CuCl/Schiff base配合物在液相氧化羰化反应中的催化活性、寿命及腐蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化羰化法在碳一化学的研究与开发中具有重要意义,CuCl催化醇类液相氧化羰化合成碳酸酯具有高反应性、高选择性和环境友好性等特点,符合绿色化学发展趋势;但存在着催化剂寿命短、分离困难及腐蚀严重等缺点,制约了氧化羰化反应的发展。开发新型高效、环境友好和低腐蚀性的催化体系逐渐成为均相催化领域的研究热点。Schiff base化合物易与CuCl配合,既可提高CuCl的催化活性又能减缓CuCl的腐蚀作用,具有重要的理论意义及广阔的应用前景。
     本文首先研究了CuCl/Schiff base催化体系中,不同含氮配体对甲醇氧化羰化反应性能的影响,筛选出高活性的CuCl/Phen催化体系,其碳酸二甲酯收率比CuCl催化剂提高了3倍。同时探讨了不同含氮配体对乙醇氧化羰化反应性能的影响,筛选出最佳活性的催化体系CuCl/Phen/NMI;考察了配体浓度,反应温度对催化活性的影响,并建立了相关的反应动力学方程。研究结果表明,当CuCl浓度为0.2 mol/L,含氮配体与CuCl的摩尔比为2:1,反应温度393 K,反应压力2.4 MPa,CO与O2的分压比为2:1,反应时间3h的条件下,CuCl/Phen/NMI络合催化体系合成碳酸二乙酯的反应活性最高,乙醇转化率为15.2%,碳酸二乙酯选择性为99.0%,其收率比CuCl催化剂提高了3.5倍。CuCl/Phen/NMI催化反应体系的反应动力学方程为活化能为53.4 kJ/mol。
     为了克服均相催化剂不易回收分离、寿命短以及对环境腐蚀的缺点,研究了均相催化体系负载化途径,探讨了采用溶胶-凝胶技术以有机-无机杂化材料(OIH)作催化剂载体,制备负载CuCl配合物催化剂。筛选出正硅酸乙酯(TEOS)作硅源,5-氨基-1,10-菲罗啉(NH2-Phen)作有机配体,γ-氯丙基三乙氧基硅烷(CPTES)作间隔剂,合成OIH载体,最佳制备条件:TEOS、CPTES及NH2-Phen物质的量的比为6:1.1:1, NH2-Phen用量10 mg/ml DMF,反应温度343 K,反应时间72h。该载体与CuCl络合制备出铜负载量为7.1 wt%的CuCl/Schiff base/OIH负载催化剂。采用元素分析、傅立叶变换红外光谱、核磁共振(1HNMR,29Si-MAS-NMR)等分析手段对合成中间产物及负载催化剂进行了表征。同时考察了CuCl/Schiff base/OIH负载催化剂在甲醇氧化羰化反应中的催化活性;在反应温度393 K,反应总压2.4 MPa,CO与O2的分压比2:1,CuCl浓度0.1mol/L,反应时间2h的条件下,CuCl/Schiff base/OIH负载催化剂与CuCl催化剂相比,其产率提高了25.0%,负载催化剂循环使用五次,催化活性基本保持不变,催化剂中活性组分铜平均流失率仅为2.2 wt%。实验结果表明,CuCl/Schiff base/OIH催化剂是一种热稳定性好、活性组分流失率低的负载催化剂。
     本文重点研究了Schiff base配体的引入对CuCl催化氧化羰化合成碳酸二甲酯反应寿命的影响。对CuCl/Phen配合物催化剂进行了330小时稳定性测试,考察了反应过程中甲醇转化率和碳酸二甲酯选择性的变化。反应330小时后CuCl/Phen催化剂活性降至初始活性的78%,结合元素分析、X射线光电子能谱、X射线衍射光谱、热重-差热分析和原子吸收光谱等表征方法,得出催化剂失活的主要原因是:氯的迁移流失和一价铜的歧化,讨论并提出了CuCl/Phen配合物催化剂在甲醇氧化羰化反应中的失活机理。
     本文还探讨了CuCl/Schiff base催化体系的腐蚀性能。采用挂片失重法研究了一系列含氮配体在CuCl催化氧化羰化体系中对合金材料的缓蚀效果。试验结果表明,含氮配体在CuCl催化体系中对合金材料具有明显的缓蚀作用,在CuCl浓度0.2 mol/L, Phen浓度0.1 mol/L, NMI浓度0.1 mol/L时,对镍基合金TK的缓蚀效率达到98.2%,镍基合金TK的年腐蚀速率为0.0152 mm/a,已达到耐蚀四级标准。同时对合金材料在不同反应条件下的腐蚀试样进行扫描电子探针分析,结合电化学测试结果和氧化羰化反应机理,提出了合金材料在CuCl催化氧化羰化反应体系中的腐蚀机理和含氮配体的缓蚀机理。上述研究结果对今后开发氧化羰化合成碳酸酯新工艺及工业反应器材质的选择具有重要的指导意义。
Catalytic synthesis of carbonates by oxidative carbonylation of alcohols is an important method in the research and development of the C1 chemistry, which reduces the environment pollution and resource consumption in the chemical industry; it is also a main topic in the field of green chemical industry. The oxidative carbonylation catalyzed by CuCl is one of the most effective methods to produce the carbonates, but this catalytic system often has many disadvantages, such as short lifetime, difficult separation from the products and corrosive effect on the reactor materials. The research and development in the field of copper based catalysts for oxidative carbonylation is needed. Development of a new efficient, environmentally friendly and low-corrosive catalytic system has become a research focus in the field of catalysis. Schiff base ligands combined with CuCl, not only improve the catalytic activity but also reduce the corrosion, which have great theoretical significance and potential applications.
