用户名: 密码: 验证码:
温度场中气溶胶颗粒运动与传热传质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶颗粒在温度场中的运动与传热传质研究,对了解大气中水份蒸发、凝结和PM2.5迁移机理以及多相化学反应过程均有重要意义,国内外对此进行了大量研究,对温度梯度作用于颗粒产生的热泳力、温度梯度对传热传质的影响提出了多种模型。
     本文在前人工作基础上,采用理论分析、计算及数值模拟方法,分析研究了温度梯度条件下气溶胶颗粒与气相介质的传热传质及运动受力。
     首先研究了温度场中水蒸汽的扩散,表明温度变化和组分扩散对气体性质产生影响。温度梯度又影响气体组分扩散,对气体性质产生影响。重力场中,热浮力与soret效应产生的浮力的相对大小决定了体系的稳定性。当热浮力小于soret效应产生的浮力,即soret效应使较轻的分子富积在下部,而这种因素又占主导的话,上部空气较重而沉积,原有的温度梯度就会被破坏,原来的热泳力转变成湍流作用对颗粒产生的作用力。这种效果能增强热量传递和使体系温度均匀
     当下部冷端的水蒸汽浓度超过饱和水蒸汽浓度时,水蒸汽开始凝结,凝结的结果使水蒸汽不断由高温向低温扩散,从而加强了水蒸汽扩散与热流的传递。温度梯度不但影响各类气体分子组分浓度的重新分布,还影响气体分子的扩散,即温度梯度下的扩散系数与均匀温度条件下的扩散系数是有差别的。采用化学势为推动力,推导出了在对流存在情况下,温度梯度对于水蒸汽扩散影响作用的公式:
     方程式中,xA为水汽的摩尔分数,D为扩散系数,c为水蒸汽的浓度,S为水汽的摩尔熵,Cp为摩尔热容,R为气体常数。该方程式计算表明温度梯度能在较大程度上减缓水汽由高温向低温的扩散,但能增强由低温向高温的扩散。
     采用直接对扩散通量求导的方法,推导出的温度梯度对于水蒸汽扩散影响作用的公式:
     以上方程式中D0为298K时的扩散系数,T为温度,c为浓度,△I为温度梯度对扩散通量的影响。以上两个温度梯度对扩散影响的公式计算结果一致。
     水蒸汽在空气中,质量较轻,还会产生浮力,这种浮力既影响气体浓度分布,又影响组分扩散。不少研究者都指出了这种影响,但尚未有定量研究的报道。
     本文采用Nikolai Kocherginsky方法,并将各种影响因素归结到化学势中,定量表达水汽比空气轻的浮力因素对水蒸汽浓度分布及其扩散的影响。当温度恒定,除浮力(重力)外其它因素都相同的情况下,考虑浮力(重力)因素对扩散的影响时,推导出的重力因素对扩散的影响:
     D为扩散系数,c为混合气体摩尔密度,Mig为空气对水汽的浮力。当浮力方向与扩散方向一致时,浮力的效果是增强扩散;反之则反。
     在本研究中,热浮力、soret效应及水汽重力因素产生的浮力效应,都使气体上部密度低而下部密度高,阻止了上部空气沉降,从而形成稳定的浓度梯度。
     对各种颗粒与介质的传热传质模型进行了比较研究,从中选择了合适的颗粒传热传质方程,并表达为努塞尔数Nu和舍伍德数Sh与雷诺数Re准数关联式,Re由颗粒与空气相对运动速度计算。
     水滴(液态颗粒)与气相介质的传热包括水汽蒸发或凝结所吸收或释放的热量、颗粒与介质间的导热、介质温度与颗粒温度差异所携带的热量。
     计算这些不同形式的热量,颗粒表面与环境介质的温度差及水汽含量差有重要影响。当颗粒与环境温度相差不大,而水汽含量差较大时,水滴蒸发或凝结所释放热量占主导地位;当颗粒与环境温度相差较大,而水汽含量差较小时,颗粒与介质间的对流传热或导热占主导地位。通常情况下,水蒸汽由于介质温度与颗粒温度差异所携带的热量相对于其它两种热量较小,但当颗粒表面与环境气体温度相差较大时,水蒸汽由于介质温度与颗粒温度差异所携带的热量变得较大,忽略这种热量会造成误差。
     在饱和情况下,颗粒与介质物质能量交换达到动态平衡,物质和能量净的交换量为0。对于不饱和空气,水滴在空气中蒸发使温度降低。随着空气相对湿度降低,颗粒吸收热量与释放热量相等、与介质达到平衡时温度相差越大,平衡时交换的热量越多。在颗粒与气体没有相对速度的情况下,达到平衡的温度几乎与颗粒大小无关。除非是直径小到10-8m左右的颗粒,颗粒大小对饱和蒸汽压的影响一般不太明显。当颗粒相对于气体运动时,颗粒吸收和释放的热量相等时的平衡温度随颗粒大小的变化,主要是由于颗粒大小影响Nu与Sh值(影响其计算式中Re值)。
     即使颗粒与空气有相对运动速度,如果为饱和空气,颗粒与环境气体达到平衡时仍然没有净的物质和能量传递。不饱和空气在与颗粒有相对运动速度时,相对运动速度能增加颗粒与气体的物质和能量传递,但对达到平衡的温度影响很小,因为这种相对速度促进了颗粒蒸发、吸收较多能量,也能促进空气能量向颗粒的传递。当相对速度较大时,蒸汽扩散量显著增加,忽略扩散气体由于颗粒与介质气体间温差传递的热量可能会导致较大的误差,这种形式的能量在颗粒与气体没有相对速度时,相对于其它能量传递形式往往是非常小的,可以忽略。
     对不均匀温度场中惰性颗粒(与周围气体没有物质交换)及活性颗粒(颗粒蒸发或凝结)的受力运动进行了研究。静止在气体中的颗粒(或相对运动速度非常小的情况下)的受力主要包括重力、热泳力、saffman升力等。热泳力是温度梯度环境中才存在的力,是由于温度梯度造成颗粒受到不均匀碰撞动量引起。研究表明,对极小颗粒,布郎力起决定性作用;对较大颗粒,重力起决定性作用。大颗粒不必考虑布郎力和热泳力,对于10-9m以下的细小水珠,重力和热泳力也不必考虑。
     研究表明,不均匀温度条件下运动的水滴,由于水滴的蒸发或凝结,颗粒温度变化是使各处颗粒温度趋于相互接近。高温处颗粒要么蒸发较多,吸收较多热量,要么凝聚较少,释放较少热量。低温处颗粒要么蒸发较少,吸收较少热量,要么凝聚较多,释放较多热量。
Research on the movement, heat transfer and mass transfer of water particle in gas, has important rolenot only on understanding the movement, evaporation,condensation,PM2.5movement mechanism andmultiphase chemical reaction process in the atmosphere. And there are a lot of researches on this field athome and abroad.Specially, many models about the effect of temperature gradient on the thermophoreticforce of particle and on the mass and heat transfer between particle and environment are put forward on.
     Based on the work by predecessor, this paper adopted theory analysis, caculation and numericalsimulation method, studied the mass and energy transfer under temperature gradient,the mass and heatbetween particle and gas,the moving force of particle in different temperature.
     Firstly, the water vapour diffusion under temperature gradient was investigated, indicating that bothtemperature changing and water vapour concentration influenced the gas properties. Temperaturegradient also affected on the water vapour diffusion and gas properties.
