锰型过氧化物酶与鼻咽癌放射敏感关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景鼻咽癌流行于中国南方。低分化型是鼻咽癌最常见的病理组织型,对放射治疗敏感。常规放射治疗是鼻咽癌最常用和最有效的治疗。但是鼻咽癌五年生存率仅为50%左右,而失败主要原因是鼻咽癌组织对放射线的抵抗。增加照射剂量,因会引起周围组织的损害而受到限制。因此,提高疗效只能从增加肿瘤而不增加周围组织的辐射量,或者提高肿瘤组织相对于周围组织的放射敏感性入手。前者涉及改善放疗物理因素。后者涉及探索影响肿瘤与正常组织不同放疗差别的生物因素。步入分子医学时代,诸如免疫疗法和RNA干扰等靶向目标分子治疗等走向应用。对于鼻咽癌治疗,发现和应用有潜力的放射敏感相关生物分子更有意义。受离子辐射的细胞会产生自由基,起辐射诱导细胞毒作用。而锰型过氧化物酶(SOD2)则能歧化超氧阴离子自由基,降低哺乳动物细胞对放射的敏感性。
     研究目的实验探索锰型过氧化物酶对鼻咽癌放射抵抗性的影响及其作用机制。
     研究方法①应用集落形成实验检测鼻咽癌细胞株CNE1和CNE2放射前和不同剂量放射后的存活分数,应用多靶单击模型和线性二次模型拟合放射存活曲线,测算放射生物学参数D0,Dq,α,β和SF2,比较两细胞株的放射敏感性。
     ②应用水溶四氮唑盐微孔板实验测定细胞株CNE1与CNE2的总SOD和SOD2活性,测评SOD活性和SOD2活性与鼻咽癌细胞株放疗敏感或抵抗的关系。
     ③应用Western blot检测照射前和不同时间及不同剂量照射后细胞株CNE1和CNE2的SOD2蛋白表达,测评SOD2蛋白表达与鼻咽癌细胞株放疗敏感或抵抗的关系和随辐射剂量时间的变化。
     ⑤使用Gateway(?)-adapted expression vector构建表达miRNA对SOD2基因RNA干扰的质粒。
     ⑥采用脂质体转染法将构建的针对SOD2基因的miRNA干扰的质粒转染CNE1细胞,cck-8实验和FCM检测转染质粒对细胞增殖和细胞周期的影响。Western blot和RT-PCR检测瞬转细胞的SOD2的蛋白和mRNA表达变化。
     ⑦应用杀稻瘟素(Blasticidin)筛选转染细胞,建立针对SOD2基因表达miRNA干扰的CNE1细胞株,检测稳转细胞的SOD2的蛋白和mRNA表达情况。
     ⑧集落形成实验等测算和比较稳转SOD2基因沉默细胞的放射生物学参数,直接测评SOD2对鼻咽癌细胞放射抵抗的影响。
     ⑨x-线2Gy和4Gy辐射接受miRNA沉默SOD2基因治疗的CNE1细胞实验,测算细胞生存率,测评基因治疗对鼻咽癌细胞放射增敏作用。
     结果①鼻咽癌细胞株放射生物学参数在CNE1和CNE2两细胞株放射生存曲线上,每一放射剂量点CNE1的细胞存活分数都高于CNE2。在放射敏感参数D0、Dq、SF2、α和MID CNE1与CNE2相比的分别为:高出50.97%、高出2.31倍、高出1.67倍、少3.35倍,P<0.05。
     ②鼻咽癌细胞CNE1与CNE2的SOD活性和SOD2活性在总SOD活性和SOD2活性水平细胞株CNE1比CNE2分别高出:63.69%和49.36%,P<0.05。
     ③鼻咽癌细胞CNE1与CNE2的SOD2蛋白表达细胞株CNE1的SOD2蛋白表达量是CNE2的量的1.94倍,P<0.05。受辐射,CNE1细胞的SOD2蛋白量增加(P<0.05),但是不随时间和剂量变化(P>0.05); CNE2细胞的SOD2蛋白量变化不明显(P>0.05)。
     ④构建靶向SOD2的miRNA载体质粒与转染CNE1细胞经过质粒DNA测序,质粒pcDNATM6.2-GW/EmGFP-imR-SOD2(411、424和700)构建成功。质粒转染鼻咽癌细胞CNE1,经检测EmGFP编码绿色荧光蛋白,转染成功。转染的细胞imR-SOD2411、imR-SOD2424、imR-SOD2700与未转染的细胞相比,SOD2的mRNA分别下调37%、52.19%、45.12%,P<0.05; SOD2蛋白分别下调13.43%、51.76%、41.36%,P<0.05。转染质粒pcDNATM6.2-GW/EmGFP-imR-SOD2424抑制细胞增殖生长25.87%,质粒pcDNATM6.2-GW/EmGFP-imR-SOD2700和阴性质粒抑制16.88%和17.15%。转染质粒对细胞周期影响不明显(P>0.05)。
     ⑤建立沉默SOD2的稳定转染细胞株经抗生素筛选获得稳定转染质粒pcDNATM6.2-GW/EmGFP-imR-SOD2700的CNE1细胞克隆。稳转imR-SOD2700的CNE1细胞与未转染的CNE1细胞相比,SOD2的mRNA分别下调72.18%,P<0.01; SOD2蛋白分别下调69.95%,P<0.05。
     ⑥沉默SOD2基因表达细胞放射生物学参数与基因治疗实验在放射生存曲线上,稳转质粒pcDNATM6.2-GW/EmGFP-imR-SOD2700的CNE1细胞与无转染的CNE1细胞相比每一放射剂量的生存分数减小,在放射生物参数SF2、D0、α前者比后者分别降低12.81倍、降低2.43、升高2.68倍,P<0.05。
     ⑦通过沉默SOD2基因-放射增敏治疗实验接受基因治疗敲除SOD2基因的CNE1细胞与未受干扰的CNE1细胞照射2Gy和4Gy的x-线细胞的生存率,基因治疗的CNE1细胞比未受治疗的CNE1细胞分别降低2.53倍和3.72倍。
     结论鼻咽癌细胞株CNE1相比CNE2的放射抵抗性高。SOD和SOD2活性与鼻咽癌细胞株的放射抵抗有关,活性高的细胞的放射抵抗性大。SOD2蛋白表达与鼻咽癌细胞株的放射抵抗有关,蛋白表达高的细胞的放射抵抗性大。构建靶向SOD2的质粒,能够表达miRNA,下调SOD2基因表达,其中针对SOD2基因位点700至721的niRNA最有效。miRNA沉默SOD2的稳转细胞,SOD2基因mRNA和蛋白显著下调,放射抵抗变弱。总之,miRNA干扰沉默SOD2基因疗法可以应用于放疗抵抗的鼻咽癌,能使癌症放疗的放射敏感性增高。
Background Carcinoma of the nasopharynx is prevalent in the South China region. The poorly-differentiated subtype is most common histologic type of na-sopharyngeal carcinoma, which is radiosensitive. The most effective means of treatment is generally radiation therapy. The five-year survival rate of nasopha-ryngeal carcinomas is about 50% overall and failure to control the cancer is mainly due to a portion of radioresistant phenotype of nasopharyngeal carcinoma. To in-crease the dose of radiation that can be delivered to a tumor is limited by the damage caused to surrounding normal tissues and the consequent risk of com-plications. Hence, therapeutic efficacy can be improved either by increasing the effective radiation dose delivered to the tumor relative to that given to surround-ing normal tissues or by devising an approach that will increase the response of the tumor relative to that of the surrounding normal tissues. The former ap-proach implies improvement in the physical aspects of radiation therapy. The second approach involves exploiting biological factors that result in differences in the response of tumors and normal tissues to radiation therapy. Thanks to the advancements in genomics, proteomics and bioinformatics in recent decades, more understanding of the disease carcinogenesis and progression has been gained. In the era of molecular medicine, specific treatment to the potential target using tech-nologies such as immunotherapy and RNAi becomes formulating from bench to bedside application and thus makes a potential genetic marker of radiosensitivity discovery more meaningful for NPC management. Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species that are associated with radiation-induced cytotoxicity. The antioxidant enzyme manganese super-oxide dismutase (SOD2) catalyzes the dismutation of the superoxide anions into hydrogen peroxide, to enhance the radioresistance of a mammalian cell.
     Methods Two human nasopharyngeal carcinoma cell lines CNE1 and CNE2 were characterized using the clonogenic survival assay after irradiation. The multitar-get, single-hit cell survival equation and the linear-quadratic cell survival equation were fit to the radiation dose response data using the programme SigmaPlot9. Ra-diosensitivity parameters of the nasopharyngeal carcinoma cell lines (CNE1 and CNE2) obtained from the fitted data were D0(the slope of in the straight-line region), Dq(a measure of the size of the shoulder), a(a measure of the initial slope),β(a measure of the final slope), and SF2(surviving fraction at 2 Gy).
     Activities of SOD2 gene on nasopharyngeal carcinoma cells were investigated in comparison with the relative radiosensitivity of NPC cell line and the relative radioresistance of NPC cell line. SOD enzymatic activity was assessed by the reduction of WST-1 using water-soluble tetrazolium salt microplate assay.
     Expression of SOD2 gene on nasopharyngeal carcinoma cells was investigated in comparison with the relative radiosensitivity of NPC cell line and'the relative radioresistance of NPC cell line. Western blots were carried out essentially to assess SOD2 protein expression and the optic density (OD) value of each band was estimated by Quantity One(?) 1-D Analysis Software.
     We have investigated the potential low expression of SOD2, through expres-sion of miRNA for RNAi using Gateway(?)-adapted expression vector in mam-malian cells, to attenuate the radioresistance of a nasopharyngeal carcinoma cell line. Using these as in vitro models, we have investigated whether SOD2 gene therapy may be suitable for the improvement of the effects of radiotherapy on nasopharyngeal carcinoma.
     ·Designed and synthesized three pairs of complementary DNA oligos for SOD2 messenger RNA, with each containing 4 nucleotide overhangs nec-essary for directional cloning.
     ·Annealed DNA oligos to generate three double-strand oligos.
     ·Clone the ds oligos into pcDNATM6.2-GW/EmGFP-imR expression vectors using T4 DNA Ligase.
     ·Transformed E.coli and analyzed colonies for the desired expression clone.
     ·Transfected the expression clone for transient and stable RNAi analysis.
     ·assessed protein expression and mRNA expression of SOD2 in the transfected cells using Western blot analysis and RT-PCR.
     ·assessed the effect of clonogenic cell kill of established stable cell line ex-pressing miRNA of SOD2 following exposure to ionizing radiation.
     ·determined if radiation efficiency increased with reduced expression SOD2 through miRNA expression construct transfer.
     Results The radiobiological parameter of nasopharyngeal carcinoma cell lines Surviving fraction of CNE1 was higher than those of CNE2 at each dose point on radiation cell survival curves. The value of Do, Dq, a,β, SF2 of cell line CNE1 and CNE2 were 1.398 Gy,0.881 Gy,0.228 Gy-1,0.104 Gy-2,0.403 and 0.926 Gy, 0.266 Gy,0.763 Gy-1,0.066 Gy-2,0.151, respectively.
     SOD enzyme activity and SOD2 expression of nasopharyngeal carcinoma cell lines The levels of total SOD activity and SOD2 activity in cell lines CNEl and CNE2 were 234.04 and 146.10 U/108cell,143.20 and 97.82U/108cell, respectively. Compared to CNE2 cells, levels of SOD2 protein expression were increased 1.94-fold in CNE1 cells.