     Effects of various Schiff base ligands on the catalytic activity of CuCl in the oxidative carbonylation of methanol was studied and discussed in this article. The CuCl/Phen catalyst had the highest activity and the yield of dimethyl carbonate increased three times compared with pure CuCl catalyst. The effects of various Schiff base ligands on the catalytic activity of CuCl in the oxidative carbonylation of ethanol were subsequently explored, and the CuCl/Phen/NMI was the best one among these catalysts. The reaction conditions (catalyst concentration, reaction temperature, etc.) were investigated and the kinetic equation was also established according to the experiment datas. The results indicated that the conversion of ethanol could reach to 15.2% and the selectivity of diethyl carbonate could exceed 99.0% under the optimum condition:. the CuCl concentration of 0.2 mol/L, ligand and CuCl molar ratio of 2:1, reaction temperature 393 K, reaction pressure 2.4 MPa, CO and O2 partial pressure ratio of 2:1, reaction time of 3 h. The yield of diethyl carbonate with CuCl/Phen/NMI catalyst increased to 3.5 times as that of CuCl catalyst. The reaction kinetics with CuCl/Phen/NMI catalyst for the synthesis of diethyl carbonate was investigated. The kinetic equation is and the activation energy Ea is 53.4 kJ/mol.
     Heterogeneous catalytic systems have many advantages compared with homogeneous system in liquid-phase reactions, including easy separation of catalysts from reaction mixtures and low corrosion rate of catalysts. Preparation of organic-inorganic hybrid material (OIH) supported CuCl catalysts by sol-gel technology was further explored. A novel CuCl/Schiff base/OIH supported catalyst with 7.1 wt%Cu loading was synthesized by y-chloropropyltriethoxysilane(CPTES) as a spacer,5-amino-1,10-phenanthroline (NH2-Phen) as an organic ligand and tetraethyl orthosilicate(TEOS) as a silica source of OIH. The structure of intermediates and supported catalyst were characterized by EA, FT-IR and NMR (1H NMR,29Si-MAS-NMR). The effects of preparation conditions on the synthesis of OIH were investigated. The optimum preparation conditions were:the concentration of NH2-Phen 10 mg/ml DMF, molar ratio of TEOS and CPTES to NH2-Phen 6:1.1:1, reaction temperature 343 K, reaction time 72 h. The catalytic activity of CuCl/Schiff base/OIH in the oxidative carbonylation of methanol was studied. The yield of dimethyl carbonate with CuCl/Schiff base/OIH supported catalyst increased 25.0% compared with CuCl catalysts under the reaction conditions of CuCl concentration 0.1 mol/L, reaction temperature 393 K, reaction pressure 2.4 MPa, CO and O2 partial pressure ratio of 2:1, reaction time 2 h. After recycling 5 times, the catalytic activity remained with a average Cu loss rate of 2.2%. These results indicated CuCl/Schiff base/OIH catalyst was superior in the thermal stability and Cu loss rate.
