鼻咽癌的靶向性放射增敏基因治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建放射敏感的融合启动子E6hTERTp,观察在不同放射剂量诱导下放射敏感增强子增强hTERTp(人端粒酶催化亚基启动子)启动下游基因转录活性及对特异性的影响;并进一步构建含E6hTERTp以及融合UL49片段的自杀基因CD/UPRT.UL49的质粒载体,放射干预诱导其在鼻咽癌CNE-2细胞表达,观察放射条件下该自杀基因/前药系统在鼻咽癌细胞中的体内以及体外放射增敏效应,为探索新的鼻咽癌放射基因治疗奠定实验基础。
     方法和结果:
     第一部分:放射诱导型增强子E6对hTERTp靶向性增敏效应研究
     方法:overlap PCR扩增融合启动子E6hTERTp以及CD/UPRT.UL49片段。基因重组技术构建融合启动子E6hTERTp的报告基因载体PGL3—E6hTERTp,以EGR-1p(早期生长反应因子1启动子)以及hTERTp为对照,经脂质体介导重组质粒与pRL-SV40质粒共转染鼻咽癌CNE-2细胞以及正常人成纤维细胞(HDF),不同放射剂量(0,2,6,10gy)诱导下通过双荧光素酶分析系统检测报告基因的表达效率,研究不同放射剂量对各启动子启动下游基因转录活性及对其特异性的影响;构建自杀基因载体pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49以及pcDNA3.1(-)E6.hTERTp.CD/UPRT,脂质体介导转染鼻咽癌CNE-2细胞,在0gy,2Gy,6gy,10gy等不同放射条件下,半定量RT-PCR法检验其转录活性,免疫印迹法检测CD/UPRT.UL49以及CD/UPRT蛋白表达:
     结果:双荧光素酶分析系统检测显示,正常HDF细胞系中,转染PGL3-E6.hTERTp组以及PGL3-hTERTp组无论照射与否,其启动活性均维持在极低水平;在给予0Gy,2Gy,6Gy,以及10Gy放射干预之后,转染CNE-2细胞的各启动子活性均随放射剂量的增加而增加,其中,转染E6.hTERTp各放射剂量组启动活性分别为18.8184±4.1969,102.6512±20.5879,291.7274±35.4752.407.5505±27.1526,放射组比较未放射组分别增加了5.4倍,15.2倍和21.7倍,各放射组两两间同样有显著性差异(p<0.05)。E6.hTERTp2Gy组、6Gy组以及10Gy组启动活性分别是hTERTp相同放射剂量组的2.4倍,3.5倍和2.8倍,两个启动子组间差异具有统计学意义(p<0.05),证实鼻咽癌CNE-2细胞中,放射诱导型增强子E6能够明显提高hTERTp放射敏感性,且不影响其肿瘤特异性。
     自杀基因载体pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49以及pcDNA3.1(-)E6.hTERTp.CD/UPRT转染CNE-2细胞后,WESTERNBLOTTING显示检测到的特异性蛋白条带。RT-PCR检测显示所有经照射后的实验组mRNA量均要显著高于未照射组(p<0.05),其中CD/UPRT在6Gy时出现最高值,而CD/UPRT.UL49在6Gy和10Gy处理下,mRNA量没有显著差别(p>0.05),但均高于0Gy,2Gy时mRNA转录量(p<0.05);证实放射干预可激发融合启动子E6hTERTp启动下游自杀基因表达。
     第二部分启动子E6hTERTp介导的自杀基因CD/UPRT.UL49以及CD/UPRT表达对鼻咽癌放射—基因治疗增敏效应的体外实验
     方法:自杀基因载体pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49以及pcDNA3.1(-)E6.hTERTp.CD/UPRT经脂质体介导转染鼻咽癌CNE-2细胞,在0gy,2Gy,6gy,10gy等不同放射条件下,高效液相色谱法检测其促进前药系统5-Fc(5-氟胞嘧啶)转化为5-FU(5-氟尿嘧啶)的效率,MTT(四甲基偶氮唑蓝)法检测不同放射剂量下,不同浓度5-Fc对转染自杀基因载体的的CNE-2细胞的杀伤效应并进行两种不同基因治疗组之间以及各基因治疗组与单纯放射治疗组之间细胞存活率对比,用SPSS统计分析软件进行分析。
     结果:给予前药5-Fc以及放射干预后,高效液相色谱法检测发现,经过照射后转染自杀基因载体pcDNA3.1(-)E6.hTERTp.CD/UPRT以及pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49载体的孔中均检测到5-Fu,未照射孔没有检测到5-Fu;
     MTT检测,单纯前药干预浓度为200ug/ml时,细胞生存率为93.04;转染自杀基因载体后,前药浓度为200(ug/ml),给予2Gy,6Gy,10Gy放射干预,CNE-2细胞存活率较野生CNE-2细胞组均明显下降(p<0.05);放射剂量为2Gy以及10Gy时转染pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49组比较转染pcDNA3.1(-)E6.hTERTp.CD/UPRT组放射增敏效果更明显(p<0.05)。
     第三部分前体药物/自杀基因系统对鼻咽癌放射增敏的原位基因治疗实验研究
     方法:CNE-2细胞接种裸鼠皮下建立鼻咽癌动物模型,进行脂质体包裹质粒DNA瘤内注射的原位基因(in situ)治疗实验,待肿瘤长宽径达到0.7-1.0cm时,将裸鼠随机分组,瘤内注射脂质体包裹的DNA质粒,以及腹腔注射5-FC,并给予肿瘤局部每天3Gy照射,总剂量9Gy。记录肿瘤体积,比较不同处理组的抑瘤效应;病理切片证实肿块性质。抽提肿瘤组织RNA,RT-PCR反应,鉴定CD/UPRT.UL49基因在肿瘤组织内是否有表达。
     结果:1×10~7CNE-2细胞接种裸鼠后,9天内均顺利成瘤。未经放射的自杀基因pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49/前药治疗组没有明显抑瘤效果;放射-自杀基因pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49/前药治疗组生长抑制率93.7579,优于其他各放射组(p<0.05),而放射-自杀基因pcDNA3.1(-)E6.hTERTp.CD/UPRT/前药治疗组生长抑制率88.86427,较其放射治疗对照组没有差别(p>0.05)。病理切片检查各放射组均出现严重坏死。
     结论:E6.hTERTp.CD/UPRT.UL49自杀基因载体具有放射诱导和肿瘤特异性双重特性,融合了VP22基因片段可以明显增强放射干预下CD/UPRT/5-FC前药系统对鼻咽癌CNE-2细胞的杀伤效应,为鼻咽癌的基因-放射治疗开辟了新思路。
Objective: Construct radiosensitive novel fusion promoter E6hTERTp. Observe the effect of radiosensitive enhancer to hTERT promoter's specifity and radiosensitivuty after different dose of radiation; construct vector carrying E6hTERTp and fusion suicide gene CD/UPRT.UL49, induce the expression of the suicide gene in CNE-2 cells with different dose of radiation to find the radiosensitization effect of the radio -suicide gene /prodrug system in vitro and vivo to lay a solid experimental foundation for a new stratety for radio-gene therapy.
     Method and results
     The first part: Research on hTERTp's tumor-specific promotive effect enhanced by radiosensitive enhancer E6
     Method: The fusion gene E6.hTERTp and CD/UPRT.UL49 were constructed by overlap PCR. The combined promoter was inserted into PGL3 basic plasmid. PGL3-hTERTp and pGL3-EGR-lp were also constructed for comparison. All the plasmids together with pRL-SV40 plasmids were transfected into CNE-2 cells and HDF cells with liposome .The promotive effect of recombinant promoter E6.hTERTp in CNE-2 cells and HDF cells were measured by Dual Luciferase Reporter Gene Assay system and was compared with EGR-1p and hTERTp for difference between every two groups under different dose of radiation to find the enhancing effect of radiosensitive enhancer to hTERT promoter and its influence to specifity after different dose of radiation. Construct suicide gene vector pcDNA3.1(-)E6.hTERTp. CD/UPRT and pcDNA3.1(-)E6.hTERTp.CD/UPRT.UL49; transfect the plasmids into CNE-2 cells with liposome . after different dose (0Gy, 2Gy,6Gy,10Gy ) of radiation, the expression of suicide gene CD/UPRT.UL49 and CD/UPRT were analyzed by half -quantitive RT-PCR and WEST BLOTTING.
     Results:
