M., Efficient Synthesis of the Glucosidase Inhibitor Blintol, the Selenium Analogue of the Naturally Occurring Glycosidase Inhibitor Salacinol. J. Org. Chem. 2005,70(2):753-755. b) Liu, H.; Jayakanthan, R. N. K.; Sim, L.; Heipel, H.; Rose, D. R.; Pinto, B. M., New Synthetic Routes to Chain-Extended Selenium, Sulfur, and Nitrogen Analogues of the Naturally Occurring Glucosidase Inhibitor Salacinol and their Inhibitory Activities against Recombinant Human Maltase Glucoamylase. J. Org. Chem.2007,72(17): 6562-6572.
    [101]Foley, J. W.; Song, X.; Demidova, T. N.; Jilal, F.; Hamblin, M. R., Synthesis and Properties of Benzo[a]phenoxazinium Chalcogen Analogues as Novel Broad-Spectrum Antimicrobial Photosensitizes.J. Med. Chem.2006,49(17):5291-5299.
    [102]Leonard, K. A.; Nelen, M. I.; Simard, T. P.; Davies, S. R.; Gollnick, S. O.; Oseroff, A. R.; Gibson, S. L.; Hilf, R.; Chen, L. B.; Detty, M. R., Synthesis and Evaluation of Chalcogenopyrylium Dyes as Potential Sensitizers for the Photodynamic Therapy of Cancer. J. Med. Chem.1999,42(19):3953-3964.
    [103]Wiles, J. A.; Phadke, A. S.; Bradbury, B. J.; Pucci, M. J.; Thanassi, J. A.; Deshpande, M., Selenophene-Containing Inhibitors of Type IIA Bacterial Topoisomerases. J. Med. Chem. 2011,54(9):3418-3425.
    [104]Poleschner, H.; Seppelt, K., Selenirenium and Tellurirenium Ions. Angew. Chem. Int. E 2008,47 (34):6461-6464.
    [105]Wirth, T.; Fragale, G.; Spichty, M., Mechanistic Course of the Asymmetri Methoxyselenenylation Reaction. J. Am. Chem. Soc.1998,120 (14):3376-3381.
    [106]Mukherjee, A. J.; Zade, S. S.; Singh, H. B.; Sunoj, R. B., Organoselenium Chemistry Role of Intramolecular Interactions. Chem. Rev.2010,110(7):4357-4416.
    [107]Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E. Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C; Bahar, A. M.; Witulski, B. Wirth, T., Catalytic Enantioselective a-Oxysulfonylation of Ketones Mediated by Iodoarenes Eur. J. Org. Chem.2008,2008(31):5315-5328.
    [108]Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P., Mitsunobu an Related Reactions:Advances and Applications. Chem. Rev.2009,109 (6):2551-2651.
    [109]Mugesh, G.; Singh, H. B., Heteroatom-Directed Aromatic Lithiation:A Versatile Routs to the Synthesis of Organochalcogen (Se, Te) Compounds. Acc. Chem. Res.2002,35(4) 226-236.
    [110]Tripathi, S. K.; Sharma, S.; Singh, H. B.; Butcher, R. J.,2-Phenoxyethanol derive diselenide and related compounds; synthesis of a seven-membered seleninate ester. Org Biomol. Chem.2011,9(2):581-587.
    [111]Iwaoka, M.; Tomoda, S., Nature of the Intramolecular Se…N Nonbonded Interaction o: 2-Selenobenzylamine Derivatives. An Experimental Evaluation by 1H,77Se, and 15N NMR Spectroscopy. J. Am. Chem. Soc.1996,118(34):8077-8084.
    [112]Uyanik, M.; Yasui, T.; Ishihara, K., In Situ-Generated Chiral Hypervalen Iodine(III)-Catalyzed Enantioselective Kita Oxidative Spirolactonization. Angew. Chem. Int Ed.2010,49(12):2221-2223.
    [113]a) Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Enantiodifferentiating emdo-Selective Oxylactonization of ortho-Alk-1-enylbenzoate with a Lactate-Derived Aryl-λ3-Iodane. Angew. Chem. Int. Ed.2010,49(39):7068-7071. b) Fujita M.; Wakita, M.; Sugimura, T., Enantioselective Prevost and Woodward reactions using chiral hypervalent iodine(iii):switchover of stereochemical course of an optically active 1,3-dioxolan-2-yl cation. Chem. Commun.2011,47(13):3983-3985.