     In the field of gravity,the stability of system depends on the relative buoyancy value from the thermalbuoyancy and the buoyancy by sorer effect. When the thermal buoyancy is less than the buoyancy causedfrom soret effect,lighter water vapour distributes at bottom place and the soret effect is dominant and thegas density at the top place is greater.The gas at the top sinks and the temperature gradient andthermophoretic force does no longer exist, then the turbulent flow affected on the particle. The turbulentflow makes temperature uniform and mass and energy transfer between gas region enhancing.
     When the water vapour concentration at bottom exceeds the saturated water vapor concentration, thewater vapour begins to condense on the wall, resulting that the water vapour continously diffuses fromhigher temperature region to lower temperature region,and increase mass and energy transfer. Thetemperature gradient influence on not only the water vapour concentration redistributed but also thewater vapour diffusion. The diffusion coefficient at uniform temperature condition is different from thatat temperature gradient condition. In this paper, by the chemical potential driving force,a diffusionformula at convective condition is derived under temperature gradient as followed.
     X is the distance of temperature gradient,xA is water vapour mole fraction, D is diffusion coefficient, c is water vapour concentration,S is molar entropy of water vapour, Cp is mole heat capacity, R is gas constant,This formula indicates the enhancement of diffusion by temperature gradient from low temperature to high temperature and the weakness from high temperature to low temperature.
     By the method of derivation of diffusion flux,deduce a new formula that temperature gradient influences water vapour diffusion:
     In this formula, DO is diffusion coefficient at298K,T is temperature, c is concentration,ΔI is changing water vapour diffusion flux by temperature gradient. The result by former two formula that temperature gradient influences water vapour diffusion is same.
     The water vapour is lighter so that the buoyancy is produce. This buoyancy effects the water vapour concentration redistribution and the water vapour diffusion.Many reseachers report the buoyancy effect, but no quantitative result is reported till now.
     In this paper, various factors are summed up to chemical potential using Nikolai Kocherginsky, then the buoyancy of lighter water vapour and the influence on the water vapour concentration redistribution and water vapour diffusion are analyzed by the chemical potential. When temperature is constant and all the other parameters are the same except the buoyancy(gravity), the deduced formula that diffusion influenced by buoyancy (gravity) is given:
     D is diffusion coefficient, c is the mole density of mixed gas. Mig is water vapour buoyancy by air. Mi molar mass, is the mole mass difference between water vapour and ambient gas.When the buoyancy direction h and the diffusion direction are same, the diffusion of water vapour is enhanced. When buoyancy direction h and the diffusion direction are opposite, the diffusion of water vapour diffusion is weakened.
     In this study, the comprehensive effect of soret effect, thermal buoyancy and water gravitational potential energy makes the concentration gradient stable with the lower density at top and higher density at bottom to keeping top air from depositing.
     Also we compare the variable heat and mass transfer model between particle and environmental gas and choose the correct model, and express with a equation correlated with Nu,Sh and Re, Re is caculated with relative velocity between particle and ambient air.
