脊髓缺血性损伤和保护分子机制的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立猪脊髓微透析的动物模型,观察猪脊髓神经细胞间液中能量代谢相关物质和各种氨基酸的变化,探讨脊髓缺血和再灌注损伤的分子机制。
     方法:本实验于2003年10月至2004年5月在阜外心血管病医院实验外科完成。6只成年中国小型香猪,首先在腰2段脊髓中植入微透析针,经左侧第4肋间开胸,游离降主动脉和左奇静脉。常温阻断主动脉和左奇静脉60分钟,开放再灌注90分钟。术后即刻取腰2段脊髓行HE染色,观察动物脊髓神经元细胞的损伤程度,计算活力指数。分别于阻断前、阻断30分钟、阻断60分钟、开放30分钟、开放60分钟和开放90分钟收集微透析样本。微透析样本分别检测能量代谢相关物质:葡萄糖、丙酮酸、乳酸和甘油;氨基酸:天门冬氨酸、谷氨酸、甘氨酸、γ-氨基丁酸和牛磺酸。观察不同时间点不同物质的变化趋势。方差分析和非参数检验完成统计分析。
     结果:葡萄糖和丙酮酸的含量在主动脉阻断后降低,再灌注开始时达到最低点,此后含量逐渐升高,再灌注90分钟时未恢复。乳酸的含量在阻断后即出现明显升高,后无下降趋势。乳酸/丙酮酸比值在再灌注开始时达到高峰。脊髓神经细胞间液中的天门冬氨酸、甘氨酸和γ-氨基丁酸在主动脉阻断后和再灌注后期出现双峰升高。谷氨酸和牛磺酸在再灌注开始时升高。病理学检查:脊髓内神经元细胞明显损伤。
     结论:猪脊髓缺血微透析的动物模型可以应用于损伤机制和保护效果评价的研究。兴奋性氨基酸在脊髓的缺血损伤中占有重要的地位。再灌注90分钟时谷氨酸、天门冬氨酸升高,可能与脊髓的再灌注损伤有关。
Part one
    Microdialysis study of the spinal cord during thoracic aort-ic cross-clamping in a porcine model
    Objective: Utilize microdialysis to investigate the concentration of amino acid and the changes in energy-related metabolites in spinal cord ischemia. Discuss the mechanism of injury of spinal cord during the ischemia and reperfusion periods.
    Methods: The experiments were performed in the department of experimental surgery of Fuwai Hospital from October 2003 to May 2004. Six swine were studied. Microdialysis probe was inserted into the lumbar 2 spinal cord to monitor extracellular glucose, lactate, pyruvate, glycerin, glutamate, asparagine, glycin, GABA and taurine during ischemia and reperfusion periods. A left side thoracotomy was performed in the fourth interspace. The descending thoracic aorta as well as the azygos vein was dissected, and the aorta was prepared for cross clamping just distal to the left subclavian artery. After 60 minutes spinal cord ischemia, the clamp was removed. After 90 min reperfusion pathological changes of lumbar segmental (L2) spinal cord were observed with the HE staining.
    Result: Glucose and pyruvate concentration decreased significantly with the lowest level observed following 60 min of aortic cross clamping. Lactate level increased significantly after aortic clamping. Also the increase of the lactate-pyruvate ratio was observed during aortic cross clamping. There was a significant increase in concentration of Asp, Gly, and GABA after aorta clamping and reperfusion. There was also a significant increase in Glu and Tau after 90 minutes reperfusion. The number of neurons of spinal cord was fewer and degenerative atrophy of spinal cord could be seen by histological examination.
    Conclusion: Microdialysis reflects the ischemic state of the spinal cord, and is well suited to study each phenomenon. Amino acid plays different roles in the spinal cord ischemia. Glu and Asp may play a key role in the reperfusion injury of spinal cord.
引文
1. Cox GS, O'Hara PJ, Hertz.er NR, et al. Thoracoabdominal aneurysm repair: a representative experience, J Vasc Surg 1992; 15: 780-788.
    2. Crawford ES, Crasford JL, Sail HJ, et al. Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg 1986; 3: 389-404.
    3. Cassada DC, Tribble CG, Laubach VE, et al. An adenosine A2A agonist, ATL-146e, reduces paralysis and apoptosis during rabbit spinal cord reperfusion. J Vasc Surg 2001; 34(3): 482-488.
    4. Strauch JT, Spielvogel D, Lauten A, et al. Importance of extrasegmental vessels for spinal cord blood supply in a chronic porcine model. Eur J Cardiothorac Surg. 2003; 24(5): 817-824.