     The stability of CuCl/Phen catalyst in oxidative carbonylation of methanol was tested in a batch reactor under the condition of 393 K and 2.0MPa. The lifetime of CuCl/Phen catalyst was more than 330 h. The chemical structure of the catalyst used before and after 330 h in the reaction were characterized with EA, XPS, XRD, TG-DTA, AAS. The reason for the deactivation of CuCl/Phen catalyst was the loss of chlorine and the disproportionation of Cu(Ⅰ). The deactivation mechanism of CuCl/Phen catalyst in the oxidative carbonylation was also discussed.
     Effects of Schiff base ligands on the corrosive performance of CuCl catalyst in the homogeneous oxidative carbonylation of methanol were also discussed. The inhibition effect of Schiff base ligands with CuCl on the alloy material in oxidative carbonylation system was studied by the weight loss method. The results showed that the ligands with CuCl catalyst system had obvious inhibition effect on the corrosive of alloy. On the conditions of [CuCl]=0.2 mol/L, [Phen]=0.1 mol/L, [NMI]=0.1 mol/L, the inhibition efficiency of TK nickel-based alloys were 98.2%. The corrosion rate of 0.0152 mm/a on TK reached the corrosion resistance of four criteria. Furthermore, the corrosion phenomenon of the alloy materials under different conditions was studied by scanning electron microprobe analysis, combining with electrochemical measurements and oxidative carbonylation reaction mechanism. The corrosion mechanism of the nickel-based alloys in the oxidative carbonylation system and the inhibition mechanism of Schiff base ligands were proposed.
引文
[1]Clark J H, Cullen S R, Barlow S J, et al. Environmentally friendly chemistry using supported reagent catalysis:structure-property relationships for clayzic. J. Chem. Soc., Perkin Trans. II,1994,6:1117-1130.
    [2]Anastas P T, Warmer J C. Green chemistry:theory and practice. New York:Oxford University Press,1998.30.
    [3]李朝军,王东.绿色化学.北京:化学工业出版社,2002.1-8.
    [4]Jens Hagen. Industrial catalysis:a practical approach.second edition. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA,2006.324-429.
    [5]Roger Arthur Sheldon, Isabel Arends, Ulf hanefuld. Green chemistry and catalysis. Weinheim, Germany:WILEY-VCH Verlag GmbH & Co. KGaA,2007.1-8.
    [6]杨利,李忠,黄伟,等.甲醇氧化羰基化合成碳酸二甲酯催化剂研究进展.天然气化工(Cl化学与化工),2004,29(1):60-64.
    [7]Ono Y. Catalysis in the production and reaction of dimethyl carbonate, an environmentally benign building block, Appl. Catal. A:Gen.,1997,155:133-166.
    [8]Rivetti F. The role of dimethyl carbonate in the replacement of hazardous chemicals. Surf. Chem. Catal.,2000,3:497-503.
    [9]Delledonne D, Rivetti F, Romano U. Developments in the production and application of dimethyl carbonate. Appl. Catal. A:Gen.,2001,221:241-251.
    [10]Ouk S, Thiebaud S, Borredon E, et al. Dimethyl carbonate and phenols to alkyl aryl ethers via clean synthesis. Green Chem.2002,5:431.
    [11]Roh N S, Dunn B C, Eyring E M, et al. Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalytic flow reactor. Fuel Proc. Tech. 2003,83:27.
    [12]Rivetti F. Dimethyl carbonate:an answer to the need for safe chemicals//Tundo P, Anastas P. Green chemistry:challenging perspectives. New York:Oxford University Press,2000.20.