     There are three kind of heat transfer between particle and ambient gas including the heat by watervaper condensing or water particle evaporation, the thermal conductivity and the heat by the transfervapour caused from temperature difference between particle and environmental gas.
     The temperature difference between particle and ambient gas and water vapoure content is importantfor the calculation of various kind of heat. When the temperature of particle and environment is close andthe water vapour concentration is greatly different, the heat released by water evaporationandcondensation is dominatant. When the temperature of particle and environment is greatly different and hewater vapour concentration is close, the thermal conductivity or the heat by convection between particleand medium is dominatant. Generally, the heat brought by water vapor due to medium temperature andparticle temperature differences is very small relative to the other two kinds heat transfer, but when theparticle surface and the ambient gas temperature difference is larger, the heat brought by water vapor dueto medium temperature and particle temperature differences becomes larger, the ignorance of this heatcan cause mistake.
     At the saturated condition, when a dynamic equilibrium is achieved, the net heat transfer is zero. Forthe unsaturated air, the evaporation of water droplets in the air lowers the temperature. With thedecreasing of relative humidity, the temperature difference is bigger and the heat transfer amountbetween particle and environmental gas is increased when achieving a balance. When there is no relativevelocity between particle and gas, the balance temperature almost can not be influenced by particlediameter. Unless particle diameter is small to10-8m, the size of particle has no obvious influence on thesaturated vapor pressure. When there is relative velocity between particle and gas, particle equilibriumtemperature variation is main factor by particle diameter influence on Nu and Sh value(Re value infomula).
     Although there is relative velocity between particle and the saturated gas, net mass and heat transferbetween particle and gas is zero when achieving a balance. When there is relative velocity betweenparticle and the unsaturated gas, this kind of relative velocity can increase mass and energy transferbetween particle and gas, but has very small influence on equilibrium temperature. Because this velocitynot only increases particle evaporation and water vapour condensation, but also increases thermalconductivity or convective heat transfer. When relative velocity increases, the mass transfer betweenparticle and gas becomes great, the heat by temperature difference between particle and environmentalgas of transfer vapour also become great at this condition. If this heat transfer is neglected, greatermistake may appear, but when there is no relative velocity, this heat transfer is very small and can beneglected.
     Research on the inert particle movement(without mass exchanging between particle and ambient air)and active particle movement(with particle evapouring or condensing).The forces acted on static particle (or with very low relative velocity)in air include gravity,thermophoretic force,saffman liftforce,brownian force.Thermophoretic force is only existed in the temperature gradient condition,and iscaused by unuiform impact momentum. To the very tiny particles, brownian force has decisive role;tothe larger particles, gravity has decisive role. There is no necessary to count brownian force andthermophoretic force for larger particle,to the tiny particle whose diameter below10-9m,there is nonecessary to count gravity and thermophoretic force.
     Thermophoretic force varies with temperature gradient value, thermophoretic force works whenparticle diameter between10-5-10-8m under most temperature gradient conditions. Thermophoretic forcevaries with particle diameter, temperature gradient value and the air condition. the diameter of particles issmaller than10-9m,
     For the moving water drop under temperature gradient, the water particle temperature at different parttends to be equal because of vapouration and condensation of the water drop. Particle at highertemperature area maybe evaporate and absorb more heat or condenses less and releases less heat. Particleat lower temperature area maybe evaporates less and absorb less heat or condenses more and releasesmore heat.
引文
[1] Atkinson R.,Arey J.,Gas-phase tropospheric chemistry of biogenic volatile organiccompounds:a review[J].Atmospheric Environment2003,37:S197-S219
    [2] Chen W.,Cao K.,Plant VOCs emission:a new strategy of thermotolerance[J]. ForestryResearch2005a,16(4):323-326