    [114]Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues, O. E. D.: Braga, A. L., An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se0 or Te0/Base. Org. Lett.2010,12 (15):3288-3291.
    [115]Wojtowicz, H.; Chojnacka, M.; Mlochowski, J.; Palus, J.; Syper, L.; Hudecova, D.; Uher, M.; Piasecki, E.; Rybka, M., Functionalized alkyl and aryl diselenides as antimicrobial and antiviral agents:synthesis and properties. II Farmaco 2003,58(12):1235-1242.
    [116]a) Jiang, Y.; Chen, C.-F., Recent Developments in Synthesis and Applications of Triptycene and Pentiptycene Derivatives. Eur. J. Org. Chem.2011,2011(32):6377-6403. b) Chong, J. H.; MacLachlan, M. J., Iptycenes in supramolecular and materials chemistry. Chem. Soc. Rev.2009,38(12):3301-3315.
    [117]a) Long, T. M.; Swager, T. M., Molecular Design of Free Volume as a Route to Low-k Dielectric Materials. J. Am. Chem. Soc.2003,125(46):14113-14119. b) Swager, T. M., Iptycenes in the Design of High Performance Polymers. Acc. Chem. Res.2008,41(9): 1181-1189.
    [118]a) Zong, Q.-S.; Chen, C.-F., Novel Triptycene-Based Cylindrical Macrotricyclic Host: Synthesis and Complexation with Paraquat Derivatives. Org. Lett.2006,8(2):211-214. b) Han, T.; Chen, C.-F., A Triptycene-Based Bis(crown ether) Host:Complexation with Both Paraquat Derivatives and Dibenzylammonium Salts. Org. Lett.2006,8(6):1069-1072.
    [119]a) Godinez, C. E.; Zepeda, G.; Garcia-Garibay, M. A., Molecular Compasses and Gyroscopes. II. Synthesis and haracterization of Molecular Rotors with Axially Substituted Bis[2-(9-triptycyl)ethynyl]arenes. J. Am. Chem. Soc.2002,124(17):4701-4707. b) Setaka, W.; Nirengi, T.; Kabuto, C.; Kira. M., Introduction of Clutch Function into a Molecular Gear System by Silane Silicate Interconversion. J. Am. Chem. Soc.2008,130(47):15762-15763. c) Kelly, T. R.; Cai, X.; Damkaci, F.; Panicker, S. B.; Tu, B.; Bushell, S. M.; Cornella, I.; Piggott, M. J.; Salives, R.; Cavero, M.; Zhao, Y.; Jasmin, S., Progress toward a Rationally Designed, Chemically Powered Rotary Molecular Motor. J. Am. Chem. Soc.2007,129(2): 376-386. d) Kelly, T. R., Progress toward a Rationally Designed Molecular Motor. Acc. Chem. Res.2001,34(6):514-522.
    [120]Hua, D. H.; Tamura, M.; Huang, X.; Stephany, H. A.; Helfrich, B. A.; Perchellet, E. M.; Sperfslage, B. J.; Perchellet, J.-P.; Jiang, S.; Kyle, D. E.; Chiang, P. K., Syntheses and Bioactivities of Substituted 9,10-Dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrones Unusual Reactivities with Amines. J. Org. Chem.2002,67(9):2907-2912.
    [121]a) Grossman, O.; Gelman, D., Novel Trans-Spanned Palladium Complexes as Efficient Catalysts in Mild and Amine-Free Cyanation of Aryl Bromides under Air. Org. Lett.2006, 8(6):1189-1191. b) Grossman, O.; Rueck-Braun, K.; Gelman, D., Trans-Spanned Palladium Catalyst for Mild and Efficient Amination of Aryl Halides with Benzophenone Imine. Synthesis 2008,2008(4):537-542. c) Bini, L.; Muller, C.; Jos Wilting, J.; Chrzanowski, L. Spek, A. L.; Vogt, D., Highly Selective Hydrocyanation of Butadiene toward 3-Pentenenitrile, J. Am. Chem. Soc.2007,129(42):12622-12623. d)Kodanko, J. J.; Morys, A. J.; Lippard, S. J., Synthesis of Diethynyltriptycene-Linked Dipyridyl Ligands. Org. Lett.2005,7(21): 4585-4588. e) Kodanko, J. J.; Xu, D.; Song, D.; Lippard, S. J., Iron Substitution for Sodium in a Carboxylate-Bridged, Heterodinuclear Sodium-Iron Complex, J. Am. Chem. Soc.2005, 127(46):16004-16005.