     Construction of the plasmid vectors and stable cell lines The plasmid vectors, pcDNATM6.2-GW/EmGFP-imR-SOD2(411,424 and 700), express miRNA for use in RNAi analysis of SOD2 gene in nasopharyngeal carcinoma cells. EmGFP en-codes Green Fluorescent Protein. Following plasmid/LipofectamineTM2000 trans-duction, transduced CNE1, uninduced cell and cell transfected with pcDNATM6.2-GW/EmGFP-imR-neg down-regulated the expression of SOD2 protein to 86.57%, 48.24%,58.64%,100% and 90% respectively; down-regulated the level of SOD2 mRNA to 63%,47.81%,54.88%,100% and 92% respectively. Transfected pcDNATM6.2-GW/Em GFP-imR-SOD2424 inhibited tumor cell proliferation. All transduced plasmids did not influence cell cycles.
     Selected for stable cell line transfected with pcDNATM6.2-GW/EmGFP-imR-SOD2700 using Blasticidin. Assay for SOD2 gene knockdown, compare to unin-duced CNE1 cell and cell stably transfected with pcDNATM6.2-GW/EmGFP-imR-neg showed the level of SOD2 mRNA were down-regulated to 27.82%,100% and 98.28%; the protein expression of SOD2 gene were down-regulated to 30.05%, 100% and 94.88%.
     The radiobiological parameter of SOD2 gene knockdown NPC cell lines Sur-viving fraction of SOD2 gene knockdown CNE1 was lower than those of uninduced CNE1 at each dose point on radiation cell survival curves. The value of Do, Dq, a, 0, SF2 of both were 1.446 Gy,0.856 Gy,0.256 Gy-1,0.085 Gy-2,0.407 and 0.927 Gy,0.276 Gy,0.790 Gy-1,0.043 Gy-2,0.153, respectively. The radiation cell sur-vival curves of cell stably transfected with pcDNATM6.2-GW/EmGFP-imR-neg was similar to that of uninduced CNE1 cell.
     The effect of miRNA interference silencing SOD2 in CNEl cells on efficiency of radiation CNE1 cells transduced with miR-SOD2 or miR-neg control or parental CNE1 cells were irradiated at either 2 or 4 Gy. Cells transduced with miR-SOD2 demonstrated an increased efficiency of treatment of carcinoma cell with ionizing radiation as seen by a significant increase in colony number at both doses
     Conclusions CNE1 is more radioresistance than CNE2. The levels of total SOD activity and SOD2 activity in CNEl cell were significantly(1.5-fold) higher than CNE2 cell. There is marked correlation observed between the activity of SOD, SOD2 and radiosensitivity of the nasopharyngeal carcinoma cell lines.
     The protein expression of SOD2 in CNE1 cell is significantly (2-fold) higher than that of CNE2 cell. There is marked correlation observed between the quantity of SOD2 protein and radiosensitivity of the nasopharyngeal carcinoma cell lines. x-irradiation can result in increasing in total quantity of SOD2 protein.
     We construct successfully the recombination plasmid vectors which target SOD2 gene, the plasmid vectors which express miRNA can down-regulate the expression of SOD2 gene efficiently, the miRNA of SOD2 gene loci from 700 to 721 is effective to down-regulate SOD2 gene.
     In vitro, miRNA expression of SOD2 led to a decrease in mRNA and protein of SOD2 in transduced cell in comparison to contols, the Corresponding cell is very lower radioresistance than uninduced CNE1. The results presented suggest that miRNA interference silencing SOD2 gene therapy may be applicable to the radioresistant nasopharyngeal carcinoma, enabling radiosensitivity escalation in cancer radiotherapy.
引文
[1]Parkin DM, Muir CS, Whelan SL et al. Cancer incidence in five continents, Vol VI. IARC Science publications, Lyon,1992,120.
    [2]胡雨田主编.咽科学[M]上海:上海科技出版社,2002.
    [3]Greene FL,Page DL, Fleming ID, et al. AJCC Cancer Staging Manual.6th ed. New York, NY:Springer; 2002.38.
    [4]Weichselbaum RR, Hallahan DE, Beckett MA et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells[J]. Cancer Res 1994;54(16):42-66.
    [5]Johns HE, Cunningham JR:The Physics of Radiology[M],4th ed. Springfield, IL:Charles C. Thomas; 1983:167-216.
    [6]Ward JF:The complexity of DNA damage:Relevance to biological consequences[J]. Int J Radiat Biol 1994; 66:427-432.
    [7]Tannock IF, Hill RP. The basic science of oncology[M].3th ed. Singapore:McGraw-Hill; 1999:219-237.
    [8]詹启敏主编.分子肿瘤学[M].北京:人民卫生出版社,2005,381.
    [9]Fuks Z, Haimovitz-Friedman A, Kolesnik,RN. The role of the sphingomyelin pathway and protein kinase C in radiation-induced cell kill[J]. Imp Adv Oncol 1995; 19-31.
    [10]Hallahan DE, Dunphy E, Virudachelam S,et al:C-jun and response to ionizing radiation[J]. J Biol Chem,1995; 270:30303-30309.
    [11]Weichselbaum RR, Hallahan D, Fuks Z, Kufe D:Radiation induction of immediate early genes:Effectors of the radiation stress response[J]. Int J Radiat Oncol Biol Phys,1994; 30:229-234.
    [12]Yamaguchi SS, Sakurada, Nagumo M. Role of intracellular SOD in protecting human leukemic and cancer againt superoxide and radiation[J]. Free Radic Biol Med 1994; 17:389-395.
    [13]Epperly MW, Bray JA, Esocobar P, et al. Overexpression of the human manganese super-oxide dismutase(MnSOD) trangene in subclones of murine hematopoietic progenitor cell line 32D el 3 decreases irradiation-induced apoptosis but does not alter G2/M or Gl/S phase cell cycle arrest[J]. Radiat Oncol Investig 1999;7:331-342.