    [3] Librando V.,Tringali G.,Atmospheric fate of OH initiated oxidation of terpenes.Reactionmechanism of alpha-pinene degradation and secondary organic aerosol formation[J].Journalof Environmental Management2005,75(3):275-282
    [4] Jeonghoon Lee;Igor Altman; Mansoo Choia.Design of thermophoretic probe for preciseparticle sampling[J].Aerosol Science,2008,39:418–431
    [5] Eric BainWasmund,KenColey, RandalM.Shaubel, KevinO.P.Reynolds, Josef Benedik. A newtechnique to derive particle size distributions and aerosol number concentrations directlyfrom thermophoretic data[J]. Chemical Engineering Science,2010,65:4271–4284
    [6] R. Tsai, L.J. Liang.Correlation for thermophoretic deposition of aerosol particles onto coldplates[J].Aerosol Science,2001,32:473-487
    [7] Shih-Yuan Lu,Cheng-Tsung Lee.Thermophoretic motion of an aerosol particle in anon-concentric pore[J]. Aerosol Science,2001,32:1341–1358
    [8] R.M.L. Coelho, A. Silva Telles.Extended Graetz problem accompanied by dufour and soreteffects[J]. International Journal of Heat and Mass Transfer,2002,45(15):3101-3110
    [9] M.K. Partha.Suction/injection effects on thermophoresis particle deposition in a non-darcyporous medium under the influence of soret, dufour effects[J]. International Journal of Heatand Mass Transfer,2009,52:1971–1979
    [10] Dulal Pal, Hiranmoy Mondal.Influence of chemical reaction and thermal radiation on mixedconvection heat and mass transfer over a stretching sheet in darcian porous medium withsoret and dufour effects[J]. Energy Conversion and Management,2012,62:102–108
    [11] Waldmann,L.,&Schmitt,K.H.(1966). Thermophoresis and diffusiophoresis of aerosols[M].InC.N.Davies(Ed.),Aerosol science (pp.137–162). New York: Academic Press. Whitaker,S.(1977). Fundamental principles of heat transfer. NewYork:Pergam on Press
    [12] Zheng, F. Thermophoresis of spherical and non-spherical particles:A review of theories andexperiments[J]. Advances in Colloid and InterfaceScience,2002,97:255–278
    [13] Tong,N.T. Experiment sonphotophoresis and thermophoresis[J]. Journal of Colloid Science,1975,51:143–151
    [14] B. Sagot, G.Antonini, F.Buron. Annular flow configuration with high deposition efficiencyfor the experimental determination of thermophoretic diffusion coefficients[J].Journal ofAerosol Science,2009,40:1030–1049
    [15] R. Munoz-Bueno, E. Hontanon, M.I. Rucandio. Deposition of fine aerosols in laminar tubeflow at high temperature with large gas-to-wall temperature gradients[J]. Aerosol Science,2005,36:495–520
    [16] Luo Xiao Wei,Yu SuYuan.Deposition of aerosol in a laminar pipe flow[J].Sci China SerE-Tech Sci.,2008,8(51):1242-1254
    [17] Ching-Yang Cheng.Soret and dufour effects on free convection boundary layers ofnon-newtonian power law fluids with yield stress in porous media over a vertical plate withvariable wall heat and mass fluxes[J]. International Communications in Heat and MassTransfer,2011,38:615–619
    [18] A. Mahdy.Soret and dufour effect on double diffusion mixed convection from a verticalsurface in a porous medium saturated with a non-Newtonian fluid[J]. J. Non-Newtonian FluidMech.,2010,165:568–575
    [19] Vargaftik N B. Tables on thermo-physical properties of liquids and gases[M].2nd ed.Washington D C: Hemisphere,1975
    [20] Fluent Inc.fluent help[M].2005:22-5,22-6,22-7,22-8,22-69,22-71
    [21]余徽,王煤.竖直平面上的传热传质复合自然对流[J].高校化学工程学报,2000,5(14):471-474
    [22] Ching-Yang Cheng.Soret and dufour effects on natural convection heat and mass transferfrom a vertical cone in a porous medium[J]. International Communications in Heat and MassTransfer,2009,36:1020–1024
    [23] A. Mahdy.MHD non-darcian free convection from a vertical wavy surface embedded inporous media in the presence of soret and dufour effect[J]. International Communications inHeat and Mass Transfer,2009,36:1067–1074
    [24] Ching-Yang Cheng.Soret and dufour effects on heat and mass transfer by natural convectionfrom a vertical truncated cone in a fluid-saturated porous medium with variable walltemperature and concentration[J]. International Communications in Heat and Mass Transfer,2010,37:1031–1035
    [25] Dulal Pal, Hiranmoy Mondal. MHD non-darcian mixed convection heat and mass transferover a non-linear stretching sheet with soret–dufour effects and chemical reaction[J].International Communications in Heat and Mass Transfer,2011,38:463–467
    [26] Ching-Yang Cheng.Soret and dufour effects on natural convection heat and mass transfernear a vertical wavy cone in a porous medium with constant wall temperature andconcentration[J].International Communications in Heat and Mass Transfer,2011,38:1056–1060