     Dual Luciferase Reporter Gene Assay system revealed that the promotive effects of hTERT promoter and E6.hTERTp remains low in HDF cells with any dose of radiation ;the value between all radiation groups are not significantly different (p>0.05) ; While in CNE-2 cells ,increase of promotive effects in accordance with the radiation dose can be observed in all groups . The promotive effect of E6.hTERTp group were 18.8184±4.1969 , 102.6512±20.5879 , 291.7274±35.4752 , 407.5505±27.1526, increased by5.4, 15.2 and 21.7 times compared with baseline(OGy), the promotive effect of different radiation groups are statisticaly significant (p<0.05) . When the dose of radiation were 2Gy, 6Gy and 10Gy , the promotive effect of E6.hTERTp increased to2.4, 3.5 and 2.8 times the value of hTERTp group ,which proved that radiosensitive enhancer E6 increase the radiosensitive promotive effect of hTERTp in CNE-2 cells and do not affect its NPC specific character. When Suicide gene pcDNA3.1 (-) E6.hTERTp.CD/UPRT.UL49 and pcDNA3.1 (-) E6.hTERTp.CD/UPRT were transfected into CNE-2 cells, expression of the novel fusion suicide gene can be detected by western blotting test .RT-PCR shows that after radiation ,the amount of mRNA were significantly higher than that of 0Gy group (p<0.05). the amount of mRNA of pcDNA3.1 (-) E6.hTERTp.CD/UPRT reach the peak in 6Gy group; The amount is not signifieantly different for pcDNA3.1 (-) E6.hTERTp.CD/UPRT.UL49 in 6Gy and 10Gy group (p>0.05) but is significantly higher than 2Gy group (p<0.05) . The result revealed that radiation can evoke the activity of E6hTERTP and enhance the expression of downstream suicide gene.
     The second part: radiosensitization effect by enhanced expression of novel fusion gene CD/UPRT.UL49 and CD/UPRTgene mediated by E6hTERTp in NPC
     Method: Suicide gene pcDNA3.1 (-) E6.hTERTp.CD/UPRT.UL49 and pcDNA3.1 (-) E6.hTERTp.CD/UPRT were transfected into CNE-2 cells , and the transform rate of prodrug 5-Fc to 5-FU for the two suicide gene groups under different dose of radiation (0Gy, 2Gy,6Gy, 10Gy )were measured by HPLC.
     The killing effect of both suicide gene/prodrug system were tested by MTT after different dose of radiation with different 5-Fc concentration and were analyzed for difference between the two treatment groups and simple radiation -prodrug groups with Spss software.
     Results: After treated with prodrug 5-Fc and radiation, 5-FU can be detected from the supernatant of the culture media of CNE-2 transfected with both suicide gene ,which shows that after incorporation of VP22 segment ,the CD/UPRT protein maintained its bioactivity of transforming 5-Fc.
     The MTT analysis showed that when the prodrug concentration was 200 (ug/ml) , the survival rate of wild CNE-2 group was 93.04,;while after radiation the survival rate of gene therapy group decrease significantly, the tendency of decrease is more obvious in CNE-2/pcDNA3.1 (-) E6.hTERTp.CD/UPRT.UL49 group (p<0.05) in 2Gy and 10Gy group .
     The third part: Research on the radiosensitization effect of prodrug suicide gene therapy in situ
     Method : CNE-2 cells in log phase were inoculated subcutaneously in nude mice to construct a nude mouse model of NPC ,and an in situ gene therapy was performed with plasmid packed by plasmid. When the size of tumors reaching 1.0-0.7cm, the nude mice were randomized to different grouped, and was given radiation , system administration of produg and in situ gene injection, the suppression of tumor growth was observed. Biopsy of the tumor were performed to find the difference between treatment groups .Then targeted RNA was isolated from tumor tissues and RT-PCR was performed to define the expression of suicide gene.
     Results 9 days after inoculation, all the nude mouse developed transplanted tumor. In situ gene therapy experiment showed no suppressing effect of gene /prodrug system without radiation; compared with other radiated groups , growth of transplant tumor of radio-pcDNA3.1 (-) E6.hTERTp.CD/UPRT.UL49 /prodrug group was distinctly suppressed(P<0.05) ,the growth suppressing rate is 93.7579 While the radio-pcDNA3.1 (-) E6.hTERTp.CD/UPRT /prodrug group showed no sign of more suppressing effect compared with other radiation groups (p>0.05) ,the growth suppressing rate is88.86427.biopsy shows severe necrosis of all radiated group .
     Conclusions:
     The suicide gene E6.hTERTp.CD/UPRT.UL49/prodrug system, is both radiosensitive and tumor specifically effective in anticancer therapy, and exert powerful killing effect to CNE-2 cells than E6.hTERTp.CD/UPRT / prodrug system under radiation. From this study, we established a new strategy for radio-gene therapy of NPC.
引文
[1] Haugen M, Bray F, Grotmol T, et al. Frailty modeling of bimodal age-incidence curves of nasopharyngeal carcinoma in low-risk populations.[J]. Biostatistics,2009.
    