    [13]Zhang S. Handbook of the fine chemicals:organic components. Beijing:Chemical Industry Press,1996.945.
    [14]马新宾,张震,石海峰,等.碳酸二乙酯合成的研究进展.化学通报,2003,66(8):528-535.
    [15]赵艳敏,刘绍英,王公应,等.尿素法合成碳酸二甲酯的研究进展.化工进展,2004,23(10):1049-1052.
    [16]Luo H P, Xiao W D. A reactive distillation process for a cascade and azeotropic reaction system:Carbonylation of ethanol with dimethyl carbonate. Chemical Engineering Science,2001,56:403-410.
    [17]赵天生,韩怡卓,孙予罕.碳酸二甲酯合成方法的研究进展.石油化工,1998,27(6):457-463.
    [18]Dunn B C, Guenneau C, Hilton S A, et al. Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst. Energy Fuels 2002,16: 177.
    [19]Roh N S, Dunn B C, Eyring E M, et al. Continuous production of diethyl carbonate over a supported CuCl2/PdCl2/KOH catalyst. Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem.2002,47:142.
    [20]Punnoose A, Seehra M S, Dunn B C, et al. Characterization of CuCl2/PdCl2/activated carbon catalysts for the synthesis of diethyl carbonate. Energy Fuels,2002,16:182.
    [21]Zhang Z, Ma X B, Zhang J, et al. Effect of crystal structure of copper species on the rate and selectivity in oxidative carbonylation of ethanol for diethyl carbonate synthesis. J. Mol. Catal. A:Chem.2005,227:141.
    [22]Liu T C, Chang C S. Vapor-phase oxidative carbonylation of ethanol over CuCl-PdCl2/C catalyst. Appl. Catal. A:Gen.2006,304:72.
    [23]Mo W L, Li G X, Zhu Y Q, et al. A novel catalyst CuCl/1,10-phenanthroline/ N-methylimidazole for the oxidative carbonylation of ethanol to diethyl carbonate. Chin. J. Catal.2003,24:3-4.
    [24]张小兵,李忠,卫有存.甲醇液相氧化羰基化合成碳酸二甲酯催化剂研究进展.工业催化,2004,12(11):19-23.
    [25]郭锐华,方奕文,王文进.甲醇氧化羰基化合成碳酸二甲酯铜基催化剂的研究进展.工业催化,2006,14(6):23-27.
    [26]王公应,刘绍英,王越,等.精细化工中间体,2007,37(3):1-3.
    [27]赵强,孟双明,李忠,等.甲醇氧化羰基化合成碳酸二甲酯的研究进展.工业催化,2008,16(4):1-5.
    [28]Delledonne D, Rivetti F, Romano U. Oxidative carbonylation of methanol to dimethyl carbonate(DMC):a new catalytic system. J. Organo. Chem.,1995,488(1-2):15-19.
    [29]李光兴,王俊义,梅付名,等.吡啶-2-羧酸钴催化羰化合成DMC.石油化工,1999,28:440443.
    [30]Chen Li Juan, Mei Fu Ming, Li Guang Xing, et al. Oxidative carbonylation of aniline to N, N'-diphenyl urea catalyzed by cobalt(II)-schiff base complexes/pyridine catalytic system, Catal. Commun.,2008,9(5):658-663.
    [31]Li Guang Xing, Chen Li Juan, Mei Fu Ming, et al. A recoverable catalyst Co(salen) in zeolite Y for the synthesis of methyl N-phenylcarbamate by oxidative carbonylation of aniline, Appl. Catal. A:Gen.,2008,346(1-2):134-139.
    [32]Chen Li Juan, Mei Fu Ming, Li Guang Xing. Co(II) schiff base complexes on silica by sol-gel method as heterogeneous catalysts for oxidative carbonylation of aniline, Catal. Commun.,2009,10(6):981-985.
    [33]Zhu Dajian, Mei Fuming, Li Guangxing, et al. Synthesis of dimethyl carbonate by oxidative carbonylation using an efficient and recyclable catalyst Co-Schiff base/zeolite, Energy & Fuels 2009,23:2359-2363.