    [27] Ching-Yang Cheng.Soret and dufour effects on free convection boundary layers over aninclined wavy surface in a porous medium[J]. International Communications in Heat andMass Transfer,2011,38:1050–1055
    [28] Ching-Yang Cheng.Soret and dufour effects on free convection heat and mass transfer froman arbitrarily inclined plate in a porous medium with constant wall temperature andconcentration[J]. International Communications in Heat and Mass Transfer,2012,39:72–77
    [29] Dulal Pal, Sewli Chatterjee.Mixed convection magnetohydrodynamic heat and mass transferpast a stretching surface in a micropolar fluid-saturated porous medium under the influenceof Ohmic heating, soret and dufour effects[J]. Commun Nonlinear Sci Numer Simulat,2011,16:1329–1346
    [30]博德.传递现象[M].北京:化学工业出版社.2008:第6章
    [31] S. A. Morsi and A. J. Alexander. An investigation of particle trajectories in two-phase flowsystems[J]. J. Fluid Mech.,1972,55(2):193-208
    [32] A. Haider and O. Levenspiel. Drag coefficient and terminal velocity of Spherical andNonspherical Particles[J]. Powder Technology,1989,58:63-70
    [33] H. Ounis, G. Ahmadi, and J. B. McLaughlin. Brownian diffusion of submicrometer particlesin the viscous sublayer[J]. Journal of Colloid and Interface Science,1991,143(1):266-277
    [34]车得福,李会雄.《多相流》.西安:西安交通大学出版社.2007:64-68
    [35] A. Li and G. Ahmadi. Dispersion and deposition of spherical particles from point sources in aturbulent channel flow[J]. Aerosol Science and Technology,1992,16:209-226
    [36] Patankar, N.A.Direct numerical simulation of moving charged、flexible bodies with thermalfluctuations[M].In Proceedings of the international conference on computationalnanoscience and nanotechnology-ICCN2002:93–96
    [37] N.,&Patankar,N.A. Direct numerical simulation of the Brownian motion of particles by usingfluctuating hydrodynamic equations[J]. Journal of Computational Physics,2010,2:466–486
    [38] W. C. Reynolds. Fundamentals of turbulence for turbulence modeling andsimulation[M].Lecture Notes for Von Karman Institute Agard.1987:Report No.755
    [39] YuC.Chang,HuanJ.Keh.Thermophoreticmotion of slightly deformed aerosol spheres[J].Journal of Aerosol Science,2010,41:180–197
    [40] F. Zheng, E.J. Davis.Thermophoretic force measurements of aggregates of micro-spheres[J].Aerosol Science,2001,32:1421–1435
    [41] J.K. Walsh, A.W. Weimer, C.M. Hrenya.Thermophoretic deposition of aerosol particles inlaminar tube flow with mixed convection[J]. Aerosol Science,2006,37:715–734
    [42] Mauricio Zurita-Gotor.Size-and structure-independence of the thermophoretic transport of anaerosol particle for specular boundary conditions in the free molecule regime[J].AerosolScience,2006,37:283–291
    [43] Jyh-Shyan Lin, Chuen-Jinn Tsai, Kuo-Lun Tung, Hann-Chyuan Chiang.Thermophoreticparticle deposition efficiency in turbulent tube flow[J]. Journal of the Chinese Institute ofChemical Engineers,2008,39:281–285
    [44] Li J.Wang,HuanJ.Keh. Boundary effects on thermophoresis of aerosol cylinders[J].Journal ofAerosol Science,2010,41:771–789
    [45] Sayaka Suzuki, Kazunori Kuwana, Ritsu Dobashi.Effect of particle morphology onthermophoretic velocity of aggregated soot particles[J]. International Journal of Heat andMass Transfer,2009,52:4695–4700
    [46] Shih H. Chen and Huan J. Keh.Axisymmetric thermophoretic motion of two sphere[J].J.Aerosol Sci.,1995,3(26):429-444
    [47] Byung Uk Lee, Du Sub Byun, Gwi-Nam Bae, Jin-Ha Lee.Thermophoretic deposition ofultrafine particles in a turbulent pipe flow: Simulation of ultrafine particle behaviour in anautomobile exhaust pipe[J]. Aerosol Science,2006,37:1788–1796
    [48] Xiaowei Luo*and Suyuan Yu.Deposition of particles in turbulent pipe flow[J]. ChinaParticuology.2006,1(4):31-34
    [49] Tsai C J, Lin J S, Aggarwal S G, et al. Thermophoretic deposition of particles in laminar andturbulent tube flows[J]. Aerosol Sci Technol,2004,38(2):131-139
    [50] F. Prodi, G. Santachiaraa, L. Di Matteoa, A. Vedernikov,S.A. Beresnevd, V.G.Chernyak.Measurements of thermophoretic velocities of aerosol particles in microgravityconditions in different carrier gases[J]. Aerosol Science,2007,38:645–655
    [51] Ataallah Soltani Goharrizi*, Rohollah Sadeghi.Thermophoretic deposition of aerosol particlesin laminar mixed-convection flow in a channel with two heated built-in square cylinders[J].Advanced Powder Technology,2010,21:320–325
    [52] Eric BainWasmund, KenColey, Randal M.Shaubel, KevinO.P.Reynolds, Josef Benedik. Anew technique to derive particle size distribution sand aerosol number concentrations directlyfrom thermophoreticdata[J]. Chemical Engineering Science,2010,65:4271–4284