    [2] Kamer S, Esassolak M, Yalman D, et al. Mature results of neoadjuvant chemotherapy followed by radiotherapy in nasopharyngeal cancer: is it really old fashioned?[J]. Med Oncol,2008,25(1):93-99.
    [3] Fang F M, Chien C Y, Tsai W L, et al. Quality of life and survival outcome for patients with nasopharyngeal carcinoma receiving three-dimensional conformal radiotherapy vs. intensity-modulated radiotherapy-a longitudinal study.[J]. Int J Radiat Oncol Biol Phys,2008,72(2):356-364.
    [4] Song C H, Wu H G, Heo D S, et al. Treatment outcomes for radiotherapy alone are comparable with neoadjuvant chemotherapy followed by radiotherapy in early-stage nasopharyngeal carcinoma.[J]. Laryngoscope,2008,118(4):663-670.
    [5] Taheri-kadkhoda Z, Bjork-eriksson T, Johansson K A, et al. Long-term treatment results for nasopharyngeal carcinoma: the Sahlgrenska University Hospital experience.[J]. Acta Oncol,2007,46(6):817-827.
    [6] Weichselbaum R R, Hallahan D E, Beckett M A, et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. [J]. Cancer Res, 1994,54(16):4266-4269.
    [7] Wang X, Su C, Cao H, et al. A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers.[J]. Mol Cancer Ther,2008,7(6):1598-1603.
    [8] Qi J P, Shao S H, Xie J, et al. A mathematical model of P53 gene regulatory networks under radiotherapy.[J]. Biosystems,2007,90(3):698-706.
    [9] Koike H, Sekine Y, Kamiya M, et al. Gene expression of survivin and its spliced isoforms associated with proliferation and aggressive phenotypes of prostate cancer.[J]. Urology,2008,72(6):1229-1233.
    [10] Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy.[J].Expert Opin Ther Targets,2008,12(4):463-476.
    [11] Stout J T. Gene transfer for the treatment of neovascular ocular disease (an American Ophthalmological Society thesis).[J]. Trans Am Ophthalmol Soc,2006,104:530-560.
    [12] Kaliberov S A, Kaliberova L N, Buchsbaum D J. Combined ionizing radiation and sKDR gene delivery for treatment of prostate carcinomas.[J]. Gene Ther,2005,12(5):407-417.
    [13] Toivonen R, Suominen E, Grenman R, et al. Retargeting improves the efficacy of a telomerase-dependent oncolytic adenovirus for head and neck cancer.[J].Oncol Rep,2009,21 (1): 165-171.
    [14] Fujiwara T, Urata Y, Tanaka N. Diagnostic and therapeutic application of telomerase-specific oncolytic adenoviral agents.[J]. Front Biosci,2008,13:1881-1886.
    [15] Zheng F Q, Xu Y, Yang R J, et al. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models.[J]. Acta Pharmacol Sin,2009.
    [16] Tahara I, Miyake K, Hanawa H, et al. Systemic cancer gene therapy using adeno-associated virus type 1 vector expressing MDA-7/IL24.[J]. Mol Ther,2007,15(10):1805-1811.
    [17] Liu S, Wang H, Yang Z, et al. Enhancement of cancer radiation therapy by use of adenovirus-mediated secretable glucose-regulated protein 94/gp96 expression.[J]. Cancer Res,2005,65(20):9126-9131.
    [18] Zhang Y, Ma H, Zhang J, et al. AAV-mediated TRAIL gene expression driven by hTERT promoter suppressed human hepatocellular carcinoma growth in mice.[J]. Life Sci,2008,82(23-24):1154-1161.
    [19] Wang Y, Huang F, Cai H, et al. Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma.[J]. J Gene Med,2008,10(5):518-526.
    