    [122]Bartlett, P. D.; Ryan, M. J.; Cohen, S. G., Triptycene (9,10-o-Benzenoanthracene) J. Am. Chem. Soc.1942,64(11):2649-2653.
    [123]Wittig, G.; Ludwig, R., Triptycen aus Anthracen und Dehydrobenzol. Angew. Chem. 1956,68(1):40-40.
    [124]Zhao, L.; Li, Z.; Wirth, T., Triptycene Derivatives:Synthesis and Applications Chem. Lett.2010,39(7):658-667.
    [125]Walborsky, H. M.; Bohnert, T., Synthesis of triptycene systems. J. Org. Chem.1968, 33(10):3934-3935.
    [126]Taylor, M. S.; Swager, T. M., Triptycenediols by Rhodium-Catalyzed [2+2+2] Cycloaddition. Org. Lett.2007,9(18):3695-2697.
    [127]Kurata, H.; Kyusho, M.; Nishimae, Y.; Matsumoto, K.; Takeshi Kawase, T.; Oda, M., 5H,13H-5,13a-[1',2']Benzenocyclopenta[rst]pentaphen-13-one:A New Triptycene Derivative with a Strained Structure. Chem. Lett.2007,36(4):540-541.
    [128]a) Zhang, C.; Chen, C.-F., Synthesis and Structure of 2,6,14-and 2,7,14-Trisubstituted Triptycene Derivatives. J. Org. Chem.2006,71(17):6626-6629. b) Chong, J. H.; MacLachlan, M. J., Synthesis and Structural Investigation of New Triptycene-Based Ligands:En Route to Shape-Persistent Dendrimers and Macrocycles with Large Free Volume. J. Org. Chem.2007, 72(23):8683-8690.
    [129]Hilton, C. L.; Jamison, C. R.; Zane, H. K.; King, B. T.; A Triphenylene-Based Triptycene with Large Free Volume Synthesized by Zirconium-Mediated Biphenylation. J. Org. Chem.2009,74(1):405-407.
    [130]Nakamoto, T.; Hayashi, S.; Nakanishi, W.,77Se NMR Chemical Shifts of 9-(Arylselanyl)triptycenes:New Standard for Planar Structures of ArSeR and Applications to Determine the Structures in Solutions. J. Org. Chem.2008,73(23):9259-9269.
    [131]a) Ishii, A.; Matsubayashi, S.; Takahashi, T.; Nakayama, J., Preparation of a Selenenic Acid and Isolation of Selenoseleninates. J. Org. Chem.1999,64 (4):1084-1085. b) Ishii, A.; Nakata, N.; Uchiumi, R.; Murakami, K., Reactions of a Ditriptycyl-Substituted Selenoseleninate and Related Compounds with a Platinum(O) Complex:Formation of Selenaplatinacycle and Hydrido Selenolato Platinum(II) Complexes. Angew. Chem. Int. Ed. 2008,47(14):2661-2664.
    [132]Yamamoto, G.; Suzuki, M.; Oki, M.peri-Substituent Effects on the Rotational Barrier of9-(1,1-Dimethyl-2-phenylethyl)triptycene. Angew. Chem. Int. Ed.1981,20(6-7):607-608.
    [133]Yamamoto, G., Atropisomerism in a Molecular Gear,8-Bromo-1,4-dimethyl-9-(2-methylbenzyl)triptycene. Chem. Lett.1990,19(8):1373-1376.
    [134]Cozzi, F.; Guenzi, A.; Johnson, C. A.; Mislow, K.; Hounshell, W. D.; Blount, J. F., Stereoisomerism and correlated rotation in molecular gear systems. Residual diastereomers of bis(2,3-dimethyl-9-triptycyl)methane. J. Am. Chem. Soc.1981,103 (4):957-958.
    [135]Kawada, Y.; Iwamura, H., Bis(4-chloro-l-triptycyl) ether. Separation of a pair of phase isomers of labeled bevel gears. J. Am. Chem. Soc.1981,103(4):958-960.