    [14]孙娟,陈媛,周玫等.Mn-SOD在细胞氧应激中的作用[J].生命的化学.1997;17(1):45.
    [15} Epperly M, Bray JA, Kraeger S, et al. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy[J]. Gene Ther 1998;5(2):196-200.
    [16]Carpenter M, Epperly MW, Agarwal A, et al. Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage[J]. Gene Ther 2005; 12980:685-693.
    [17]Epperly MW, Carpenter M, Agarwal A, et al.Intraoral manganese superoxide dismutase-plasmid/liposome(MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis[J]. In Vivo 2004;18(4):401-410.
    [18]Thomas DS, Victoria S, Michael DM, et al. Radioprotective gene therapy through retroviral expression of mangnese superoxide dismutase[J]. J Gene Med 2006;8:557-565.
    [19]Asano S, Imano M, Kuroda D, et al. Expression of manganese superoxide dismutase in esophageal and gastric cancers[J]. J Gastroenterol 1998;33(6):816-822.
    [20]魏瑞,袁君,朱红.鼻咽癌病人放疗前后血中超氧化物歧化酶含量的改变.中国耳鼻咽喉颅底外科杂志.2007;7(2):89-90.
    [21]Kalen AL, Sarsour EH, Venkataraman S, et al. Mn-superoxide dismutase overexpression enhances G2 accumulation and radioresistance in human oral squamous carcinoma cells. Antioxid Redox Signal 2006; 8(7-8):1273-1281.
    [22]Granville DJ, Carthy CM, Jiang H, et al. Nuclear factor-kappaB activation by the pho-tochemotherapeutic agent verteporfin. Blood 2000;95:256-262.
    [23]Manna SK, Zhang HJ, Yan T, et al. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-B and activated protein-l[J]. J Biol Chem 1998;273:13245-13254.
    [24]Veldwijk MR, Herskind C, Laufs S, et al. Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells[J]. Radiother Oncol 2004;72(3):341-350.
    [25]Benjamin L. Genes IX[M]. Sudbury, Massachusetts:Jones and Bartlett Publishers; 2008:342-345.
    [26]Ute Schepers著.王俊,宋尔卫主译.实用RNAi技术[M].北京:人民卫生出版社,2006.1-17.
    [27]Arenz C, Schepers U. RNA interference:An ancient mechanism or a state of the art therapeutic application[J]. Naturwissenschaften.2003;90:345-359.
    [28]Lee Y, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. EMBO J 2004; 23:4051-4060.
    [29]Cai X, et al. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA 2004;10:1957-1966.
    [30]Lee Y, et al. The nuclear RNase Drosha initiates microRNA processing[J]. Nature 2003;425:415-419.
    [31]Yi R, et al. Exportin-5 mediates the nuclear export of premicroRNA precursors[J]. Genes Dev 2003;17:3011-3016.
    [32]Lund E, et al. Nuclear export of microRNA precursors [J]. Science 2004;303:95-98.
    [33]Karp X, Ambros V. Developmental biology, encountering microRNAs in cell fate signal-ing[J]. Science 2005;310:1330-1333.
    [34]Chen C, et al. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science 2004;303:83-85.
    [35]Poy MN, et al. A pancreatic-islet specific miRNA regulates insulin secretion[J]. Nature 2004;432:226-230.
    [36]Rajewsky N, Socci N. Computational identification of microRNA targets[J]. Dev Biol 2003;267:529-535.
    [37]Hannon GJ. RNA interference[J]. Nature.2002;418:244-251.
    [38]Hutvagner G, Zamore PD. A Micro-RNA in a multiple-turnover RNAi enzyme complex[J]. Science.2002a;1:1.
    [39]JD 沃森,TA 贝克,SP 贝尔等编著.杨焕明等译.基因的分子生物学[M].(原书第五版).北京:科学出版社,2005,575.
    [40]夏云飞,李满枝,黄冰等.14株(亚株)人鼻咽癌细胞的放射生物特性[J].癌症.2001;20(7):683-687.
    [41]李志强,方翼,钟女奇等.人鼻咽癌细胞株CNE-1放射生物学参数的测定[J].实用医学杂志.2001;17(9):802-803.
    [42]夏云飞,黄冰,董秀月等.人鼻咽癌细胞株(CNE-2)放射生物学特性的实验研究[J].癌症.
    [43]Puck TT, Marcus PI. Actions of x-rays on mammalian cells[J]. J Exp Med 1956;103:653-666.
    [44]Tannock IF, Hill RP. The basic science of oncology[M].3th ed. Singapore:McGraw-Hill; 1999:219-237.
    [45]Deschavanne PJ, Fertil B. A review of human cell radiosensitivity in vitro[J]. Int J Radiat Oncol Biol Phys.1996;34(1):251-266.
    [46]Deacon J, Peckham M, Steel GG. The radioresponsiveness of human tumours the initial slope of the cell survival curve[J]. Radiother Oncol 1984;2:317-323.
    [47]Fertil B, Malaise EP. Intrinsic radiosensitivity of human cell line is correlated with radiore-sponsiveness of human tumors:Analysis of 101 published survival curves[J]. Int J Radiat Oncol Bio Phys 1985;11:1699-1707.
    [48]Malaise EP, Fertil B, Deschavanne PJ et al.Initial slope of radiation survival curves is characteristic of the origin of primary and established cultures of human tumor cells and fibroblasts[J]. Radiat Res 1987;111:319-333.
    [49]Jatin Shah著.韩德民,于振坤主译.头颈外科学与肿瘤学[M].第三版,北京:人民卫生出版社,2005.643.
    [50]Heikkila RE, Cabbat FS, Cohen G. In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate[J]. J Biol Chem 1976;251:2182-2185.