    [20] Zheng J N, Pei D S, Sun F H, et al. Potent antitumor efficacy of interleukin-18 delivered by conditionally replicative adenovirus vector in renal cell carcinoma-bearing nude mice via inhibition of angiogenesis.[J]. Cancer Biol Ther,2009,8(7).
    [21] Paez-ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis.[J]. Cancer Cell,2009,15(3):220-231.
    [22] Ludlow L E, Purton L E, Klarmann K, et al. The role of p202 in regulating hematopoietic cell proliferation and differentiation.[J]. J Interferon Cytokine Res,2008,28(1):5-11.
    [23] Choubey D, Deka R, Ho S M. Interferon-inducible IFI16 protein in human cancers and autoimmune diseases.[J]. Front Biosci,2008,13:598-608.
    [24] Huang Q, Ji X, Zhang J, et al. Oncolytic adenovirus delivering herpes simplex virus thymidine kinase suicide gene reduces the growth of human retinoblastoma in an in vivo mouse model.[J]. Exp Eye Res,2009.
    [25] Song J, Kim C, Ochoa E R. Sleeping Beauty-mediated suicide gene therapy of hepatocellular carcinoma. [J]. Biosci Biotechnol Biochem,2009,73(1):165-168.
    [26] Fukuda K, Abei M, Ugai H, et al. El A, E1B double-restricted replicative adenovirus at low dose greatly augments tumor-specific suicide gene therapy for gallbladder cancer.[J]. Cancer Gene Ther,2009,16(2):126-136.
    [27] Jiang W, Liao Y, Zhao S, et al. Role of enhanced radiosensitivity and the tumor-specific suicide gene vector in gene therapy of nasopharyngeal carcinoma.[J]. J Radiat Res (Tokyo),2007,48(3):211-218.
    [28] Yaghoubi S S, Jensen M C, Satyamurthy N, et al. Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma.[J].Nat Clin Pract Oncol,2009,6(1):53-58.
    [29] Lv S Q, Zhang K B, Zhang E E, et al. Antitumor efficiency of the cytosine deaminase/5-fiuorocytosine suicide gene therapy system on malignant gliomas:an in vivo study.[J]. Med Sci Monit,2009,15(1):13-20.
    [30] Warmann S W, Armeanu S, Heigoldt H, et al. Adenovirus-mediated cytosine deaminase/5-fluorocytosine suicide gene therapy of human hepatoblastoma in vitro.[J]. Pediatr Blood Cancer,2009.
    [31] Song J, Kim C, Ochoa E R. Sleeping Beauty-mediated suicide gene therapy of hepatocellular carcinoma.[J]. Biosci Biotechnol Biochem,2009,73(1):165-168.
    [32] Gopinath P, Ghosh S S. Understanding apoptotic signaling pathways in cytosine deaminase-uracil phosphoribosyl transferase-mediated suicide gene therapy in vitro.[J]. Mol Cell Biochem,2009,324(1-2):21-29.
    [33] Zhang G, Liu T, Chen Y H, et al. Tissue specific cytotoxicity of colon cancer cells mediated by nanoparticle-delivered suicide gene in vitro and in vivo.[J].Clin Cancer Res,2009,15(1):201-207.
    [34] Azatian A, Yu H, Dai W, et al. Effectiveness of HSV-tk Suicide Gene Therapy Driven by the Grp78 Stress-Inducible Promoter in Esophagogastric Junction and Gastric Adenocarcinomas.[J]. J Gastrointest Surg,2009.
    [35] Wei J, Jarmy G, Genuneit J, et al. Human blood late outgrowth endothelial cells for gene therapy of cancer: determinants of efficacy.[J]. Gene Ther, 2007,14(4):344-356.
    [36] Dancer A, Julien S, Bouillot S, et al. Expression of thymidine kinase driven by an endothelial-specific promoter inhibits tumor growth of Lewis lung carcinoma cells intransgenic mice.[J]. Gene Ther,2003,10(14):1170-1178.
    [37] Yang W S, Park S 0, Yoon A R, et al. Suicide cancer gene therapy using pore-forming toxin, streptolysin O.[J]. Mol Cancer Ther,2006,5(6): 1610-1619.
    [38] Bilsland A E, Anderson C J, Fletcher-monaghan A J, et al. Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase.[J]. Oncogene,2003,22(3):370-380.
    [39] Xu F, Li S, Li X L, et al. Phase I and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors.[J]. Cancer Gene Ther,2009.
    [40] Matsukura N, Onda M, Shimada T. [Possibility and future problems of gene therapy for gastric cancer [J]. Nippon Geka Gakkai Zasshi, 2001, 102(10):778-782.
    [41] Xia J, Xia K, Feng Y, et al. The combination of suicide gene therapy and radiation enhances the killing of nasopharyngeal carcinoma xenographs.[J]. J Radiat Res (Tokyo),2004,45(2):281-289.
    [42] Ma X J, Huang R, Kuang A R. AFP Promoter Enhancer Increased Specific Expression of the Human Sodium Iodide Symporter (hNIS) for Targeted Radioiodine Therapy of Hepatocellular Carcinoma.[J]. Cancer Invest,2009:1.
    [43] Gao P, Wang R, Shen J J, et al. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells.[J]. Cancer Sci,2008,99(11):2209-2217.
    [44] Willhauck M J, Sharif S B, Klutz K, et al. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma.[J]. Gene Ther,2008,15(3):214-223.
    [45] Scholz I V, Cengic N, Baker C H, et al. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer.[J]. Gene Ther,2005,12(3):272-280.
    [46] Okabe S, Arai T, Yamashita H, et al. Adenovirus-mediated prodrug-enzyme therapy for CEA-producing colorectal cancer cells.[J]. J Cancer Res Clin Oncol,2003,129(6):367-373.
    [47] Nyati M K, Sreekumar A, Li S, et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer.[J].Cancer Res,2002,62(8):2337-2342.
    [48] Sanchez-perez L, Kottke T, Daniels G A, et al. Killing of normal melanocytes,combined with heat shock protein 70 and CD40L expression, cures large established melanomas.[J]. J Immunol,2006,177(6):4168-4177.
    [49] Bosenberg M, Muthusamy V, Curley D P, et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice.[J].Genesis,2006,44(5):262-267.
    [50] Zhang L, Akbulut H, Tang Y, et al. Adenoviral vectors with ElA regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma.[J]. Mol Ther,2002,6(3):386-393.
    [51] Shay J W, Wright W E. Telomerase: a target for cancer therapeutics.[J]. Cancer Cell,2002,2(4):257-265.
    [52] Kim S J, Lee H S, Shin J H, et al. Preferentially enhanced gene expression from a synthetic human telomerase reverse transcriptase promoter in human cancer cells.[J]. Oncol Rep,2006,16(5):975-979.
    [53] Bilsland A E, Fletcher-monaghan A, Keith W N. Properties of a telomerase-specific Cre/Lox switch for transcriptionally targeted cancer gene therapy.[J]. Neoplasia,2005,7(11): 1020-1029.
    [54] Kazhdan I, Marciniak R A. Death receptor 4 (DR4) efficiently kills breast cancer cells irrespective of their sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).[J]. Cancer Gene Ther, 2004, 11(10):691-698.
    [55] Shin J H, Yi J K, Lee Y J, et al. Development of artificial chimerical gene regulatory elements specific for cancer gene therapy.[J]. Oncol Rep,2003,10(6):2063-2069.
    [56] Liao Z K, Zhou F X, Luo Z G, et al. Radio-activation of hTERT promoter in larynx squamous carcinoma cells: an 'indirected-activator' strategy in radio-gene-therapy.[J]. Oncol Rep,2008,19(1):281-286.
    [57] Chen M, Gu J, Xing J, et al. Irradiation-induced telomerase activity and the risk of lung cancer: a pilot case-control study.[J]. Cancer,2007,109(6): 1157-1163.
    [58] Colitz C M, Barden C A, Lu P, et al. Ultraviolet irradiation up-regulates telomerase transcription and activity in lens epithelial cells.[J]. Vet Ophthalmol,2006,9(5):379-385.
    [59] Satra M, Tsougos I, Papanikolaou V, et al. Correlation between radiation-induced telomerase activity and human telomerase reverse transcriptase mRNA expression in HeLa cells.[J]. Int J Radiat Biol,2006,82(6):401-409.
    [60] Dubner D, Del R P, Michelin S, et al. Pharmacological inhibition of DNA repair enzymes differentially modulates telomerase activity and apoptosis in two human leukaemia cell lines.[J]. Int J Radiat Biol,2004,80(8):593-605.
    [61] Song J, Kim C, Ochoa E R. Sleeping Beauty-mediated suicide gene therapy of hepatocellular carcinoma.[J]. Biosci Biotechnol Biochem,2009,73(1):165-168.
    [62] Zhang W M, Xue L Y, Xu Y, et al. [Improvement of transcriptional activity of hTERT promoter by SV40 enhancer][J]. Zhonghua Bing Li Xue Za Zhi,2006,35(11):691-693.
    [63] Kim S J, Lee H S, Shin J H, et al. Preferentially enhanced gene expression from a synthetic human telomerase reverse transcriptase promoter in human cancer cells.[J]. Oncol Rep,2006,16(5):975-979.
    [64] Song J S. Adenovirus-mediated suicide SCLC gene therapy using the increased activity of the hTERT promoter by the MMRE and SV40 enhancer.[J]. Biosci Biotechnol Biochem,2005,69(1):56-62.
    [65] Jiang W, Liao Y, Zhao S, et al. Role of enhanced radiosensitivity and the tumor-specific suicide gene vector in gene therapy of nasopharyngeal carcinoma.[J]. J Radiat Res (Tokyo),2007,48(3):211-218.
    [66] Chadderton N, Cowen R L, Sheppard F C, et al. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells.[J].Int J Radiat Oncol Biol Phys,2005,62(l):213-222.
    [67] Xiong F, Xiao S, Yu M, et al. Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport.[J]. BMC Neurosci,2007,8:50.
    [68] Ford K G, Souberbielle B E, Darling D, et al. Protein transduction: an alternative to genetic intervention?[J]. Gene Ther,2001,8(1): 1-4.
    [69] Boenicke L, Chu K, Pauls R, et al. Efficient dose-dependent and time-dependent protein transduction of pancreatic carcinoma cells in vitro and in vivo using purified VP22-EGFP fusion protein.[J]. J Mol Med,2003,81(3):205-213.
    [70] Elliott G, 0 H P. Intercellular trafficking and protein delivery by a herpesvirus structural protein.[J]. Cell, 1997,88(2):223-233.
    [71] Boenicke L, Chu K, Pauls R, et al. Efficient dose-dependent and time-dependent protein transduction of pancreatic carcinoma cells in vitro and in vivo using purified VP22-EGFP fusion protein.[J]. J Mol Med,2003,81(3):205-213.
    [72] Sugita T, Yoshikawa T, Mukai Y, et al. Comparative study on transduction and toxicity of protein transduction domains.[J]. Br J Pharmacol,2008,153(6): 1143-1152.
    [73] Brewis N, Phelan A, Webb J, et al. Evaluation of VP22 spread in tissue culture.[J]. J Virol,2000,74(2):1051-1056.
    [74] Dilber M S, Phelan A, Aints A, et al. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22.[J]. Gene Ther,1999,6(1): 12-21.
    [75] Liu C S, Kong B, Xia H H, et al. VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death.[J]. J Gene Med,2001,3(2):145-152.
    