    [34]Romano Ugo, Tesel Renato, Mauri Marcello Massi, et al. Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds, Industrial & Engineering Chemistry Product Research and Development, 1980,19(3):396-403.
    [35]Rivetti F, Romano U. Procedure for the production of alkyl carbonates. EP 534545,1993. 1-5.
    [36]殷元祺.羰基合成化学.北京:化学工业出版社,1996.238-260.
    [37]Mizia Franco, Notari Marcello, Rivetti Franco, et al. Alkyl carbonates-new generation solvents. Chimica e l'Industria,2001,83(3):47-53.
    [38]李光兴,朱治良,许汉昌,等.甲醇液相氧化羰基合成碳酸二甲酯研究.华中理工大学学报,1996,24(3):105-108.
    [39]李光兴,王克洪,向兴源,等.液相氧化羰化合成碳酸二甲酯中试研究.华中理工大学学报,1999,27(3):37-39.
    [40]莫婉玲,熊辉,李光兴.甲醇液相氧化羰基化合成碳酸二甲酯动力学研究.华中科技大学学报(自然科学版),2002,30(6):111-113.
    [41]莫婉玲,熊辉,李光兴,等.Schiff base在甲醇液相氧化羰化反应中的双功能作用.石油化工,2003,32(2):89-91.
    [42]莫婉玲,熊辉,李光兴,等.Schiff base助剂对CuCl催化反应性能的影响.华中科技大学学报(自然科学版),2002,30(7):101-103.
    [43]莫婉玲,熊辉,李光兴.甲醇羰基化催化剂的合成、表征及溶解性研究.燃料化学学报,2001,29(2):165-168.
    [44]Mo W L, Xiong H, Li G X, et al. The catalytic performance and corrosion inhibition of CuCl/Schiff base system in homogeneous oxidative carbonylation of methanol. J. Mol. Catal. A:Chem.,2006,247:227-232.
    [45]莫婉玲,熊辉,李光兴.咪唑类化合物-CuCl络合催化剂在甲醇氧化羰基化反应中的催化性能.燃料化学学报,2003,31(2):124-127.
    [46]刘定华,赵贤广.MXnLm体系催化合成碳酸二甲酯.化学工业与工程技术,1998,19(2):6-8.
    [47]Raab V, Merz M, Sundermeyer J. Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanolto dimethyl carbonate (DMC). J. Mol. Catal. A: Chem.,2001,175:51-63.
    [48]Wang G Y, Huang T, Liu M G, et al. Oxidative carbonylation of methanol to dimethy carbonate over copper complex catalysts. Journal of Natural Gas Chemistry,2000,9 (1): 8-17.
    [49]杨洋,刘晓勤.新型铜络合催化剂用于羰基合成碳酸二甲酯的工艺过程.南京工业大学学报,2006,28(1):75-79.
    [50]Chong S C, Dong C S, et al. The effects of catalyst composition on the catalytic production of dimethyl carbonate. J. Mol. Catal. A:Chem.,2000,160:315-321.
    [51]Steven A A, Thatcher W R, et al. Investigation of the effect of carbon monoxide on the oxidative carrbonylation of methanol to dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites. J. Mol. Catal. A:Chem.,2004,220:247-255.
    [52]李峰,卫敏,何静.磷酸锆类层柱催化剂的制备、表征及其催化甲醇氧化羰基化反应性能.催化学报,1999,20(5):510-514.
    [53]李大东,钟孝湘译.催化剂载体与负载型催化剂.北京:中国石化出版社,1992.25-26.
    [54]Yasushi S, Masahiro K, Takakazu Y, et al. Novel effective poly(2,2'-bipyridine-5,5'-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate(DMC) by oxidative carbonylation of methanol. Appl. Catal. A:Gen.,1999, 185:219-226.
    [55]Yasushi S, Yoshie S. Novel type of heterogenized CuCl2 catalytic systems for oxidative carbonylation of methanol catalysis. Surveys from Japan,2000,4:65-74.
    [56]Yasushi S, Masahiro K, Yoshie S. A new typeof support "bipyridine containing aromatic polyamide" to CuCl2 for synthesis of dimethyl carbonate(DMC)by oxidative carbonylation of methanol. J. Mol. Catal. A:Chem.,2000,151:79-85.