    [136]Satrijo, A.; Swager, T. M., Facile Control of Chiral Packing in Poly(p-phenylenevinylene) Spin-Cast Films. Macromolecules 2005,38 (10):4054-4057.
    [137]Zhu, X.-Z.; Chen, C.-F., Efficient Synthesis of a Chiral Pseudocatenane and Its Derivatives:A Novel Ship's Wheel-like Interlocked Structure. Chem. Eur. J.2006,12(21): 5603-5609.
    [138]Shimizu, Y.; Naito, T.; Ogura, F.; Masazumi Nakagawa, M., Optically Active Triptycenes. VI. Optical Resolution of 2,5-Dihydroxy-8-methoxycarbonyltriptycene and Absolute Configuration of 2,5-Dimethoxy-8-methoxy-carbonyltriptycene. Bull. Chem. Soc. Jpn.1973,46(5):1520-1525.
    [139]a) Harada, N.; Tamai, Y.; Takuma, Y.; Ud, H., Absolute stereochemistry and chiroptical properties of chiral tribenzotriptycene and benzotriptycenes. J. Am. Chem. Soc.1980,102 (2): 501-506. b) Harada, N.; Tamai, Y.; Ud, H., Absolute stereochemistry and circular dichroic properties of chiral triptycenes with an anthracene chromophore:application of the CD exciton chirality method to nondegenerate systems. J. Org. Chem.1984,49 (22):4266-4271.
    [140]Duan, S.; Turk, J.; Speigle, J.; Corbin, J.; Masnovi, J.; Baker, R. J., Halogenations of Anthracenes and Dibenz[a,c]anthracene with N-Bromosuccinimide and N-Chlorosuccinimide. J. Org. Chem.2000,65 (10):3005-3009.
    [141]Fukuzumi, S.; Okamoto, T., Magnesium perchlorate-catalyzed Diels-Alder reactions of anthracenes with p-benzoquinone derivatives:catalysis on the electron transfer step. J. Am. Chem. Soc.1993,115 (24):11600-11601.
    [142]Fukuzumi, S.; Ohkubo, K.; Okamoto, T., Metal Ion-Catalyzed Diels-Alder and Hydride Transfer Reactions. Catalysis of Metal Ions in the Electron-Transfer Step. J. Am. Chem. Soc.2002,124 (47):14147-14155.
    [143]Long, T. M.; Swager, T. M., Molecular Design of Free Volume as a Route to Low-7E Dielectric Materials. J. Am. Chem. Soc.2003,125 (46):14113-14119.
    [144]Arno Wiehe, A.; Senge, M. O.; Schafer, A.; Speck, M.; Tannert, S.; Kurreck, H.; Roder, B., Electron donor-acceptor compounds:exploiting the triptycene geometry for the synthesis of porphyrin quinone diads, triads, and a tetrad. Tetrahedron 2001,57(51):10089-10010.
    [145]Klanderman, B. H.; Criswell, T. R., Reactivity of benzyne toward anthracene systems. J. Org. Chem.1969,34 (11):3426-3430.
    [146]Lu, J.; Zhang, J.; Shen, X.; Ho, D. M.; Pascal, R. A., Octaphenylbiphenylene and Dodecaphenyltriptycene. J. Am. Chem. Soc.2002,124 (27):8035-8041.
    [147]Lu, X.; Nikawa, H.; Tsuchiya, T.; Akasaka, T.; Toki, M.; Sawa, H.; Mizorogi, N.; Nagase, S., Nitrated Benzyne Derivatives of La@C82: Addition of NO2 and Its Positional Directing Effect on the Subsequent Addition of Benzynes. Angew. Chem. Int. Ed.2010,49(3): 594-597.
    [148]Tanimoto, I.; Kushioka, K.; Kitagawa, T.; Maruyama, K., Binary Phase Chlorination of Aromatic Hydrocarbons with Solid Copper(II) Chloride:Reaction Mechanism. Bull. Chem. Soc. Jpn.1979,52(12):3586-3591.
    [149]Harvey, R. G.; Leyba, C.; Konieczny, M.; Fu, P. P.; Sukumaran, K. B., A novel and convenient synthesis of dibenz[a,c]anthracene. J. Org. Chem.1978,43 (17):3423-3425.