    [53] Joaquín Zueco, O. Anwar Bég, H.S. Takhar, V.R. Prasad. Thermophoretic hydromagneticdissipative heat and mass transfer with lateral mass flux, heat source, Ohmic heating andthermal conductivity effects:Network simulation numerical study[J].Applied ThermalEngineering,2009,29:2808–2815
    [54] By L. TALBOT. Thermophoresis of particles in a heated boundary layer[J]. J. Fluid Mech.,1980,2101.101, part4:737-758
    [55] Brock, J. R.,On the theory of thermal forces acting on aerosol particles[J].J. Colloid Sci.,1962,17:768
    [56] Derjaguin, B. V., Y. I. Rabinovich, A. I. Storozhilova, and G. I. Scherbina.Measurement ofthe coefficient of thermal slip of gases and the thermophoresis velocity of large-size aerosolparticles[J]. J. Colloid Interface Sci.,1976,57:451
    [57] M. Esptein, R.E. Hauser, R.H. Hanry, Thermophoretic deposition of particle in naturalconvection flow from vertical plate, ASME[J].Journal of Heat Transfer-Transactions of theASME,1985,107:272–276
    [58] Ivchenko,L.N.,&Yalamov,Yu.I. The hydrodynamical method for thethermophoretic velocityof moderate large non-volatile particles[J]. Russian Journal of Physical Chemistry,1971,45:317
    [59] L. Waldmann. Rarefield gas dynamics[M]. Academic Press, New York,1961:323–344
    [60] S.P. Bakanov.The thermophoresis of solids in gases[J]. Journal of Applied Mathematics andMechanics,2005,69(5):767-772
    [61] Tsai C J, Lin J S, Aggarwal S G, et al. Thermophoretic deposition of particles in laminar andturbulent tube flows[J]. Aerosol Sci Technol,2004,38(2):131―139
    [62] G. Santachiaraa, F. Prodi C. Cornettia. Experimental measurements on thermophoresis in thetransition region[J].Aerosol Science,2002,33:769–780
    [63] R. Munoz-Bueno, E. Hontanon, M.I. Rucandio. Deposition of fine aerosols in laminar tubeflow at high temperature with large gas-to-wall temperature gradients[J]. Aerosol Science,2005,36:495–520
    [64] J.K. Walsh, A.W. Weimer, C.M. Hrenya.Thermophoretic deposition of aerosol particles inlaminar tube flow with mixed convection[J]. Aerosol Science,2006,37:715–734
    [65] Ataallah Soltani Goharrizi*, Rohollah Sadeghi.Thermophoretic deposition of aerosol particlesin laminar mixed-convection flow in a channel with two heated built-in square cylinders[J].Advanced Powder Technology,2010,21:320–325
    [66] Eric BainWasmund, KenColey, Randal M.Shaubel, KevinO.P.Reynolds, Josef Benedik. Anew technique to derive particle size distribution sand aerosol number concentrations directlyfrom thermophoretic data[J]. Chemical Engineering Science,2010,65:4271–4284
    [67] Joaquín Zueco, O. Anwar Bég, H.S. Takhar, V.R. Prasad. Thermophoretic hydromagneticdissipative heat and mass transfer with lateral mass flux, heat source, Ohmic heating andthermal conductivity effects:Network simulation numerical study[J].Applied ThermalEngineering,2009,29:2808–2815
    [68] J.K. Walsh, A.W. Weimer, C.M. Hrenya.Thermophoretic deposition of aerosol particles inlaminar tube flow with mixed convection[J]. Aerosol Science,2006,37:715–734
    [69] R. Munoz-Bueno, E. Hontanon, M.I. Rucandio. Deposition of fine aerosols in laminar tubeflow at high temperature with large gas-to-wall temperature gradients[J]. Aerosol Science,2005,36:495–520
    [70] J.K. Walsh, A.W. Weimer, C.M. Hrenya.Thermophoretic deposition of aerosol particles inlaminar tube flow with mixed convection[J]. Aerosol Science,2006,37:715–734
    [71] Chunhong He,Goodarz Ahmadi. Particle deposition with thermophoresis in laminar andturbulent duct flows[J]. Aerosol Science and Technology,1998,29(12):525-545
    [72] J.K. Walsh, A.W. Weimer, C.M. Hrenya.Thermophoretic deposition of aerosol particles inlaminar tube flow with mixed convection[J]. Aerosol Science,2006,37:715–734
    [73] C.H. Chiu, C.M. Wang, M.C. Chiou. Turbulent thermophoresis effect on particle transportprocesses[J].International Journal of Thermal Sciences,2006,45:475–486
    [74] Zhou Tao, Wang Zenghui, Yang Ruichang.Optimization and improvement of PM2.5thermophoretic deposition efficiency in turbulent gas flowing over tube surfaces[J]. Journalof Colloid and Interface Science,2005,289:36–41
    [75] Byung Uk Lee, Sang Soo Kim. Thermophoresis in the cryogenic temperature range[J].Aerosol Science,2001,32:107-119
    [76] Shih H. Chen Thermophoretic interactions of aerosol particles with constant temperatures[J].Aerosol Science,2002,33:1155–1180
    [77] Bakanov, S. P. Thermophoresis in gas at small knudsen numbers[J].Aerosol Science andTechnology,1991,15:77-92
    [78] B. Sagot, G.Antonini, F.Buron. Annular flow configuration with high deposition efficiencyfor the experimental determination of thermophoretic diffusion coefficients[J]. Journal ofAerosol Science,2009,40:1030–1049