    [76] Wybranietz W A, Gross C D, Phelan A, et al. Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene.[J].Gene Ther,2001,8(21): 1654-1664.
    [77] Lemken M L, Graepler F, Wolf C, et al. Fusion of HSV-1 VP22 to a bifunctional chimeric SuperCD suicide gene compensates for low suicide gene transduction efficiencies.[J]. Int J Oncol,2007,30(5):l 153-1161.
    [78] Lee K C, Hamstra D A, Bullarayasamudram S, et al. Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit.[J]. Gene Ther,2006,13(2): 127-137.
    [79] Zhu Z B, Makhija S K, Lu B, et al. Transcriptional targeting of tumors with a novel tumor-specific survivin promoter.[J]. Cancer Gene Ther,2004,11(4):256-262.
    [80] Altieri D C. Validating survivin as a cancer therapeutic target.[J]. Nat Rev Cancer,2003,3(1):46-54.
    [81] Chen C J, Kyo S, Liu Y C, et al. Modulation of human telomerase reverse transcriptase in hepatocellular carcinoma.[J]. World J Gastroenterol, 2004,10(5):638-642.
    [82] Turriziani M, Di G A, Cardillo A, et al. Residual telomerase activity: a marker of cell survival after exposure to gamma radiation in vitro.[J]. Anticancer Res,2003,23(6C):4561-4569.
    [83] Gomez D, Aouali N, Londono-vallejo A, et al. Resistance to the short term antiproliferative activity of the G-quadruplex ligand 12459 is associated with telomerase overexpression and telomere capping alteration.[J]. J Biol Chem,2003,278(50):50554-50562.
    [84] Song J S. Activity of the human telomerase catalytic subunit (hTERT) gene promoter could be increased by the SV40 enhancer.[J]. Biosci Biotechnol Biochem,2004,68(8): 1634-1639.
    [85] Houston T A. Painting the target around the arrow: two-step prodrug therapies from a carbohydrate chemist's perspective.[J]. Curr Drug Deliv,2007,4(4):264-268.
    [86] Huber B E, Richards C A, Krenitsky T A. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy.[J]. Proc Natl Acad Sci U S A,1991,88(18):8039-8043.
    [87] Richards C A, Huber B E. Generation of a transgenic model for retrovirus-mediated gene therapy for hepatocellular carcinoma is thwarted by the lack of transgene expression.[J]. Hum Gene Ther,1993,4(2):143-150.
    [88] Aints A, Guven H, Gahrton G, et al. Mapping of herpes simplex virus-1 VP22 functional domains for inter- and subcellular protein targeting.[J]. Gene Ther,2001,8(14):1051-1056.
    [89] Kucerova L, Matuskova M, Pastorakova A, et al. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice.[J]. J Gene Med,2008,10(10): 1071-1082.
    [90] Fogar P, Navaglia F, Basso D, et al. Suicide gene therapy with the yeast fusion gene cytosine deaminase/uracil phosphoribosyltransferase is not enough for pancreatic cancer.[J]. Pancreas,2007,35(3):224-231.
    [91] Kikuchi E, Menendez S, Ozu C, et al. Highly efficient gene delivery for bladder cancers by intravesically administered replication-competent retroviral vectors.[J]. Clin Cancer Res,2007,13(15 Pt 1):4511-4518.
    [92] Kucerova L, Altanerova V, Matuskova M, et al. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy.[J]. Cancer Res,2007,67(13):6304-6313.
    [93] Kievit E, Bershad E, Ng E, et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts.[J].Cancer Res,1999,59(7):1417-1421.
    