    5. Toumpoulis IK, Papakostas JC, Matsagas MI, et al. Superiority of early relative to late ischemic preconditioning in spinal cord protection after descending thoracic aortic occlusion. J Thorac Cardiovasc Surg. 2004 Nov; 128(5): 724-730.
    6. Rokkas CK, Kouchoukos NT. Profound hypothermia for spinal cord protection in operations on the descending thoracic and thoracoabdominal aorta. Semin Thorac Cardiovasc Surg 1998; 10; 57-60.
    7. Papakostas JC, Matsagas MI, Toumpoulis IK, et al. Evolution of spinal cord injury in a porcine model of prolonged aortic occlusion. J Surg Res. 2005 Dec 7(Article in press)
    8. Qayumi AK, Janusz MT, Dorovini-Zis K, et al. Additive effect of allopurinol and deferoxamine in the prevention of spinal cord injury caused by aortic crossclamping. J Thorac Cardiovasc Surg. 1994; 107: 1203-1209.
    9. Ross SD, Kem JA, Gangemi JJ, et al. Hypothermic retrograde venous perfusion with adenosine cools the spinal cord and reduces the risk of paraplegia after thoracic aortic clamping. J Thorac Cardiovasc Surg. 2000; 119: 588-595.
    10. Tarlov IM. Spinal cord compression: mechanisms of paralysis and treatment. Springfield (IL): Charles C Thomas; 1957. p. 147.
    11. Lang-Lazdunski L, Heurteaux C, Vaillant N, et al. Riluzole prevents ischemic spinal cord injury caused by aortic crossclamping. J Thorac Cardiovasc Surg. 1999 May; 117(5): 881-889.
    12.余奇劲,周青山,黄海波,等.氯胺酮预处理对兔脊髓缺血性损伤的保护作用.中国临床康复2002:6(20):3054—3055.
    13.余奇劲,周青山,黄海波,等.氯胺酮对兔脊髓缺血性损伤过氧化反应的影响.中国现代医学杂志.2004:14(15):50—52.14. Cheng FC, Yang LL, Yan DY, et al. Monitoring of extracellular pyruvate, lactate, and ascorbic acid during cerebral ischemia: a microdialysis study in awake gerbils. J Chromatogr A. 2000; 870(1-2): 389-394.
    15. Marklund N, Salci K, Lewen A, et al.Glycerol as a marker for post-traumatic membrane phospholipid degradation in rat brain. Neuroreport. 1997 14; 8(6): 1457-1461.
    16. Ilhan A, Yilmaz HR, Armutcu F, et al. The protective effect of nebivolol on ischemia/reperfusion injury in rabbit spinal cord. Progress in Neuro - Psychopharmacology & Biological Psychiatry. 2004; 28(7): 1153-1160.
    17. Kocaeli H, Korfali E, Ozturk H, et al. MK-801 improves neurological and histological outcomes after spinal cord ischemia induced by transient aortic cross-clipping in rats. Surg Neurol. 2005; 64 Suppl 2:S22-26; discussion S27.
    18. Haberg A, Qu H, Saether O. et al. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival. J Cereb Blood Flow Metab. 2001; 21: 1451-1463.
    19. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr, 2000, 130(4S Suppl): 1007S-1015S.
    20. Castillo J. Physiopathology of cerebral ischemia. Rev Neurol, 2000, 30.- 459-464.
    21. Selvatici R, Marino S, Piube11oC, etal. Protein kinase C activity, translocation, and selective isoform subcellular redistribution in the rat cerebral cortex after in vitro ischemia. J Neurosci Res. 2003,71: 64-71.
    22. Shimizu-Sasamata M, Bosque-Hamilton P, Huang PL, et al . Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci, 1998, 18:9564-9571.
    23. MaillyF, Marin P, Israel M, etal. Increase in external glutamate and NMDA receptor activation contribute to H_2O_2-induced neuronal apoptosis. J Neurochem. 1999, 73: 1181-1188.
    24. Saether OD, Backstrom T, Aadahl P, et al. Microdialysis of the spinal cord during thoracic aortic cross-clamping in a porcine model. Spinal Cord. 2000 Mar; 38(3): 153-157.
    25. Rokkas CK, Cronin CS, Nitta T, et al. Profound systemic hypothermia inhibits the release of neurotransmitter amino acids in spinal cord ischemia. J Thorac Cardiovasc Surg. 1995 Jul; 110(1):27-35.
    26. Mitani A, Kataoka K. Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: brain microdialysis study. Neuroscience 1991; 42: 661-670.27. Ohtani K, Tanaka H, Yasuda H, et al. Blocking the glycine-binding site of NMDA receptors prevents the progression of ischemic pathology induced by bilateral carotid artery occlusion in spontaneously hypertensive rats. Brain Res. 2000, 871: 311-318.