    [79] Jae-Hyuk Choi,Osamu Fujita, Takafumi Tsuiki, Junhong Kim, Suk Ho Chung.Experimentalstudy on thermophoretic deposition of soot particles in laminar diffusion flames along a solidwall in microgravity[J]. Experimental Thermal and Fluid Science,2008,32:1484–1491
    [80] Jyh-Shyan Lin, Chuen-Jinn Tsai.Thermophoretic deposition efficiency in a cylindricall tubetaking into account developing flow at the entrance region[J]. Aerosol Science,2003,34:569–583
    [81] K.K. Dinesh, S. Jayaraj.Augmentation of thermophoretic deposition in natural convectionflow through a parallel plate channel with heat sources[J]. International Communications inHeat and Mass Transfer,2009,36:931–935
    [82] Romay, F. J., S. S. Takagaki, D. Y. H. Pui, and B. Y. H. Liu,Thermophoretic deposition ofaerosol particles in turbulent pipe flow[J]. J. Aerosol Sci.,1998,29:943
    [83] Nishio, G., S. Kitani, and K. Takahashi, Thermophoretic deposition of aerosol particles in aheat-exchanger pipe[J]. Ind. Eng. Chem. Process Des. Dev.,1974,13:408
    [84] Housiadas, C. and Y. Drossinos.Thermophoretic deposition in tube flow[J].Aerosol Sci.Tech.,2005,39:304
    [85] Samira Hashemi and Ataallah Soltani Goharrizi.Prediction of thermophoretic depositionefficiency of particles in a laminar gas flow along a concentric annulus: a comparison ofdeveloping and fully developed flows[J]. Fluid Flow And Transport Phenomena.ChineseJournal of Chemical Engineering,2009,17(5):727-733
    [86] J.R. Brock, Diffusion forces in the transition region of Knudsen number[J]. J. ColloidInterface Sci,,1968,27(1):95-100
    [87] K. Yamamoto and Y. Ishihara, Thermophoreses of a spherical particle in a gas of a transitionregime[J]. Phys. Fluids,1988,3I:3618-3624
    [88] D.I. Fotiadis and K.F. Jensen, Thermophoreses of solid particles in horizontal chemical vapordeposition reactors[J]. J. Cryst.Growth,1990,102:743-761
    [89] P. Peeters, C.C.M. Luijten, M.E.H. van Dongen.Transitional droplet growth and diffusioncoefficients[J]. International Journal of Heat and Mass Transfer,2001,44:181±193
    [90] Jiri Smolik, Lucie Dzumbova, Jaroslav Schwarz, Markku Kulmala. Evaporation of ventilatedwater droplet:connection between heat and mass transfer[J].Aerosol Science,2001,32:739-748
    [91] Jukka Hienola, Markku Kulmala, Ari Laaksonen.Condensation and evaporation of watervapor in mixed aerosols of liquid droplets and ice:numerical comparison of growth rateexpressions[J]. Aerosol Science,2001,32:351-374
    [92] Sergei S. Sazhin.Advanced models of fuel droplet heating and evaporation[J]. Progress inEnergy and Combustion Science,2006,32:162–214
    [93] Kyoung Hoon Kim, Hyung-Jong Ko, Kyoungjin Kim, Horacio Perez-Blanco.Analysis ofwater droplet evaporation in a gas turbine inlet fogging process[J].Applied ThermalEngineering,2012,33-34:62-69
    [94] Gui Lu, Yuan-Yuan Duan, Xiao-Dong Wang, Duu-Jong Lee.Internal flow in evaporatingdroplet on heated solid surface[J]. International Journal of Heat and Mass Transfer,2011,54:4437–4447
    [95] Gintautas Miliauskas, Valdas Garmus.The peculiarities of hot liquid droplets heating andevaporation[J].International Journal of Heat and Mass Transfer,2009,52:3726–3737
    [96] B. Abramzon, W.A. Sirignano, Droplet vaporization model for spray combustion calculations[J].Int. J. Heat Mass Transfer,1989,32:1605–1618
    [97] J.B. Young, The condensation and evaporation of liquid droplets at arbitrary Knudsennumber in the presence of an inert gas[J]. Int. J. Heat Mass Transfer,1993,36:2941±2956
    [98] G. Gyarmathy, The spherical droplet in gaseous carrier streams: review and synthesis, in:handbook of chemistry and physics[J]. Multiphase Science and Technology1,62nd ed.,McGraw-Hill, New York,1981-1982:99±279
    [99] S.P. Sengupta, Theoretical studies on some aspects of droplet and spray evaporation[M],Ph.D. thesis, Indian Institute of Technology, Kharagpur,1988
    [100] Mason, B. J. The physics of clouds (2nd ed.)[M]. Oxford: Clarendon Press,1971
    [101] Lehtinen, K. E. J., Kulmala, M., Vesala, T.,&Jokiniemi, J. K. Analytical methods tocalculate condensation rates of a multicomponent droplet[J]. Journal of Aerosol Science,1998,29:1035-1044
    [102] Vesala, T., Kulmala, M., Rudolf, R., Vrtala, A.,&Wagner, P. Models for condensationalgrowth and evaporation of binary aerosol particles[J]. Journal of Aerosol Science,1997,28:565-598
    [103]陈熙.《动力论及其在传热与流动研究中的应用》[M].北京:清华大学出版社.1996:1-4
    [104] T. Elperina, A. Fominykha, Z. Orenbakhb.Coupled heat and mass transfer duringnonisothermal absorption by falling droplet with internal circulation[J]:International Journalof Refrigeration,2007,30:274-281
    [105] M. Bond, H. Struchtrup, Mean evaporation and condensation coefficients based on energydependent condensation probability[J], Phys. Rev. E,2004,70:061605