    [51]Brunner TB, Hahn SM, Mckenna WG, et al. Radiation sensitization by inhibition of acti-vated Ras[J]. Strahlentherapie und onkologie,2004; 180(11):731-740.
    [52]Yasumoto J, Imai Y, Takahashi A,et al. Analysis of apoptosis-related gene expression after X-ray irradiation in human tongue squamous cell carcinoma cells harboring wild-type or mutated P53 gene[J]. J Radiat Res,2003;44(1):41
    [53]Sreelekha TT, Nair MK, Jayaprakash PG,et al. Immunophenotype of mutant ras p21 and early response to radiotherapy in cancer of the uterine cervix[J]. J Exp Clin Cancer Res, 1999;18(3):337-341.
    [54]Pawlik TM, Keyomarsik. Role of cell cycle in mediating sensitivity to radiotherapy [J]. Int J Radiat Oncol Biol Phys,2004;15(4):928-924.
    [55]Leigh BR, Khan W, Hancock SL, Knox SJ. Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation. Radiat Res 1995;142:12-15.
    [56]王宏梅,伍新尧,夏云飞等.ATM蛋白在不同放射敏感性鼻咽癌 细胞株中的表达[J].癌症.2003;22(3):579-581.
    [57]曲颂,朱小东,黎丹戎等.DNA-PKcs表达与鼻咽癌细胞株放射 敏感性的关系[J].肿瘤防治研究.2007;34(4):237-240.
    [58]贺玉香,夏云飞,刘秀芳等.不同敏感性鼻咽癌细胞株中Ku蛋白表达 情况比较[J].中华放射肿瘤学杂志.2005;14(2) 116-119.
    [59]徐晋麟 徐沁 陈淳编著 现代遗传学原理[M]第二版北京:科学出版社,2005.463-465.
    [60]Schmitz K, Schepers U. Silencio:RNA interference, the tool of the new millennium. Biol Chem(in press) 2004.
    [61]Lagos-Quintana M, Rauhut R, Meyer J, et al. New MicroRNAs from mouse and human[J]. Rn.a 2003;9:175-179.
    [78]W French Anderson. The current status of clinical gene therapy[J]. Human Gene Therapy. 2002;13:1261-1262.
    [1]Parkin DM, Muir CS, Whelan SL et al. Cancer incidence in five continents, Vol VI. IARC Science publications, Lyon,1992,120.
    [2]胡雨田主编.咽科学[M]上海:上海科技出版社,2002.
    [3]Greene FL,Page DL, Fleming ID, et al. AJCC Cancer Staging Manual.6th ed. New York, NY:Springer; 2002.38.
    [4]Sanguineti G,Geara FB,Garden AS,et al. Carcinoma of the nasopharynx treated by radiotherapy alone:determinants of local and regional control[J]. Int Radiat Oncol Biol Phys 1997;37(5):9852986.
    [5]程志斌,任庆荣,李长青.鼻咽癌咽旁受侵不同射野放射治疗长期疗效比较[J].中华放射肿瘤学杂志.1999;8(2):69-72.
    [6]卢晓宁,陈甲信,陆合明.鼻咽癌咽旁受侵面颈联合野照射疗效观察[J].广西医学.2000;22(5):942-945.
    [7]罗伟,张恩罴,钱剑扬等.改进鼻咽癌外照射技术的前瞻性临床研究[J].癌症.2000;19(9):903-906.
    [8]陈应瑞,詹志光,李伟雄.鼻咽癌三种分割放疗的前瞻性随机研究[J].癌症.1999;18(2):185-186.
    [9]Durand RE. Tumor repopulation during radiotherapy:quantitation in two xenotrafted human tumors[J]. Int J Radiat Oncol Biol Phy 1997;39(4):803-814.
    [10]陈显钊,唐启信.加速超分割放射治疗鼻咽癌前瞻性研究的近期结果[J].中国肿瘤临床1998;25(10):742-745.
    [11]Teo PM,Leung SF,Chan TW, et al. Final report of a randomized trial on al-tered2fractioned radiotherapy in nasopharyngeal carcinoma prematurely terminated by significant increase neurologic complica2 tions[J]. Int J Radiat Oncol Biol Phy 2000;48(5):1311-1322.
    [12]曹新平,陈昆田,何志纯等.563例鼻咽癌腔内残留病灶后装放疗的近期和远期疗效[J].中华肿瘤杂志.1998;20(2):146-147.
    [13]Levendag PC, Schmitz PI, Jansen PP, et al. Fractionated high2dose2 rate bracthyerapy in primary carcinoma of the nasopharynx[J]. J Clin Oncol 1998;16(6):2313-2320.
    [14]Teo PM, Leung SF, Fowler J, et al. Improved local conrtonl for early T2stage nasopharyn-geal carcinoma a tale of two hospitals[J]. Radiother Oncol 2000;57(2):155-166.
    [15]冯纪祥,张九成,任庆荣.鼻咽癌首程γ刀治疗九例报告分析[J].肿瘤防治研究.2000;27(4):298-299.
    [16]Cmelak AJ, Cox RS, Adcer JR, et al. Radiosurgery for skull base malignancies and naso-phyarygeal cacinoma[J].. Int J Radio Oncol Biol Phys 1997;37(5):997-1003.
    [17]Xia P, Fu KK, Wong GW, et al. Comparison of treatment plans involving inten-sity2modulated radiotherapy for nasopharyngeal carcinoma[J]'. Int J Radiat Oncol Biol Phys 2000;48(2):329-337.
    [18]Sultanem K, Shu HK, Xia, et al. Three-dimensional intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma:the University of California-San Francisco ex-perience[J]. Int J Radiat Oncol Biol Phys 2000;48(3):711-722.
    [19]郑小康,马骏,陈龙华.局部复发鼻咽癌三维适形放疗初步观察[J].癌症.2001;20(2):175-179.