    28. Saransaari P, Oja SS. Characteristics of hippocampal glycine release in cell-damaging conditions in the adult and developing mouse. Neurochem Res. 2001, 26: 845-852.
    29. Hutchinson P J, O'Connell MT, AI-Rawi PG, et al. Increases in GABA concentrations' during cerebral ischemia: a microdialysis study of extracellular amino acids. J Neurol Neurosurg Psychiatry. 2002; 72(1): 99-105.
    30. Melani A, Pantoni L, Corsi C, et al. Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage. Stroke. 1999 Nov; 30(11): 2448-2454; discussion 2455.
    31. Petty F. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease? Clin Chem. 1994 Feb; 40(2): 296-302.
    32. Kaupmann K, Huggel K, Heid J, et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature. 1997 Mar 20; 386(6622): 239-246.
    33. Centonze D, Saulle E, Pisani A, et al. Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischaemia. Brain. 2001; 124 (Pt 9): 1855-1865
    34.王华仁,李积胜.缺血缺氧致脑损伤的机制及牛磺酸的保护作用.国外医学卫生学分册。2004;31(5):293—298.1 Frank SM, Parker SD, Rock P, et al. Moderate hypothermia, with partial bypass and segmental sequential repair for thoracoabdominal aneurysm. J Vasc Surg 1994; 19: 687-697.
    2 Cheung AT, Pochettino A, McGarvey ML, et al. Strategies to manage paraplegia risk after endovascular stent repair of descending thoracic aortic aneurysms. Ann Thorac Surg. 2005; 80(4): 1280-8; discussion 1288-1289.
    3 Nicholas T. Kouchoukos, Paolo Masetti, et al. Hypothermic Cardiopulmonary Bypass and Circulatory Arrest for Operations on the Descending Thoracic and Thoracoabdominal Aorta. Ann Thorac Surg. 2002; 74: S1885-1887.
    4 Dommisse GF. The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg Br. 1974; 56: 225-235.
    5 Edouard Kieffer, Sumio Fukui, Jacques Chiras, et al. Spinal cord arteriography: A safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg. 2002; 35: 262-268
    6 Michael tymianski, charles H. Normal and abnormal calcium homeostasis in neurons: A basis for the pathophysiology of traumatic and ischemic central nervous system injury. J Neurosurgery. 1996; 38(6): 1176.
    7 赵风东,王昆正,范顺武,等。5-HT免疫组化染色观察尼莫地平于脊髓损伤中的保护作用。中国矫形外科杂志.2000;7(12):81.
    8 Zi Y, Fan GY, Zhu Y, et al. Presence and significance of CD-95 expression in rats after spinal cord injury. J Zhongguo Linchuang Kanfu (Chin J Clin Rehabil). 2002: 6(20): 3052.
    9 王志维,陶卫平,林道明,等.缺血预适应对缺血脊髓保护作用的实验研究.中华胸心血管外科杂志.2002,18(6):359-361.
    10 Strauch JT, Lauten A, Spielvogel D, et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg. 2004; 25(5): 708-715.
    11 蒋俊豪,陈福真,符伟国等.股静脉—股动脉转流在降主动脉重建术中的作用.中华胸心血管外科杂志.2002;18(6):350-352.
    12 Thierry P. Carrel, Pascal A. Berdat, Jurgen Robe, et al. Outcome of Thoracoabdominal Aortic Operations Using Deep Hypothermia and Distal Exsanguination. Ann Thorac Surg. 2000; 69: 692-695.
    13 Westaby S. Coagulation disturbances in profound hypothermia: the influence of anti-fibrinolytic therapy. Semin Thorac Cardiovasc Surg. 1997; 9: 246-256.
    14 Thierry P. Carrel, Pascal A. Berdat, Jurgen Robe, et al. Outcome of Thoracoabdominal Aortic Operations Using Deep Hypothermia and Distal Exsanguination. Ann Thorac Surg. 2000; 69: 692-695
    15 Mori A, Ueda T, Hachiya T, et al. An epidural cooling catheter protects the spinal cord against ischemic injury in pigs. Ann Thorac Surg. 2005; 80(5): 1829-1833.
    16 Ueno T, Furukawa K, Katayama Y, et al. Protection against ischemic spinal cord injury: one shot perfusion cooling and percultaneous topical cooling. J Vasc Surg. 1994; 19: 882-887.
    17 孙百强,俞寿民,朱唏.人椎体静脉回流的观察.解剖学杂志.1992:15(4):236-238.
    18 胡维国,纪荣明,张成立,等.第1-4对肋间静脉的应用解剖.解剖学杂志.1992;15(5):331-333.