    [150]Alcorn, W. C.; Cromarty, F. M.; Flood, J.; Mancilla, J. M.; Mosnaim, A. D.; Nonhebel, D. C., Scullion Ⅰ. Reactions of copper (Ⅱ) halides with aromatic compounds. Part ⅩⅢ. The mechanisms of halogenation of some substituted 9-methylanthracenes. J. Chem. Res.1980,3, 102-103.
    [151]a) Liu, Y.; Xu, Y.; Qian, X.; Xiao, Y.; Liu, J.; Shen, L.; Li, J.; Zhang, Y., Synthesis and evaluation of novel 8-oxo-8H-cyclopenta[a]acenaphthylene-7-carbonitriles as long-wavelength fluorescent markers for hypoxic cells in solid tumor. Bioorg. Med. Chem. Lett.2006,16 (6):1562-1566. b) Zhang, M.; Yu, M.; Li, F.; Zhu, M.; Li, M.; Gao, Y.; Li, L. Liu, Z.; Zhang, J.; Zhang, D.; Yi, T.; Huang, C., A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. J. Am. Chem. Soc. 2007,129(34):10322-10323.
    [152]Liu, F.; Xiao, Y.; Qian, X.; Zhang, Z.; Cui, J.; Cui, D.; Zhang, R., Versatile acenaphtho[1,2-b]pyrrol-carbonitriles as a new family of heterocycles:diverse SNArH reactions, cytotoxicity and spectral behavior. Tetrahedron 2005,61 (47):11264-11269.
    [153]a) Zhang, Z.; Jin, L.; Qian, X.; Wei, M.; Wang, Y.; Wang, J.; Yang, Y.; Xu, Q.; Xu, Y.; Liu, F., Novel Bcl-2 Inhibitors:Discovery and Mechanism Study of Small Organic Apoptosis-Inducing Agents. ChemBioChem 2007,8(1):113-121.b) Zhang, Z.; Wu, G.; Gao, J.; Song, T., Inclusion Complex of a Bcl-2 Inhibitor with Cyclodextrin:Characterization, Cellular Accumulation, and in Vivo Antitumor Activity. Mol. Pharm.2010,7(4):1384-1354.
    [154]a) Liu, F.; Qian, X.; Cui, J.; Xiao, Y.; Zhang, R.; Li, G., Design, synthesis, and antitumor evaluation of novel acenaphtho[l,2-b]pyrrole-carboxylic acid esters with amino chain substitution. Bioorg. Med. Chem.2006,14 (13),4639-4644. b) Xie, L.; Xiao, Y.; Wang, F.; Xu, Y.; Qian, X.; Zhang, R.; Cui, J.; Liu, J., Novel acenaphtho[1,2-b]pyrrole-carboxylic acid family:Synthesis, cytotoxicity, DNA-binding and cell cycle evaluation. Bioorg. Med. Chem.2009,17 (21),7615-7621.
    [155]Chen, Z.; Wang, X.; Zhu, W.; Cao, X.; Tong, L.; Li, H.; Xie, H.; Xu, Y.; Tan, S.; Kuang, D.; Ding, J.; Qian, X., Acenaphtho[1,2-b]pyrrole-Based Selective Fibroblast Growth Factor Receptors 1 (FGFR1) Inhibitors:Design, Synthesis, and Biological Activity. J. Med. Chem.2011,54 (11):3732-3745.
    [156]Zhang, Z.; Wu, G.; Xie, F.; Song, T.; Chang, X., 3-Thiomorpholin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) Based Molecules as Potent, Dual Inhibitors of B-Cell Lymphoma 2 (Bcl-2) and Myeloid Cell Leukemia Sequence 1 (Mcl-1):Structure-Based Design and Structure-Activity Relationship Studies. J. Med. Chem.2011,54 (4):1101-1105.
    [157]Lessene, G.; Czabotar, P. E.; Colman, P. M., BCL-2 family antagonists for cancer therapy. Nature Reviews Drug Discovery 2008,7(12):989-1000.
    [158]Liu, W.; Bulgaru, A.; Haigentz, M.; Stein, C. A.; Perez-Soler, R.; Mani, S., The BCL2-Family of Protein Ligands as Cancer Drugs:The Next Generation of Therapeutics. Curr. Med.Chem.-Anti-Cancer Agents 2003,3(3):217-223.
    [159]Makosza, M.; Wojciechowski, K., Nucelophilic substitution of hydrogen in heterocyclic chemistry. Chem.Rev.2004,104(5):2631-2666.