    [20]Rossi A, Molinari R, Boracchi P, et al. Adjuvant chemotherapy with vin-cristine,cyclophosphamide, and doxorubicin after radiotherapy in localregional na-sopharygeal cancer:results of a 4-year multicenter randomized study [J]. J Clin Oncol 1988;6(9):1401-1410.
    [21]Chi KH, Chang YC, Guo WY, et al. A phase Ⅲ study of adjuvant chemotherapy in ad-vanced nasopharyngeal carcinoma patients [J]. Int Radiat Oncol Biol Phys 2002;52(5):1238-1244.
    [22]Prasad U, Wahid MI, Jalaludin MA, et al. Long-term survival of nasopharyngeal car-cinoma patients treated with adjuvant chemotherapy subsequent to conventional radical radiotherapy [J]. Int Radiat Oncol Biol Phys,2002,53(3):648r655.
    [23]Chan AT, Teo PM, Leung TW, et al. A prospective randomized study of chemotherapy ad-junctive to definitive radiotherapy in advanced nasopharyngeal carcinoma [J]. Int J Radiat Oncol Biol Phys 1995;33(3):569-577.
    [24]Teo PM, Chan AT, Lee WY, et al. Enhancement of local control in locally advanced node-positive nasopharyngeal carcinoma by adjunctive chemotherapy [J]. Int J Radiat Oncol Biol Phys 1999;43(2):261-271.
    [25]Ma J, Mai HQ, Hong MH, et al. Results of prospective randomized trial comparing neo-neoadjuvant chemotherapy plus radiotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma[J]. J Clin Oncol 2001 19(5):1350-1356.
    [26]Daniel TT, Chua, Ma Jun, et al. Long-term survival after cisplatin-based induction chemotherapy and radiotherapy for nasopharyngeal carcinoma:a pooled data analysis of two phase HI trials[J]. J Clin Oncol 2005; 23(6):1118-1124.
    [27]Hareyama M, Sakata KI, Shirato, et al. A prospective randomized trial comparing neoad-juvant chemotherapy with radiotherapy alone in patients with advanced nasopharyngeal carcinoma[J]. Cancer 2002;94(8):2217-2223.
    [28]Chua DT, Sham JS, Wei WI, et al. Control of regional metastasis after induc-tion chemotherapy and radiotherapy for nasopharyngeal cacinoma[J]. Head Neck 2002;24(4):350-360.
    [29]Cheng DT, Tsai SY, Yen KL, et al. Concomitant radiotherapy and chemotherapy for early-stage nasopharyngeal carcinoma[J]. J Clin Oncol 2000;18(10):2040-2045.
    [30]Lin JC, Jan JS, Hsu CY, et al. Phase Ⅲ study of cocurrent chemotherapy versus ra-diotherapy alone for advanced nasopharyngeal carcinoma:positive effect on overall and progression-free survival[J]. J Clin Oncol 2003;21(4):631-637.
    [31]文浩,郎锦义,扬家林等.超分割放射同期化疗治疗Ⅲ和Ⅳ期鼻咽癌前瞻性研究[J].中华放射肿瘤学杂志.2002;11(2):73-76.
    [32]Lee AW, Tung SY, Chan AT, et al. Preliminary results of a randomized study (NPC-9902 Trial) on therapeutic gain by concurrent chemotherapy and/or accelerated fraction-ation for locally advanced nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys 2006;66(1):142-151.
    [33]AI-Sarraf M, Le Blanc M, Gin P GS, et al. Chemotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer-phase Ⅲ randomized intergroup study 0099[J]. J Clin Oncol 1998;16(4):1310-1317.
    [34]Ricardo Hitt, Antonio Lopez-Pousa, Javier Marti nez-Trufero,et al. Phase III study compar-ing cisplatin plus fluorouracil to paclitaxel, cisplatin, and fluorouracil induction chemother-apy followed by chemoradiotherapy in locally advanced head and neck cancer[J]. J Clin Oncol 2005;23(34):8636-8645.
    [35]曹兆振.川红注射液对鼻咽癌放疗增效40例初步观察[J].癌症.1984;3(4):298-300.
    [36]郑斐旋,陶惠仪,汤振帮.放射加中药治疗鼻咽癌生存五年以上2200例疗效分析[J].新中医.1990;22(9):35-37.
    [37]潘明继.扶正生津汤配合放射治疗鼻咽癌150例远期疗效观察[J].中西医结合杂志.1985;5(2):83-85.
    [38]W French Anderson. The current status of clinical gene therapy [J]. Human Gene Therapy. 2002;13:1261-1262.
    [39]Weichselbaum RR, Hallahan DE, Beckett MA et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells[J]. Cancer Res 1994;54(16):42-66.
    [40]Datte R, Rubin E, Sukhatme V, et al. Ionizing radiation activates transcription of the EGR-1 gene via CArG elements[J]. Natl Acad Sci USA 1992;89(21):10149-10153.
    [41]Greco O, Marples B, Dachs GU, et al. Novel chimeric gene promoters responsive to hypoxia and ionizing radiation[J]. Gene Ther 2002;9(20):1403-1411.
    [42]唐遥云,赵素萍,徐婧等.FCU/5-氟尿嘧啶自杀基因前体药物系统联合放射治疗鼻咽癌的实验研究[J].中华病理学杂志.2006;35(8):483-487.
    [43]Hill RP,Milas L. The proportion of stem cells in murine tumors. Int J Radiat Oncol Biol Phys 1989; 16:513-518.
    [44]Brunner TB, Hahn SM, Mckenna WG, et al. Radiation sensitization by inhibition of acti-vated Ras[J]. Strahlentherapie und onkologie,2004; 180(11):731-740.
    [45]Yasumoto J, Imai Y, Takahashi A,et al. Analysis of apoptosis-related gene expression after X-ray irradiation in human tongue squamous cell carcinoma cells harboring wild-type or mutated P53 gene[J]. J Radiat Res,2003;44(1):41
    [46], Sreelekha TT, Nair MK, Jayaprakash PG,et al. Immunophenotype of mutant ras p21 and early response to radiotherapy in cancer of the uterine cervix[J]. J Exp Clin Cancer Res, 1999;18(3):337-341.