    [94] Kievit E, Nyati M K, Ng E, et al. Yeast cytosine deaminase improves radiosensitization and bystander effect by 5-fluorocytosine of human colorectal cancer xenografts.[J]. Cancer Res,2000,60(23):6649-6655.
    
    [95] Kanai F, Kawakami T, Hamada H, et al. Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil.[J]. Cancer Res,1998,58(9): 1946-1951.
    
    [96] Tiraby M, Cazaux C, Baron M, et al. Concomitant expression of E. coli cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5-fluorocytosine.[J]. FEMS Microbiol Lett,1998,167(l):41-49.
    
    [97] Adachi Y, Tamiya T, Ichikawa T, et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine.[J]. Hum Gene Ther,2000,11(1):77-89.
    
    [98] Koyama F, Sawada H, Hirao T, et al. Combined suicide gene therapy for human colon cancer cells using adenovirus-mediated transfer of escherichia coli cytosine deaminase gene and Escherichia coli uracil phosphoribosyltransferase gene with 5-fluorocytosine.[J]. Cancer Gene Ther,2000,7(7):1015-1022.
    
    [99] Chung-faye G A, Chen M J, Green N K, et al. In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase.[J]. Gene Ther,2001,8(20):1547-1554.
    
    [100]Porosnicu M, Mian A, Barber G N. The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene.[J]. Cancer Res,2003,63(23):8366-8376.
    
    [101] Xia J, Xia K, Feng Y, et al. The combination of suicide gene therapy and radiation enhances the killing of nasopharyngeal carcinoma xenographs.[J]. J Radiat Res (Tokyo),2004,45(2):281-289.
    
    [102]Gopinath P, Ghosh S S. Implication of functional activity for determining therapeutic efficacy of suicide genes in vitro.[J]. Biotechnol Lett,2008,30
    [103]Bourbeau D, Lavoie G, Nalbantoglu J, et al. Suicide gene therapy with an adenovirus expressing the fusion gene CD::UPRT in human glioblastomas:different sensitivities correlate with p53 status.[J]. J Gene Med,2004,6(12):1320-1332.
    [104]Beerens A M, Rots M G, De V E, et al. Fusion of herpes simplex virus thymidine kinase to VP22 does not result in intercellular trafficking of the protein.[J]. Int J Mol Med,2007,19(5):841-849.
    [105] Lee K C, Hamstra D A, Bullarayasamudram S, et al. Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit.[J]. Gene Ther,2006,13(2):127-137.
    [106] Kong B H, Wang W X, Liu C S, et al. [Tegument viral protein 22 enhanced cell-killing effect of the herpes simplex virus thymidine kinase/ganciclovir system on ovarian cancer in vivo][J]. Zhonghua Fu Chan Ke Za Zhi,2003,38(4):195-198.
    [107] Noguchi H, Matsumoto S. Protein transduction technology: a novel therapeutic perspective.[J]. Acta Med Okayama,2006,60(1):1-11.
    [108]Phelan A, Elliott G, O H P. Intercellular delivery of functional p53 by the herpesvirus protein VP22.[J]. Nat Biotechnol,1998,16(5):440-443.
    [109]Roeder G E, Parish J L, Stern P L, et al. Herpes simplex virus VP22-human papillomavirus E2 fusion proteins produced in mammalian or bacterial cells enter mammalian cells and induce apoptotic cell death.[J]. Biotechnol Appl Biochem,2004,40(Pt 2):157-165.
    [110] Fang B, Xu B, Koch P, et al. Intercellular trafficking of VP22-GFP fusion proteins is not observed in cultured mammalian cells.[J]. Gene Ther,1998,5(10): 1420-1424.
    [111] Falnes P O, Wesche J, Olsnes S. Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment.[J]. Biochemistry,2001,40(14):4349-4358.
    [112]Hakkarainen T, Wahlfors T, Merilainen O, et al. VP22 does not significantly enhance enzyme prodrug cancer gene therapy as a part of a VP22-HSVTk-GFP triple fusion construct.[J]. J Gene Med,2005,7(7):898-907.
    [113] Roy V, Qiao J, De C L, et al. Direct evidence for the absence of intercellular trafficking of VP22 fused to GFP or to the herpes simplex virus thymidine kinase.[J]. Gene Ther,2005,12(2):169-176.
    [114] Lee K C, Hamstra D A, Bullarayasamudram S, et al. Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit.[J]. Gene Ther,2006,13(2): 127-137.
    [115]Hakkarainen T, Wahlfors T, Merilainen 0, et al. VP22 does not significantly enhance enzyme prodrug cancer gene therapy as a part of a VP22-HSVTk-GFP triple fusion construct.[J]. J Gene Med,2005,7(7):898-907.
    [116] Kong B, Wang W, Liu C, et al. Efficacy of lentivirus-mediated and MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy for ovarian cancer.[J]. In Vivo,2003,17(2):153-156.
    [117] Davis S S. Biomedical applications of nanotechnology-implications for drug targeting and gene therapy.[J]. Trends Biotechnol,1997,15(6):217-224.
    