    [160]刘飞,新型DNA测序用荧光标记染料的合成与光谱研究:(硕士学位论文).上海:华东理工大学2007.
    [161]Kim, E. J.; Love, D. C.; Darout, E.; Abdo, M.; Rempel, B.; Withers, S. G.; Rablen, P. R.; Hanover, J. A.; Knapp, S., OGA inhibition by GlcNAc-selenazoline. Bioorg. Med. Chem. 2010,18 (19):7058-7064.
    [162]Amosova, S. V.; Makhaeva, N. A.; Martynov, A. V.; Potapov, V. A.; Steele, B. R.; Kostas, I. D., Terminal Organylchalcogenoethyl- and -propylamines and Their Schiff Base Derivatives. Synthesis 2005,2005(10):1641-1648.
    [163]Wang, F.; Hu, L.; Li, X.; Xu, X.; Du, H., Synthesis of O,O-Dialkyl 2-Oxo-2-(4-(Selenomorpho-Linosulfonyl)Phenylamino)Ethylphosphonate. Phosphorus, Sulfur, Silicon.2008,183 (2-3):610-616.
    [164]Xuhong Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu. W., "Alive" dyes as fluorescent sensors:fluorophore, mechanism, receptor and images in living cells. Chem. Commun.2010,46(35):6418-6436.
    [165]Lv, M.; Xu, H., Overview of Naphthalimide Analogs as Anticancer Agents. Curr. Med. Chem.2009,16(36):4797-4813.
    [166]a) Diaz-Rubio, E.; Martin, M.; Lopez-Vega, J. M.; Casado, A.; Benavides, A., Phase I study of mitonafide with a 3-day administration schedule:Early interruption due to severe central nervious system toxicity. Invest. New. Drug.1994,12(4):277-281. b) Ratain, M. J.; Mick, R.; Berezin, F.; Janisch, L.; Schilsky, R. L.; Vogelzang, N. J.; L. Lane, B., Phase I study of amonafide dosing based on acetyllator phenotype. Cancer Res.1993,53(10): 2304-2308.
    [167]a) Sami, S. M.; Dorr, R. T.; Solyom, A. M.; Alberts, D. S.; Remers, W. A., Amino-substituted2-[2-(dimethylamino)ethyl]-l,2-dihydro-3H-dibenz[de,h]isoquino-line-1,3-diones. Synthesis, antitumor activity, and quantitative structure-activity relationship. J. Med. Chem.1995,38 (6):983-993. b) Sami, S. M.; Dorr, R. T.; Alberts, D. S.; Remers, W. A.,2-Substituted 1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones. A new class of antitumor agent. J. Med. Chem.1993,36 (6):765-770. c) Sami, S. M.; Dorr, R. T.; Alberts, D. S.; Solyom, A. M.; Remer, W. A., Analogues of amonafide and azonafide with novel ring systems. J. Med. Chem.2000,43 (16):3067-3073. d) Brana, M. F.; Cacho,M.; Garcia, M. A.; Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; Munoz-Mingarro, D.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M., Synthesis, antitumor activity, molecular modeling, and DNA binding properties of a new series of imidazonaphthalimides. J. Med. Chem.2002,45 (26): 5813-5816.e) Brana, M. F.; Cacho, M.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; Carrasco, C.; Bailly, C.; Synthesis, biological evaluation and DNA binding properties of novel mono and bisnaphthalimides. Org. Biomol. Chem.2003,1(4):648-654. f) Brana, M. F.; Cacho, M.; Garcia, M. A.; Pascual-Teresa, B.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; Banez-Coronel, M.; Lacal, J. C., New analogues of amonafide and elinafide, containing aromatic heterocycles:Synthesis, antitumor activity, molecular modeling, and DNA binding properties.J. Med. Chem.2004,47(6):1391-1399.