    [47]Pawlik TM, Keyomarsik. Role of cell cycle in mediating sensitivity to radiotherapy [J]. Int J Radiat Oncol Biol Phys,2004;15(4):928-924.
    [48]Leigh BR, Khan W, Hancock SL, Knox SJ. Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation. Radiat Res 1995;142:12-15.
    [49]Johns HE, Cunningham JR:The Physics of Radiology[M],4th ed. Springfield, IL:Charles C. Thomas; 1983:167-216.
    [50]Ward JF:The complexity of DNA damage:Relevance to biological consequences [J]. Int J Radiat Biol 1994; 66:427-432.
    [51]Tannock IF, Hill RP. The basic science of oncology[M].3th ed. Singapore:McGraw-Hill; 1999:21-9-237.
    [52]詹启敏主编.分子肿瘤学[M].北京:人民卫生出版社,2005,381.
    [53]Fuks Z, Haimovitz-Friedman A, Kolesnik,RN. The role of the sphingomyelin pathway and protein kinase C in radiation-induced cell kill[J]. Imp Adv Oncol 1995; 19-31.
    [54]Weichselbaum RR, Hallahan D, Fuks Z, Kufe D:Radiation induction of immediate early genes:Effectors of the radiation stress response[J]. Int J Radiat Oncol Biol Phys,1994; 30:229-234.
    [55]Hallahan DE, Dunphy E, Virudachelam S,et al:C-jun and response to ionizing radiation[J]. J Biol Chem,1995; 270:30303-30309.
    [56]Yamaguchi SS, Sakurada, Nagumo M. Role of intracellular SOD in protecting human leukemic and cancer againt superoxide and radiation[J]. Free Radic Biol Med 1994;17:389-
    [57]Epperly MW, Bray JA, Esocobar P, et al. Overexpression of the human manganese super-oxide dismutase(MnSOD) trangene in subclones of murine hematopoietic progenitor cell line 32D el 3 decreases irradiation-induced apoptosis but does not alter G2/M or G1/S phase cell cycle arrest[J]. Radiat Oncol Investig 1999;7:331-342.
    [58]孙娟,陈媛,周玫等.Mn-SOD在细胞氧应激中的作用[J].生命的化学.1997;17(1):45.
    [59]Keele BB Jr, McCord JM, Fridovich I. Superoxide dismutase from Escherichia coli B:a new manganese containing enzyme[J]. J Biol Chem,1970,245(22):6176-6181.
    [60]Church SL. Sublocalization of the gene encoding manganese superoxide dismutase(Mn-SOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid map-ping[J]. Genomics 1992;14:823-827.
    [61]Wan XS. Molecular structure and organization of human manganese superoxide dismutase gene[J]. DNA & Cell Biol 1995;13:1127.
    [62]Oberley LW, Oberley TD. Reactive oxygen species in the aetiology of cancer. In:Ioannides C, Lewis DV, editers. Drugs, Diet, and Disease Vol 1. Prentice Hall.1994,49-63.
    [63]Oberley TD, Oberley LW. Oxygen radicals and cancer. In:Yu BP, editor. Free Radicals in Aging. Boca Roca Raton:CRC Press.1993,248-267.
    [64]Pombo CM, Bonventre JV, Molar A, et al. Activation of a human Ste20-like kinase by oxidant stress defines a novel stress response pathway[J]. EMBO J 1996; 15:4537-4546.
    [65]Yeh CC, Wan XS, St Clair DK. Transcriptional regulation of the 5'proximal promoter of the human manganese superoxide dismutase gene. DNA Cell Biol 1998;17(11):921-930.
    [66]Xu Y, Porntadavity S, St Clair DK. Transcriptional regulation of the human manganese superoxide dismutase gene:the role of specificity protein 1(Spl) and activating protein-2(AP-2). Biochem J 2002;362:401-412.
    [67]Kim HP, Roe JH, Chock PB, Yim MB. Transcriptional activation of the human manganese superoxide dismutase gene mediated by tetradecanoylphorbol acetate. J Biol Chem,1999, 274(52):37455-37460.
    [68]Epperly M, Bray JA, Kraeger S, et al. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy[J]. Gene Ther 1998;5(2):196-200.
    [69]Carpenter M, Epperly MW, Agarwal A, et al. Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage[J]. Gene Ther 2005;12980:685-693.
    [70]Epperly MW, Carpenter M, Agarwal A, et al.Intraoral manganese superoxide dismutase-plasmid/liposome(MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis[J]. In Vivo 2004;18(4):401-410.
    [71]Thomas DS, Victoria S, Michael DM, et al. Radioprotective gene therapy through retroviral expression of mangnese superoxide dismutase[J]. J Gene Med 2006;8:557-565.
    [72]Asano S, Imano M, Kuroda D, et al. Expression of manganese superoxide dismutase in esophageal and gastric cancers[J]. J Gastroenterol 1998;33(6):816-822.
    [73]魏瑞,袁君,朱红.鼻咽癌病人放疗前后血中超氧化物歧化酶含量的改变.中国耳鼻咽喉颅底外科杂志.2007;7(2):89-90.
    [74]章华.鼻咽癌放射抵抗机制的蛋白质组学研究.博士论文.中南大学.2007.
    [75]Kalen AL, Sarsour EH, Venkataraman S, et al. Mn-superoxide dismutase overexpression enhances G2 accumulation and radioresistance in human oral squamous carcinoma cells. Antioxid Redox Signal 2006; 8(7-8):1273-1281.
    [76]Granville DJ, Carthy CM, Jiang H, et al. Nuclear factor-kappaB activation by the pho-tochemotherapeutic agent verteporfin. Blood 2000;95:256-262.