    19 周吉林,钟炳棠,黄悦,等.猪心的应用解剖研究.浙江医科大学学报.1998;27(6):254—256.20 张伟,应大君,孙建森,等.版纳微型猪近交系心脏的解剖观察.中国修复重建外科杂志.2003;17(1):69—72.
    21 Parrino PE, Kron IL, Ross SD, et al. Retrograde venous perfusion with hypothermic saline and adenosine for protection of the ischemic spinal cord. J Vasc Surg. 2000 Jul; 32(1): 171-178.
    22 胥少汀,郭世绂.脊髓损伤基础与临床.北京:人民卫生出版社,1993.294.
    23 Aibiki M, Maekawa S, Nishiyama T, et al. ActiVated cytokine production in patients with accidental hypothermia. Resuscitation. 1999; 41(3): 263-268.
    24 郭世绂.脊髓损伤后微循环障碍.中国脊柱脊髓杂志.1992:2:190.
    25 Wakamatsu H, Matsumoto M, Nakakimura K, et al. The effects of moderate hypothermia and intrathecal tetracaine on glutamate concentrations of intrathecal dialysate and neurologic and histopathologic outcome in transient spinal cord ischemia in rabbits. Anesth Analg. 1999; 88(1): 56-62.
    26 Martelli E, Cho JS, Mozes G, et al. Epidural cooling for the prevention of ischemic injury to the spinal cord during aortic occlusion in a rabbit model: determination of the optimal temperature. J Vasc Surg. 2002; 35(3): 547-553.
    27 Motoyoshi N, Sakurai M, Hayashi T, et al. Establishment of a local cooling model against spinal cord ischemia representing prolonged induction of heat shock protein. J Thorac Cardiovasc Surg. 2001; 122(2): 351-357.
    28 Follis F, Dragan R, Blisard KS, et al. Retrograde perfusion of the spinal cord during aortic crossclamping: initial observations in the swine model. J Thorac Cardiovasc Surg. 1999; 118(4): 597-602.
    29 Bonser RS, Wong CH, Harrington D, et al. Failure of retrograde cerebral perfusion to attenuate metabolic changes associated with hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2002; 123: 943-950.
    30 Ehrlich MP, Hagl C, McCullough JN, et al. Retrograde cerebral perfusion provides negligible flow through brain capillaries in the pig. J Thorac Cardiovasc Surg. 2002; 122: 331-338.1 汪曾炜,刘维永,张宝仁.《心脏外科学》人民军医出版社1531.
    2 Crawford ES, Crawford JL, Sail H J, et al. Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determing immediate and long-term results of operations in 605 patients. J Vast Surg. 1986; 3: 389-404.
    3 Borst HG. Schaudig A, Rudolph W, et al. Arteriovenous fistula of the aortic arch: Repair during deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 1964; 48: 443-447.
    4 Mahfood S, Qazi A, Garcia J, et al. Management of aortic arch aneurysm using profound hypothermia and circulatory arrest. Ann Thorac Surg. 1985; 39: 412-417.
    5 Carrel TP, Berdat PA, Robe J, et al. Outcome of thoracoabdominal aortic operations using deep hypothermia and distal exsanguination. Ann Thorac Surg. 2000; 69: 692-695.
    6 Kouchoukos NT, Masetti P, Rokkas CK, et al. Hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg. 2002; 74: S1885-1887.
    7 Westaby S. Coagulation disturbances in profound hypothermia: the influence of anti-fibrinolytic therapy. Semin Thorac Cardiovasc Surg. 1997; 9: 246-256.
    8 Cassada DC, Tribble CG, Laubach VE, et al. An adenosine A2A agonist, ATL-146e, reduces paralysis and apoptosis during rabbit spinal cord reperfusion. J Vasc Surg. 2001; 34(3): 482-488.
    9 Pierangeli A, Coli G, Mikus PM, et al. Sostituzione dell'arco aortico in ipotermia profonda per ipotermia. Bull Scienze Med. 1974; 2: 1-16.
    10 Pierangeli A, Coli G, Donati A, Galli R, Mikus PM, Turinetto B. Treatment of aortic arch aneurysm with deep hypothermia and circulatory arrest. J Cardiovasc Surg. 1975; 16: 409-414.
    11 Mezrow CK, Midulla P, Sadeghi AM, et al. Evaluation of cerebral metabolism and quantitative electroencephalography after circulatory arrest and low-flow cardiopulmonary bypass at different temperatures. J Thorac Cardiovasc Surg. 1994; 107: 1006-1019.
    12 Loop FD, Szabo J, Rowlinson RD, et al. Events related to miccroembolism during extra corporeal perfusion in man: effectiveness of in-line filtration recorded by ultrasound. Ann Thorac Surg. 1976; 21: 412-420.