    [118] Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides.[J]. Adv Drug Deliv Rev,2001,47(1):99-l 12.
    [119] Yamada T, Iwasaki Y, Tada H, et al. Nanoparticles for the delivery of genes and drugs to human hepatocytes.[J]. Nat Biotechnol,2003,21(8):885-890.
    [120] Teh B S, Aguilar-cordova E, Vlachaki M T, et al. Combining radiotherapy with gene therapy (from the bench to the bedside): a novel treatment strategy for prostate cancer.[J]. Oncologist,2002,7(5):458-466.
    [1]Harley C B,Futcher A B,Greider C W.Telomeres shorten during ageing of human fibroblasts.[J].Nature,1990,345(6274):458-460.
    [2]Lundblad V,Szostak J W.A mutant with a defect in telomere elongation leads to senescence in yeast.[J].Cell,1989,57(4):633-643.
    [3]Kim N W,Piatyszek M A,Prowse K R,et al.Specific association of human telomerase activity with immortal cells and cancer.[J].Science,1994,266(5193):2011-2015.
    [4]Janknecht R.On the road to immortality:hTERT upregulation in cancer cells.[J].FEBS Lett,2004,564(1-2):9-13.
    [5]Shay J W,Bacchetti S.A survey of telomerase activity in human cancer.[J].Eur J Cancer,1997,33(5):787-791.
    [6]Harrington L,Zhou W,Mcphail T,et al.Human telomerase contains evolutionarily conserved catalytic and structural subunits.[J].Genes Dev,1997,11(23):3109-3115.
    [7]Kilian A,Bowtell D D,Abud H E,et al.Isolation of a candidate human telomerase catalytic subunit gene,which reveals complex splicing patterns in different cell types.[J].Hum Mol Genet,1997,6(12):2011-2019.
    [8] Nakamura T M, Morin G B, Chapman K B, et al. Telomerase catalytic subunit homologs from fission yeast and human.[J]. Science,1997,277(5328):955-959.
    [9] Meyerson M, Counter C M, Eaton E N, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization.[J].Cell,1997,90(4):785-795.
    [10] Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span.[J]. Curr Biol,1998,8(5):279-282.
    [11] Bodnar A G, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells.[J]. Science,1998,279(5349):349-352.
    [12] Elenbaas B, Spirio L, Koerner F, et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells.[J]. Genes Dev,2001,15(1):50-65.
    [13] Zimonjic D, Brooks M W, Popescu N, et al. Derivation of human tumor cells in vitro without widespread genomic instability.[J]. Cancer Res,2001,61(24):8838-8844.
    [14] Harm W C, Counter C M, Lundberg A S, et al. Creation of human tumour cells with defined genetic elements.[J]. Nature,1999,400(6743):464-468.
    [15] Feng J, Funk W D, Wang S S, et al. The RNA component of human telomerase.[J]. Science, 1995,269(5228): 1236-1241.
    [16] Corey D R. Telomerase inhibition, oligonucleotides, and clinical trials.[J].Oncogene,2002,21(4):631-637.
    [17] Herbert B, Pitts A E, Baker S I, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death.[J]. Proc Natl Acad Sci U S A,1999,96(25):14276-14281.
    [18] Kondo S, Kondo Y, Li G, et al. Targeted therapy of human malignant glioma in a mouse model by 2-5A antisense directed against telomerase RNA.[J].Oncogene,1998,16(25):3323-3330.
    [19] Yokoyama Y, Takahashi Y, Shinohara A, et al. The 5'-end of hTERT mRNA is a good target for hammerhead ribozyme to suppress telomerase activity.[J].Biochem Biophys Res Commun,2000,273(l):316-321.
    [20] Yokoyama Y, Takahashi Y, Shinohara A, et al. Attenuation of telomerase activity by a hammerhead ribozyme targeting the template region of telomerase RNA in endometrial carcinoma cells.[J]. Cancer Res,1998,58(23):5406-5410.
    [21] Hahn W C, Stewart S A, Brooks M W, et al. Inhibition of telomerase limits the growth of human cancer cells.[J]. Nat Med,1999,5(10):l 164-1170.
    [22] Zhang X, Mar V, Zhou W, et al. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells.[J]. Genes Dev,1999,13(18):2388-2399.
    [23] Greiner J, Bullinger L, Guinn B A, et al. Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells.[J]. Clin Cancer Res,2008,14(22):7161-7166.
    