    [168]a) Bousquet, P. F.; Brana, M. F.; Conlon, D.; Fitzgerald, K. M.; Perron, D.; Cocchiaro, C.; Miller, R.; Moran, M.; George, J.; Qian, X.-D.; Keilhauer, G.; Romerdahl. C. A., Preclinical evaluation of LU 79553:A novel bis-naphthalimide with potent antitumor activity. Cancer Res.1995,55(5):1176-1189. b) McRipley, R. J.; Burns-Horwitz, P. E.; Czerniak, P. M.; Diamond, R. J., Diamond, M. A.; Miller, J. L. D.; Page, R. J.; Dexter, D. L.; Chen, S.-F.; Sun, J.-H.; Behrens, C. H., Seitz, S. P.; Gross. J. L., Efficacy of DMP 840:A novel bis-naphthalimide cytotoxic agent with human solid tumor xenograft selectivity. Cancer Res.1994,54(1):159-164.
    [169]Xu, Y.; Qu, B.; Qian, X.; Li, Y., Five-member thio-heterocyclic fused naphthalimides with aminoalkyl side chains:intercalation and photocleavage to DNA. Bioorg. Med. Chem. Lett.2005,15(4):1139-1142.
    [170]Qian, X.; Li, Z.; Yang. Q., Highly efficient antitumor agents of heterocycles containing sulfur atom:Linear and angular thiazonaphthalimides against human lung cancer cell in vitro. Bioorg. Med Chem.2007,15(21):6846-6851.
    [171]Li, Z.; Yang, Q.; Qian, X., Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents:Effects of intercalation, side chains, and substituent groups. Bioorg. Med. Chem.2007,13(16):4864-4870.
    [172]Chen, Z.; Liang, X.; Zhang, H.; Xie, H.; Liu, J.; Xu, Y.; Zhu, W.; Wang, Y.; Wang, X.; Tan, S.; Kuang, D.; Qian, X., A New Class of Naphthalimide-Based Antitumor Agents That Inhibit Topoisomerase Ⅱ and Induce Lysosomal Membrane Permeabilization and Apoptosis. J. Med. Chem.2010,53(6):2589-2600.
    [173]Salon, J.; Sheng, J.; Jiang, J.; Chen, G.; Caton-Williams, J.; Huang, Z., Oxygen Replacement with Selenium at the Thymidine 4-Position for the Se Base Pairing and Crystal Structure Studies. J. Am. Chem. Soc.2007,129(16):4862-4863.
    [174]Ontoria, J. M.; Rydberg, E. H.; Di Marco, S.; Tomei, L.; Attenni, B.; Malancona, S.; Martin Hernando, J. I.; Gennari, N.; Koch, U.; Narjes, F.; Rowley, M.; Summa, V.; Carroll, S. S.; Olsen, D. B.; De Francesco, R.; Altamura, S.; Migliaccio, G.; Carfi, A., Identification and Biological Evaluation of a Series of 1H-Benzo[de]isoquinoline-1,3(2H)-diones as Hepatitis C Virus NS5B Polymerase Inhibitors. J. Med. Chem.2009,52 (16):5217-5227.
    [175]a) Ranu, B. C.; Mandal, T.; Samanta, S., Indium(I) Iodide-Mediated Cleavage of Diphenyl Diselenide. An Efficient One-Pot Procedure for the Synthesis of Unsymmetrical Diorganyl Selenides. Org. Lett.2003,5(9):1439-1441. b) Ranu, B. C.; Mandal, T., Indium(Ⅰ) Iodide-Promoted Cleavage of Diaryl Diselenides and Disulfides and Subsequent Condensation with Alkyl or Acyl Halides. One-Pot Efficient Synthesis of Diorganyl Selenides, Sulfides, Selenoesters, and Thioesters. J. Org. Chem.2004,69 (17):5793-5795. c) Zhao, X.; Yu, Z.; Yan, S.; Wu, S.; Liu, R.; He, W.; Wang, L., Ruthenium(III) Chloride Catalyzed Efficient Synthesis of Unsymmetrical Diorganyl Selenides via Cleavage of Dibenzyl and Diphenyl Diselenides in the Presence of Zinc. J. Org. Chem.2005,70 (18):7338-7341.
    [176]Santoro, S.; Battistelli, B.; Testaferri, L.; Tiecco, M.; Santi, C., Vinylic Substitutions Promoted by PhSeZnCl:Synthetic and Theoretical Investigations, Eur. J. Org. Chem.2009, 2009(29):4921-4925.
    [177]Santi, C.; Santoro, S.; Testaferri, L.; Tiecco, M., A Simple Zinc-Mediated Preparation of Selenols. Synlett.2008,2008(10):1471-1474.