    13 董斌,罗其中,江基尧,等.改良深低温动物模型的脑保护研究.上海第二医科大学学报2004;24(12):1011—1014.
    14 薛磊,胡克俭.深低温体外循环技术对脑保护作用的研究进展.中国体外循环杂志2005:3(2):117-119.
    15 王友臣,彭建宇,许坤,等.急性颈髓损伤后脊髓细胞能量代谢的变化.河北医科大学学报.2005;26(2):91—93.
    16 李书娟,毛健.缺氧缺血脑损伤时新生大鼠脑皮质神经细胞能量代谢的改变.中国当代儿科杂志.2004:6(2):101—104.
    17 Pokela M, Dahlbacka S, Biancari F, et al. pH-stat versus alpha-stat perfusion strategy during experimental hypothermic circulatory arrest: a microdialysis study. Ann Thorac Surg. 2003; 76(4): 1215-1226.
    18 Schurr A, Payne RS, Miller JJ, et al. Brain lactate, not glucose, fuels the recovery of??synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res. 1997; 744: 105-111.
    19 Juvonen T, Anttila V, Ergin MA. Brain protection during aortic arch surgery. Scand Cardiovasc J. 2000; 34(2): 106-115.
    20 Kett-White R, O'Connell MT, Hutchinson PJ, et al. Extracellular amino acid changes in patients during reversible cerebral ischaemia. Acta Neurochir Suppl. 2005; 95: 83-88.
    21 李爱林,只达石,黄慧玲,等.亚低温对脑创伤患者脑组织糖代谢及甘油的影响.天津医药.2005:33(5):260-262.
    22 Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med. 1995; 98: 75-84.
    23 Tseng EE, Brock MV, Lange MS, et al. Nitric oxide mediatesneurologic injury after hypothermic circulatory arrest. Ann Thorac Surg. 1999; 67: 65-71.
    24 郑军,冯正义,田良鑫等.深低温停循环下兔脑内兴奋性氨基酸的早期变化与脑损伤研究.中华实验外科杂志.2005;22(4):450-452.
    25 Tseng E, Brock M, Lange MS, et al. NMDA receptor antagonist MK-801 reduces neuronal apoptosis in a canine model of hypothermic circulatory arrest. Surg Forum. 1996; 47: 266-269.
    26 王德生,张守信等,亚低温脑保护.北京科学出版社2002 10-42.
    27 Mayhan WG, Didion SP. Activation of protein kinase C dose not participate in disruption of the blood-brain barrier to albumin during acute hypertension. Barain Res. 1995 23; 69691-20: 106-112.
    28 Nag S. Role of the endothelial cytoskeeton in blood-brain -barrier permeability to protein. Acta Neuropathol (Berl). 1995; 90(5): 454-460.
    29 Hutchinson P J, O'Connell MT, AI-Rawi PG, et al. Increases in GABA concentrations during cerebral ischaemia: a microdialysis study of extracellular amino acids. J Neurol Neurosurg Psychiatry. 2002 Jan; 72(1): 99-105.
    30 王华仁,李积胜.缺血缺氧致脑损伤的机制及牛磺酸的保护作用.国外医学卫生学分册.2004;31(5):293-298。
    31 Saransaari P, Oja SS. Taurine and neural cell damage. Amino Acids. 2000; 19(3-4): 509-26.
    32 Chen WQ, Jin H, Nguyen M, et al. Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res. 2001 Nov 15; 66(4): 612-9.
    33 任晓燕,张玉敏,曲忠森,等.牛磺酸对鼠脑缺血再灌注谷氨酸转运体功能的影响.中华神经科杂志,1998,31(4):235-237.
    34 王吉先,姚兴海,王立智,等.牛磺酸对离体大鼠脊髓缺氧,复氧损伤的保护作用.基础医学与临床,1998,18(3):57—60.1 Carrel A. On the experimental surgery of the thoracic aorta and the heart. Ann Surg. 1910;52:83-95.
    2 Svensson LG, Crawford ES, Hess KR, et al. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993; 17: 357-370.
    3 Svensson LG. An approach to spinal cord protection during descending or thoracoabdominal aortic repairs. Ann Thorac Surg. 1999;67:1935-1936.
    4 Griepp RB, Ergin MA, Galla JD, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg. 1996;112:1202-1215.
    5 Acher CW, Wynn MM, Hoch JR, et al. Cardiac function is a risk factor for paralysis in thoracoabdominal aortic replacement. J Vasc Surg. 1998;27:821-830.