    [24] Li H, Katik I, Liu J P. Uses of telomerase peptides in anti-tumor immune therapy.[J]. Methods Mol Biol,2007,405:61-86.
    [25] Vonderheide R H. Prospects and challenges of building a cancer vaccine targeting telomerase.[J]. Biochimie,2008,90(1):173-180.
    [26] Damm K, Hemmann U, Garin-chesa P, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation.[J]. EMBO J,2001,20(24):6958-6968.
    [27] Riou J F, Guittat L, Mailliet P, et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands.[J]. Proc Natl Acad Sci U S A,2002,99(5):2672-2677.
    [28] Sun D, Thompson B, Cathers B E, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound.[J]. J Med Chem,1997,40(14):2113-2116.
    [29] Holt SE, Aisner DL, Shay JW, Wright WE. Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci USA 1997; 94: 10687-92.
    [30] Holt SE, Wright WE, Shay JW. Regulation of telomerase activity in immortal cell lines. Mol Cell Biol 1996; 16:2932-9.
    [31] Cong, YS, Wen, J, Bacchetti, S. The human telomerase catalytic subunit hTERT:organization of the gene and characterization of the promoter. Human Mol Genet 1999; 8:137-42
    [32] Horikawa I, Cable PL, Afshari C, Barrett JC. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 1999; 59:
    [33] Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res 1999; 59:551-7.
    [34] Devereux TR, Horikawa I, Anna CH, Annab LA, Afshari CA, Barrett JC. DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 1999; 59:6087-90
    [35] Kyo S, Inoue M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene 2002; 21:688-97.
    [36] Ducrest, AL, Szutorisz, H, Lingner, J, and Nabholz, M. Regulation of the human telomerase reverse transcriptase gene. Oncogene 2002; 21:541-52.
    [37] Cuthbert AP, Bond J, Trott DA, Gill S, Broni J, Marriott A, et al. Telomerase repressor sequences on chromosome 3 and induction of permanent growth arrest in human breast cancer cells. J Natl Cancer Inst. 1999; 91:37-45
    [38]Tanaka H, Shimizu M, Horikawa I, Kugoh H, Yokota J, Barrett JC, et al. Evidence for a putative telomerase repressor gene in the 3p14.2-p21.1 region. Genes Chrom Cancer 1998; 23:123-33.
    [39] Mehle C, Lindblom A, Ljungberg, B Stenling R, Roos G. Loss of heterozygosity at chromosome 3p correlates with telomerase activity in renal cell carcinoma. Int J Oncol 1998; 13:289-95.
    [40] Ma X J, Huang R, Kuang A R. AFP Promoter Enhancer Increased Specific Expression of the Human Sodium Iodide Symporter (hNIS) for Targeted Radioiodine Therapy of Hepatocellular Carcinoma.[J]. Cancer Invest,2009:1.
    [41]Gao P, Wang R, Shen J J, et al. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells.[J]. Cancer Sci,2008,99(11):2209-2217.
    [42] Willhauck M J, Sharif S B, Klutz K, et al. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma.[J]. Gene Ther,2008,15(3):214-223.
    [43] Scholz I V, Cengic N, Baker C H, et al. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer.[J]. Gene Ther,2005,12(3):272-280.
    [44] Sanchez-perez L, Kottke T, Daniels G A, et al. Killing of normal melanocytes,combined with heat shock protein 70 and CD40L expression, cures large established melanomas.[J]. J Immunol,2006,177(6):4168-4177.
    [45] Bosenberg M, Muthusamy V, Curley D P, et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice.[J]. Genesis,2006,44(5):262-267.
    [46] Kim S J, Lee H S, Shin J H, et al. Preferentially enhanced gene expression from a synthetic human telomerase reverse transcriptase promoter in human cancer cells.[J]. Oncol Rep,2006,16(5):975-979.
    [47]Bilsland A E, Fletcher-monaghan A, Keith W N. Properties of a telomerase-specific Cre/Lox switch for transcriptionally targeted cancer gene therapy.[J]. Neoplasia,2005,7(11):1020-1029.
    [48] Kazhdan I, Marciniak R A. Death receptor 4 (DR4) efficiently kills breast cancer cells irrespective of their sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).[J]. Cancer Gene Ther,2004,11(10):691-698.
    [49] Goto H, Osaki T, Kijima T, Nishino K, Kumagai T, Funakoshi T, et al. Gene therapy utilizing the Cre/loxP system selectively suppresses tumor growth of disseminated carcinoembryonic antigen-producing cancer cells. Int J Cancer 2001; 94:414-9.
    [50] Ikegami S, Tadakuma T, Ono T. Treatment efficiency of a suicide gene therapy using prostate-specific membrane antigen promoter/enhancer in a castrated mouse model of prostate cancer. Cancer Sci. 2004 Apr;95(4):367-70.
    
    [51] Ikegami S, Tadakuma T, Suzuki S. Development of gene therapy using prostate-specific membrane antigen promoter/enhancer with Cre Recombinase/LoxP system for prostate cancer cells under androgen ablation condition. Jpn J Cancer Res, 2002 Oct;93(10):l 154-63.
    
    [52] Nettelbeck DM, Jerome V, Muller RA. strategy for enhancing the transcriptional activity of weak cell type-specific promoters. Gene Ther 1998; 5:1656-64.
    
    [53] Gu J, Fang B. Telomerase promoter-driven cancer gene therapy.[J]. Cancer Biol Ther,2003,2(4 Suppl 1):64-70
    
    [54] WANG Lina*, XUE Zhigang*, LI Zhuo, et al. Investigation of hrDNA targeting vector-mediated tumor-specific suicide gene therapy for hepatocellular carcinoma .Chinese Science Bulletin; 2006 20061.51 (19) 2342-2350
    
    [55] Satra M, Tsougos I, Papanikolaou V, et al. Correlation between radiation-induced telomerase activity and human telomerase reverse transcriptase mRNA expression in HeLa cells.[J]. Int J Radiat Biol,2006,82(6):401-409.
    
    [56] Liao Z K, Zhou F X, Luo Z G, et al. Radio-activation of hTERT promoter in larynx squamous carcinoma cells: an 'indirected-activator' strategy in radio-gene-therapy.[J]. Oncol Rep,2008,19(1):281-286.
    [57] Chen M, Gu J, Xing J, et al. Irradiation-induced telomerase activity and the risk of lung cancer: a pilot case-control study.[J]. Cancer,2007,109(6): 1157-1163.
    [58] Colitz C M, Barden C A, Lu P, et al. Ultraviolet irradiation up-regulates telomerase transcription and activity in lens epithelial cells.[J]. Vet Ophthalmol,2006,9 (5):379-385.
    [59] Komata T, Kondo Y, Kanzawa T, Ito H, Hirohata S, Koga S, et al. Caspase-8 gene therapy using the human telomerase reverse transcriptase promoter for malignant glioma cells. Human Gene Ther 2002; 13:1015-25.
    [60] Lee K C, Hamstra D A, Bullarayasamudram S, et al. Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit.[J]. Gene Ther,2006,13(2): 127-137.
    [61]Hakkarainen T, Wahlfors T, Merilainen O, et al. VP22 does not significantly enhance enzyme prodrug cancer gene therapy as a part of a VP22-HSVTk-GFP triple fusion construct.[J]. J Gene Med,2005,7(7):898-907.
    [62] Powell S, Wang Z, Lemos B, O'Sullivan C, Mok M, Chiu C.-P, Majumdar, A,and Irving, J. A conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum anti-tumor activity. (abstract). Mol Ther 2002; 5:S19.
    [63]Gu, J, Andreeff, M, Roth, JA, and Fang, B. hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Ther 2002; 9:30-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700