    [178]Deobald, A. M.; Simon de Camargo, L. R.; Tabarelli, G.; Homer, M.; Rodrigues, O. E. D.; Alves, D.; Braga, A. L., Synthesis of azido arylselenides and azido aryldiselenides:a new class of selenium-nitrogen compounds. Tetrahedron Lett.2010,51(26):3364-3367.
    [179]Petros, A. M.; Dinges, J.; Augeri, D. J.; Baumeister, S. A.; Betebenner, D. A.; Bures, M. G.; Elmore, S. W.; Hajduk, P. J.; Joseph, M.K.; Landis, S. K.; Nettesheim, D. G.; Rosenberg, S. H.; Shen, W.; Thomas, S.; Wang, X.; Zanze,1.; Zhang, H.; Fesik, S. W., Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR andparallel synthesis. J. Med. Chem. 2006,49(2):656-663.
    [180]Wu, A.; Xu, Y.; Qian, X., Novel naphthalimide-amino acid conjugates with flexible leucine moiety as side chain:Design, synthesis and potential antitumor activity. Bioorg. Med. Chem.2009,17(2):592-599.
    [181]Wu, A.; Xu, Y.; Qian, X.; Wang, J.; Liu, J., Novel naphthalimide derivatives as potential apoptosis-inducing agents:Design, synthesis and biological evaluation. Eur. J. Med. Chem.2009,44(11):4674-4680.
    [182]Xie, L.; Cui, J.; Qian, X.; Xu, Y.; Liu, J.; Xu, R.,5-Non-amino aromatic substituted naphthalimides as potential antitumor agents:Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior. Bioorg. Med. Chem.2011,19(2):961-967.
    [183]Tian, Z.-y.; Xie, S.-q.; Mei, Z.-h.; Zhao, J.; Gao, W.-y.; Wang, C.-j., Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway. Org. Biomol. Chem.2009,7(22):4651-4660.
    [184]Letavayova, L.; Vlcko, V.; Brozmanova, J., Selenium:From cancer prevention to DNA damage. Toxicology 2006,227(1-2):1-14.
    [185]Silva, D. V.; Woznichak, M. M.; Burns, K. L.; Grant, K. B.; May, S. W., Selenium Redox Cycling in the Protective Effects of Organo-selenides against Oxidant-Induced DNA Damage.J. Am. Chem. Soc.2004,126(8):2409-2413.
    [186]Doering, M.; Ba, L. A.; Lilienthal, N.; Nicco, C.; Scherer, C.; Abbas, M.; Zada, A. A. P.; Coriat, R.; Burkholz, T.; Wessjohann, L.; Diederich, M.; Batteux, F.; Herling, M.; Jacob, C., Synthesis and Selective Anticancer Activity of Organochalcogen Based Redox Catalysts. J. Med. Chem.2010,53(19):6954-6963.
    [187]Yang, J. Y.; Wang, Z. R., The antitumor effects of selenium compound Na5SeV5O18. 3H2O in K562 cell. Arch. Pharm. Res.2006,9(10):859-865.
    [188]Yang, J.; Yang, X.; Fan, J.; Zhao, Q.; Xu. C., The novel selenium heteropoly compound (NH4)4H4[Se2Mo2V4O24]·7H2O induces apoptosis of K562 cells. Mol. Med. Report.2011,4(6): 1327-1332.
    [189]a) Xu, K.; Chen, H.; Tian, J.; Ding, B.; Xie, Y.; Qiang, M.; Tang, B., A near-infrared reversible fluorescent probe for peroxynitrite and imaging of redox cycles in living cells. Chem.Commun.2011,47 (33):9468-9470. b) Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K., A Near-IR Reversible Fluorescent Probe Modulated by Selenium for Monitoring Peroxynitrite and Imaging in Living Cells. J. Am. Chem. Soc.2011,133 (29):11030-11033.
    [190]DeNicola, G. M.; Karreth, F. A.; Humpton, T. J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K. H.; Yeo, C. J.; Calhoun, E. S.; Scrimieri, F.; Winter, J. M.; Hruban, R. H.; Iacobuzio-Donahue, C.; Kern, S. E.; Blair, I. A.; Tuveson, D. A., Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011,475 (7354): 106-109.
    [191]张涣英,一种萘酰亚胺类化合物7c诱导HeLa细胞凋亡的分子作用机理研究:(硕士学位论文).上海:华东理工大学2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700