    6 Safi HJ, Miller CC III, Carr C, et al. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1998;27:58-68.
    7 Svensson LG, Crawford ES, Hess KR, et al. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993; 17:357-370.
    8 Dommisse GF. The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg Br. 1974; 56:225-235.
    9 Jacobs MJ, de Mol BA, Elenbaas T, et al. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg. 2002;35:30-37.
    10 Kiyofumi Morishita, Gen Murakami, Yasuaki Fujisawa, et al. Anatomical study of blood supply to the spinal cord. Ann Thorac Surg. 2003;76:1967-1971.
    11 Edouard Kieffer, Sumio Fukui, Jacques Chiras, et al. Spinal cord arteriography: A safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg. 2002; 35: 262-268.
    12 Nobuyoshi Kawaharada, Kiyofumi Morishita, Hideki Hyodoh, et al. Magnetic resonance angiographic localization of the artery of Adamkiewicz for spinal cord blood supply. Ann Thorac Surg. 2004; 78: 846 -852.
    13 Paolo Biglioli, Maurizio Roberto, Aldo Cannata, Upper and lower spinal cord blood supply: The continuity of the anterior spinal artery and the relevance of the lumbar arteries. The Journal of Thoracic and Cardiovascular Surgery. 2004; 127(4): 1188-1192.
    14 Dake MD, Miller DC, Mitchell RS, et al. The 'first generation' of endovascular stent grafts for patients with aneurysms of the descending thoracic aorta. J Thorac Cardiovasc Surg. 1998; 116:689-704.
    15 Suzuki T, Mehta RH, Ince H, et al. International registry of aortic dissection. Clinical profiles and outcomes of acute type B aortic dissection in the current era: lessons from the International Registry of Aortic Dissection (IRAD). Circulation. 2003; 108 (Suppl 1):II312-II317.
    16 Schor JS, Yerlioglu ME, Galla JD, et al. Selective management of acute type B aortic dissection: long-term follow-up. Ann Thorac Surg. 1996;61:1339-1341.
    17 Akutsu K, Nejima J, Kiuchi K, et al. Effects of the patent false lumen on the long-term outcome of type Bacute aortic dissection. Eur J Cardiothorac Surg. 2004;26:359-366.
    18 Dialetto G, Covino FE, Scognamiglio G, et al. Treatment of type B aortic dissection:??endoluminal repair or conventional medical therapy? Eur J Cardiothorac Surg. 2005; 27(5): 826-830.
    19 Herold U, Piotrowski J, Baumgart D, et al. Endoluminal stent graft repair for acute and chronic type B aortic dissection and atherosclerotic aneurysm of the thoracic aorta: an interdisciplinary task. Eur J Cardiothorac Surg. 2002; 22(6): 891-897.
    20 Hutschala D, Fleck T, Czerny M, et al. Endoluminal stent-graft placement in patients with acute aortic dissection type B. Eur J Cardiothorac Surg. 2002 Jun;21(6):964-969.
    21 Weigang E, Hartert M, Siegenthaler MP, et al. Neurophysiological monitoring during thoracoabdominal aortic endovascular stent graft implantation. Eur J Cardiothorac Surg. 2006;29(3):392-396.
    22 Leurs LJ, Bell R, Degrieck Y, et al. EUROSTAR; UK Thoracic Endograft Registry collaborators. Endovascular treatment of thoracic aortic diseases: combined experience from the EUROSTAR and United Kingdom thoracic endograft registries. J Vasc Surg. 2004;40:670-80.
    23 Chiesa R, Melissano G, Marrocco-Trischitta MM et al. Spinal cord ischemia after elective stent-graft repair of the thoracic aorta . J Vasc Surg. 2005; 42:11-17.
    24 Jorge Flores, Norihiko Shiiya, Takashi Kunihara, et al. Risk of spinal cord injury after operations of recurrent aneurysms of the descending aorta. Ann Thorac Surg. 2005;79:1245-1249.
    25 Miyairi T, Kotsuka Y, Morota T, et al. Paraplegia after open surgery using endovascular stent graft for aortic arch aneurysm. J Thorac Cardiovasc Surg. 2001; 121: 1240-1243.
    26 Livesay JJ, Cooley DA, Ventemiglia RA, et al. Surgical experience in descending thoracic aneurysmectomy with and without adjuncts to avoid ischemia. Ann Thorac Surg. 1985; 39: 37-46.
    27 Atsuo Mori, Toshihiko Ueda, Tsukasa Nakamichi, et al. Detrimental Effects of Exogenous Glutamate on Spinal Cord Neurons During Brief Ischemia In Vivo. Ann Thorac Surg. 1997;63(4); 1057-1062.