    [77]Manna SK, Zhang HJ, Yan T, et al. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-B and activated protein-1[J]. J Biol Chem 1998;273:13245-13254.
    [78]Veldwijk MR, Herskind C, Laufs S, et al. Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells[J]. Radiother Oncol 2004;72(3):341-350.
    [79]徐晋麟 徐沁 陈淳编著 现代遗传学原理[M]第二版北京:科学出版社,2005.463-465.
    [80]Benjamin L. Genes Ⅸ[M]. Sudbury, Massachusetts:Jones and Bartlett Publishers; 2008:342-345.
    [81]Ute Schepers著.王俊,宋尔卫主译.实用RNAi技术[M].北京:人民卫生出版社,2006.1-17.
    [82]Arenz C, Schepers U. RNA interference:An ancient mechanism or a state of the art therapeutic application [J]. Naturwissenschaften.2003;90:345-359.
    [83]Schmitz K, Schepers U. Silencio:RNA interference, the tool of the new millennium. Biol Chem(in press) 2004.
    [84]Lagos-Quintana M, Rauhut R, Meyer J, et al. New MicroRNAs from mouse and human[J]. Rn.a 2003;9:175-179.
    [85]Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probale regulatory roles in Caenorhabditis elegans[J]. Science 2001;294:858-862.
    [86]Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs:a novel classof ribonucleoproteins containing numberous microRNAs[J]. Genes Dev 2002;16:720-728.
    [87]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev 2002;16:1616-1626.
    [88]Lee Y, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. EMBO J 2004; 23:4051-4060.
    [89]Cai X, et al. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA 2004;10:1957-1966.
    [90]Lee Y, et al. The nuclear RNase Drosha initiates microRNA processing[J]. Nature 2003;425:415-419.
    [91]Yi R, et al. Exportin-5 mediates the nuclear export of premicroRNA precursors[J]. Genes Dev 2003;17:3011-3016.
    [92]Lund E, et al. Nuclear export of microRNA precursors[J]. Science 2004;303:95-98.
    [93]Karp X, Ambros V. Developmental biology, encountering microRNAs in cell fate signal-ing[J]. Science 2005;310:1330-1333.
    [94]Chen C, et al. MicroRNAs modulate hematopoietic lineage differentiation [J]. Science 2004;303:83-85.
    [95]Poy MN, et al. A pancreatic-islet specific miRNA regulates insulin secretion [J]. Nature 2004;432:226-230.
    [96]Rajewsky N, Socci N. Computational identification of microRNA targets[J]. Dev Biol 2003;267:529-535.
    [97]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell 2004;23: 281-297.
    [98]He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation [J]. Nat Rev Genet 2004;5:522-531.
    [99]Wu L, et al. MicroRNAs direct rapid deadenylation of mRNA[J]. Proc Natl Acad Sci USA. 2006;103:4034-4039.
    [100]Schmitz K, Schepers U. Silencio:RNA interference, the tool of the new mil-lennium. Biol Chem(in press) 2004.
    [101]Tabara H, Grishok A, Mello CC. RNAi in C. elegans:soaking in the genome sequence[J]. Science 1998;282:430-431.
    [102]Zamore PD, Tuschl T, Sharp PA et al. RNAi:Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101:25-33.
    [103]JD 沃森,TA 贝克,SP 贝尔等编著.杨焕明等译.基因的分子生物学[M].(原书第五版).北京:科学出版社,2005,575.
    [104]Gottesman MM. Cancer gene therapy:an awkward adolescence [J]. Cancer gene therapy 2003,10:501-508.
    [105]Tait DL, Obermiller PS, Holt JF. Preclinical studies of a new generation retroviral vector for ovarian cancer BRCA1 gene therapy[J]. Gynecol Oncol 2000;79(3):471-476.
    [106]Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus[J]. Proc Natl Acad Sci USA 1990;87:2211-2215.
    [107]Marconi P, Krisky D, Oligino T, et al. replication-defective herpes simplex virus vectors for gene transfer in vivo[J]. Proc Natl Acad Sci USA 1996;93:11319-11320.
    [108]Mori A, Arii S, Furutani M, et al. Soluble Flt-1 gene therapy for peritoneal metastase using HVJ-cationic liposomes[J]. Gene Ther 2000;7:1027-1033.
    [109]Denny WA. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy)[J]. J Biomed Biotechchol 2003;2003(1):48-70.
    [110]Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications[J]. Int J Biochem Cell Biol 2001;33:357-369.
    [111]Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference(RNAi)[J]. Oncogene 2002;21(37):5716-5724.
    [112]李继霞,周克元,蔡康荣等利用RNA干扰效应阻抑鼻咽癌细胞bcl-xL基因表达和诱导癌细胞凋亡的研究[J]、中华耳鼻咽喉头颈外科杂志2005;40(5):347-354.
    [113]何承伟,刘芳,张月飞等bcl-xL短发夹状RNA诱导人鼻咽癌细胞株CNE-2Z凋亡[J].癌症.2005;24(6):646-652.
    [114]贺楚峰,赵素萍,肖健云等小干扰RNA抑制鼻咽癌细胞hTERT基因表达的实验研究[J].中国耳鼻咽喉颅底外科杂志,2006;12(2):91-95.
    [115]Li XP, Li G, Peng Y, et al. Suppression of Epstein-Barr virus-encoded latent membrane protein-1 by RNA interference inhibits the metastatic potential of nasopharyngeal carci-noma cells[J]. Biochem Biophys Res Commun 2004;315(1):212-218.
    [116]高国凤,王沙燕,陈善义等血管内皮生长因子RNA干扰效应对鼻咽癌生长的影响[J]广东医学.2006;27(6):785-787.
    [117]蔡鑫章.基于MicroRNA的鼻咽癌基因治疗初步研究.博士论文.中南大学.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700