    [106] R. Mareka,J. Strau Analysis of the evaporation coefficient and the condensation coefficientof water[J]. International Journal of Heat and Mass Transfer,2001,44:39±53
    [107] Jan Schlottke, Bernhard Weigand.Direct numerical simulation of evaporatingdroplets[J].Journal of Computational Physics,2008,227:5215–5237
    [108]刘光启、马连湘、刘杰.化工物性数据手册[M].北京:化学工业出版社.2002:14.24.15
    [109]朱家骅、叶世超、夏素兰等.化工原理[M].北京:科学出版社.2005:412
    [110] Bruce E.poling著.赵红玲、王凤坤等译.气液物性估算手册[M].北京:化学工业出版社.2006:338、412
    [111]李剑云,柳朝晖,周英彪等.求解微粒吸收指数的改进算法[J].工程热物理学报,1996,17(1):116~170
    [112] Zhou Huaichun, Yuan Ping, Feng Sheng, et al.Simultaneous estimation of the profiles ofthe temperature and the scattering albedo in an absorbing,emitting, and isotropicallyscattering medium by inverse analysis[J]. International Journal of Heat and Mass Transfer,2000,43(23):4361-4364
    [113] Taniguchi H, Yang W J, Kudo K, et al. Monte Carlo method for radiative heat transferanalysis of general gas-particle enclosures[J]. International Journal for Numerical Methodsin Engineering,1988,25:581-592
    [114] SchusterA.Radiation through a foggy atmosphere[J]. Astrophysics Journal,1905,217:1~22
    [115] Maheu B,Letoulouzan J N,Gouesbet G,Four-Flux models to solve the scattering transferequation in terms of loren-Mie parameters.Applied Optics,1984.23(19):3353~3362
    [116]郑楚光,柳朝晖.弥散介质的光学特性及辐射传热[M].武汉:华中理工大学出版社,1996
    [117] Gupta R P,Wall T F,Truelove J S.Radiative scatter by fly ash in pulverized-coal-firedfurnace:application of the Monte Carlo method to anisotropic scatter[J].International Journalof Heat and Mass Transfer,1983:1649~1660
    [118] Liu F S,Swithenbank J.The effects of particle size distribution and refractive index onfly-ash radiative properties using a simplified approach[J].International Journal of Heatand Mass Transfer,1993,36(7):1905-1912
    [119] Grosshandler W L,RADCAL:a Narrow-band model for radiation calculations in acombustion environment[J].National Instiute of Standards and Technology,1993,33-39
    [120] Barkstrom, B. R. Some effects of8-12/ml radiant energy transfer on the mass and heatbudgets of cloud droplets[J]. J. atmos. Sci,1978,35:665-673
    [121] R. Viskanta, M.P. Menguc, Radiation heat transfer in combustion systems, Prog[J]. EnergyCombust. Sci.,1987,13:97–160
    [122] L.H. Liu, H.P. Tan, Q.Z. Yu, Internal distribution of radiation absorption in one dimensionalsemitransparent medium[J], Int. J. Heat Mass Transfer,2002,45:417–424
    [123] Jain,S.;Dhar,P.L;Kaushik,S.C.Evaluation of solid-desicant-based evaporative coolingcyvles for typical hot and humid climates.Intemational Joumal of Refrigeration[J].1995, Vol.18,Issue:5:287-296
    [124] M.A. Mansoura, N.F. El-Anssary, A.M. Aly.Effects of chemical reaction and thermalstratification on MHD free convective heat and mass transfer over a vertical stretchingsurface embedded in a porous media considering soret and dufour numbers[J]. ChemicalEngineering Journal,2008,145:340–345
    [125] Ching-Yang Cheng.Soret and dufour effects on free convection boundary layer over avertical cylinder in a saturated porous medium[J]. International Communications in Heatand Mass Transfer,2010,37:796–800
    [126] T. Hayat, Ambreen Safdar, M. Awais,S. Mesloub.Soret and dufour effects for three-dimensional flow in a viscoelastic fluid over a stretching surface[J]. International Journal ofHeat and Mass Transfer,2012,55:2129–2136
    [127] N. Nithyadevi, Ruey-Jen Yang.Double diffusive natural convection in a partially heatedenclosure with soret and dufour effects[J]. International Journal of Heat and Fluid Flow,2009,30:902–910
    [128] Nikolai Kocherginsky. Temperature-driven mass,charge and heat transfer interms ofphysicochemical potential and Einstein’smobility[J]. Chemical Engineering Science,2010,65:4154–4159
    [129] J.R.威尔特,C.E.威克斯,R.E.威尔逊,G.L.罗勤著.马紫峰,吴卫生等译.动量、热量和质量传递原理(第四版)[M].北京:化学工业出版社.2005:10,404,405,422
    [130] Zuo B F, van E Bulck D. Fuel oil evaporation in swirl hot gas streams[J]. InternationalJournal of Heat and Mass Transfer,1998,41(12):1807-1820
    [131] Z.Mansoori,M.Saffar-Awal,H.Basirat Tabrizi,B.Dabir,G.Ahmadi. Inert-particle heat transferin a riser of gas-solid turbulent flows[J].Powder Technology,2002,159(11):35-45
    [132]陶文铨.《传热学》[M].西安:西北工业大学出版社,2006:375-385
    [133] P.L.C. Lage, R.H. Rangel, On the role of internal radiation absorption in single dropletvaporization[J]. AIAA Pap.1992,92-0106:1–19
    [134] G. Miliauskas, Regularities of unsteady radiative-conductive heat transfer in evaporatingsemitransparent liquid droplets[J], Int. J. Heat Mass Transfer,2001,44:785–798

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700