    28 Yasunori Cho, Toshihiko Ueda, Atsuo Mori, etal. Exogenous aspartate neurotoxicity in the spinal cord under metabolic stress in vivo. Ann Thorac Surg. 2000; 70(5):1496-1500.
    29 Rokkas CK, Cronin CS, Lobner DC, et al. Dextrophan inhibits the release of excitatory amino acids during spinal cord ischemia. Ann Thorac Surg. 1994;58:312-320.
    30 Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613-622.
    31 VON Euler M, Li-Li M, Whittemore S,et al. No Protective effect of the NMDA antagonist memantine in experimentalspinal cord injuries. J Neurotrauma. 1997,14: 53.
    32 K.J. Whitehead, J-P. Manning, C.G.S. Smith, et al. Determination of the extracellular concentration of glycine in the rat spinal cord dorsal horn by quantitative Microdialysis. Brain Research. 2001; 910: 192-194.
    33 Hasan Kocaeli, Ender Korfali, T, Hqlya O¨ ztqrk, et al. MK-801 improves neurological and histological outcomes after spinal cord ischemia induced by transient aortic cross-clipping in rats. Surgical Neurology. 2005;64(S2):22-S2:27.
    34 Radi R , Beckman J S , Bush KM , et al. Peroxynitrite-induced memobrane lipid??peroxidation: the cytotoxic potential of superoxide and niotric oxide. Arch BiochemBiophys, 1991, 288: 481-487.
    35 于泽生,刘忠军,党耕町.一氧化氮(NO)在脊髓缺血再灌注损伤中作用的实验研究.中华骨科杂志.2000;20(2):111—113.
    36 杨恒文,胡文辉,廖维宏NOS抑制剂对缺血再灌注损伤脊髓血流量的影响.伤残医学杂.志2000;8(4):1—3.
    37 T. P. Jacobs, J. M. Hallenbeck, E. Shohami, et al. TxA2/ Pgl2 ratio changes during reperfusion after experimental spinal cord ischemia. Fed. Proc. 45 (1986) 923-931.
    38 W. Wisselink, S. R. Money, D. E. Crockett, et al. Ischemia-reperfusion injury of the spinal cord: protective effect of the hydroxyl radical scavenger dimethylthiourea, J Vasc Surg. 1994;20 (3): 444-491.
    39 Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L. Acute inflammatory response in spinal cord following impact injury. Exp Neurol. 1998; 151: 77-88.
    40 Yashon D, Bingham WG, Faddoul EM, Hunt WE. Edema of the spinal cord following experimental impact trauma. J Neurosurg. 1973; 38: 693-697.
    41 T. P. Jacobs, E. Shohami, D. V. M. Baze, et al. Deteriorating Stroke model; histopathology, edema and eicosanoid changes following spinal cord ischemia in rabbits, Stroke. 1987; 18: 741-750.
    42 F. lannoti, A. Crockard, G. Ladds, et al. Are prostaglandins involved in experimental ischemic edema in gerbils? Stroke. 1981; 12: 301-306.
    43 Usul H, Cakir E, Cobanoglu U, et al. The effects of tyrphostine Ag 556 on experimental spinal cord ischemia reperfusion injury. Surg Neurol. 2004; 61: 45-54.
    44 Tonai T, Shiba K, Taketani Y, et al. A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. J Neurochem. 2001; 78: 1064-1072.
    45 Zimmerman BJ, Granger DN. Reperfusion-induced leukocyte infiltration: role of elastase. Am J Physiol. 1990; 259(2 Pt 2): H390-394.
    46 T. J. DeGraba, The role of inflammation after acute stroke: utility of pursuing anti-adhesion molecule therapy. Neurology 1998; 51: S62-68.
    47 G. J. del Zoppo, Microvascular responses to cerebral ischemia/inflammation. Ann. N. Y. Acad. Sci. 1997; 823: 132-147.
    48 B. Arvin, L. F. Neville, F. C. Barone, G. Z. Feuerstein, The role of inflammation and cytokines in brain injury. Neurosci. Biobehav. Rev. 1996; 20: 445-452.
    49 F. C. Barone, G. Z. Feuerstein, Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cemb. Blood Flow Metab. 1999; 19: 819-834.
    50 L. Fan, P. R. Young, F. C. Barone, et al. Experimental brain injury induces differential expression of tumor necrosis factor-alpha mRNA in the CNS, Brain Res. Mol. Brain Res. 1996; 36: 287-291.
    51 G. Z. Feuerstein, T. Liu, F. C. Barone, Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha, Cerebrovasc. Brain Metab. Rev. 1994; 6: 341-360.
    52 E. Shohami, R. Gallily, R. Mechoulam, R. Bass, T. Ben I-lur, Cytokine production in thc brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J. Neuroimmunol. 1997; 72: 169-177.
    53 Reece TB, Okonkwo DO, EIIman PI, et al. The evolution of ischemic spinal cord injury??in function, cytoarchitecture, and inflammation and the effects of adenosine A2A receptor activation. J Thorac Cardiovasc Surg. 2004; 128(6): 925-932.
    54 Cross AH, Cannella B, Brosnam CF, Raine CS. Horning to CNS vasculature by antigen specific lymphocytes. Lab Invest. 1990; 63: 162-170.
    55 del Pilar Fernandez Rodriguez M, Belmonte A, Meizoso MJ, et al. Effect of tirilazad on brain nitric oxide synthase activity during cerebral ischemia in rats. Pharmacology. 1997; 54(2): 108-112.
    56 Pantoni L, Sarti C, Inzitari D. Cytokines and cell adhesion molecules in cerebral ischemia: experimental bases and therapeutic perspectives. Arterioscler Thromb Vasc Biol. 1998; 18(4): 503-513.
    57 杨小玉,朱庆三,赵立君等.脊髓缺血一再灌注损伤细胞间粘附分子一1及白细胞介素.一1b的表达.中国脊柱脊髓杂志2004;14(3):167—170.
    58 Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980; 23: 251-306.
    59 Matsushita K, Wu Y, Qiu J, Lang-Lazdunski L, Hirt L, Waeber C, et al. Fas receptor and neuronal cell death after spinal cord ischemia. J Neurosci 2000; 20: 6879-6887.
    60 Cao G, Minami M, Pei W, et al. Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab. 2001; 21: 321-333.
    61 Thomberry NA, Lazebnik Y. Caspases.. enemies within [J]. Science, 1998, 281(5381): 1312-1316.
    62 吴志敏.Caspase蛋白酶的结构及其在CNS损伤中的作用.中国临床神经外科杂志.2003;8(2):155—156.
    63 Papakostas JC, Matsagas MI, Toumpoulis IK, et al. Evolution of spinal cord Injury in a porcine model of prolonged aortic occlusion. J Surg Res. 2005 Dec 7; [Epub ahead of print]
    64 Masahiro Sakurai, Takeshi Hayashi, Koji Abe, et al. Delayed and selective motor neuron death after transient spinal cord ischemia: A role of apoptosis? J Thorac Cardiovasc Surg. 1998; 115: 1310-5
    65 朱庆三,尹飞,郭丽等.脊髓缺血再灌注损伤中神经细胞凋亡的研究.吉林大学学报:医学版.2003;29(5):609-610.
    66 朱庆三,尹飞,郭丽等.脊髓缺血再灌注损伤中即早基因表达及细胞凋亡的研究.中国临床康复.2003;7(17):2390-2391.
    67 Lu K, Liang CL, Chen H J, et al. Injury severity and cell death mechanisms: effects of concomitant hypovolemic hypotension on spinal cord ischemia-reperfusion in rats. Exp Neurol. 2004; 185: 120.
    68 Hasan Kocaeli, Ender Korfali, T, Hqlya O ztqrk, et al. MK-801 improves neurological and histological outcomes after spinalcord ischemia induced by transient aortic cross-clipping in rats. Surgical Neurology. 2005; 64: S2: 22-S2: 27.
    69 Suzuki K, Kazui T, Terada H, et al. Experimental study on the protective effects of edaravone against ischemic spinal cord injury. J Thorac Cardiovasc Surg. 2005 Dec; 130(6): 1586-92.
    70 余奇劲,周青山,黄海波.氯胺酮对兔脊髓缺血性损伤过氧化反应的影响.中国现代医学杂志.2004;14(15):50-52.71 Kumagai H, Isaka M, Sugawara Y, et al. I Intra-aortic injection of propofol prevents spinal cord injury during aortic surgery. Eur J Cardiothorac Surg. 2006 May;29(5):714-719.
    72 Hee-Pyoung Park, Young-tae Jeon, Jung-won Hwang , et al. Isoflurane preconditioning protects motor neurons from spinal cord ischemia: Its dose-response effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neuroscience Letters. 2005;387: 90-94.
    73 Jae-Chul Lee, In Koo Hwang, Ki-Yeon Yoo, et al. Calbindin D-28k is expressed in the microvascular basal lamina in the ventral horn at early time after transient spinal cord ischemia in the rabbit. Brain Research. 2005; 1047: 123 —128.
    74 Yamauchi T, Sawa Y, Sakurai M, et al. ONO-5046 attenuation of delayed motor neuron death and effect on the induction of brain-derived neurotrophic factor, phosphorylated extracellular signal-regulated kinase, and caspase3 after spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg. 2006; 131 (3): 644-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700