    [57]Yasushi S, Takakazu Y, Yoshie S. Poly(pyridine-2,5-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol:catalytic activity and corrosion influence. Catalysis Letters,2000,65:123-126.
    [58]Hu Juncheng, Cao Yong, Yang Ping, et al. A novel homogeneous catalyst made of Poly(N-vinyl-2,2-pyrrolidone)-CuCl2 complex for the oxidative carbonylation of methanol to dimethyl carbonate. J. Mol. Catal. A:Chem.,2002,185:129.
    [59]Li Z, Xie K C, Slade R C T. High selective catalyst CuCl/MCM-41 for oxidative carbonylation of methanol to dimethyl carbonate. Appl. Catal. A:Gen.,2001,205: 85-92.
    [60]Li Z, Xie K C, Slade R C T. Studies of interaction between CuCl and HY zeolite for preparing heterogeneous Cu(Ⅰ)catalyst. Appl. Catal. A,2001, (209):107-115.
    [61]Richter M, Fait M J G, Eckelt R, et al. Gas phase carbonylation of methanol to dimethyl carbonate on chloride free Cu precipitated zeolite Y at normal pressure. J. Catal.,2007,245:1-24.
    [62]Steven A A, Thatcher W R. Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+X zeolite catalyst. J. Catal.,2003,217:396-405.
    [63]Yang Ping, Cao Yong, Hu Juncheng, et al. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methnol. Appl. Catal. A, Chem.,2003,241:363-373.
    [64]Cao Yong, Hun Juncheng, Yang Ping, et al. CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethyl carbonate. Chem. Commun.,2003,10:908-909.
    [65]刘海涛.聚苯乙烯负载邻菲咯啉-CuCl2配合物的合成及其对羰化反应催化性能研究:[硕士学位论文].保存地点:华中科技大学图书馆,2005.
    [66]Mo Wan Ling, Liu Hai Tao, Li Guang Xing, et al. Preparation of CuCl/1,10-phenanthroline immobilized on polystyrene and catalytic performance in oxidative carbonylation of methanol. Appl. Catal. A:Gen.,2007,333(2):172-176.
    [67]刘海涛,莫婉玲,李光兴,等.甲醇氧化羰化反应中含氮配体助催化剂的空间及电子效应.应用化学,2005,22(9):997-1001.
    [68]Curuntt G L, Harley D C, Martell A E, et al. Oxygen complexes and oxygen activation by transition metals. New York:Plenum Press,1998.215-232.
    [69]Curuntt G L. Process for preparing dihydrocarbyl carbonate using a nitrogen containing coordination compound supported on actived carbon. US 4625044,1986. 1-3.
    [70]Curuntt G L. Catalytic vapor phase process for producing dihydrocarbyl carbonates. US 5004827,1991.1-2
    [71]Curuntt G L. Method for reactivating catalysts used in catalytic vapor phase process for producing dihydrocarbyl carbonates. US 5132259,1992.1-3.
    [72]Pacheco M A, Marshall C L. Review of dimethyl carbonate manufacture and its characteristics as a fuel additive. Energy & Fuels,1997,11(1):2-29.
    [73]Romano U, Teseir C G. Method for the preparation of esters of carbonic acid. US 4218391,1980.1-4.
    [74]Bhattacharya A. Fuel oxygenates:organic carbonate synthesis. Chem. Soc. Div. Fuel Chem.,1995,40(1):119-122.
    [75]李朝恒,王秀珍,吴之仁,等.气相法合成碳酸二甲酯Pd-Cu/C催化剂失活及再生研究.天然气化工:Cl化学与化工,2004,29(6):24-27.
    [76]王淑芳,赵新强,王延吉.合成碳酸二甲酯PdCl2-CuCl2-KOAc/AC催化剂失活过程分析.化工学报,2004,55(12):2008.
    [77]Tomishige Keiichi, Sakaihori Tomohiro, Sakai Shinichiro, et al. Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts:catalytic properties and structural change. Appl. Catal. A:Gen.,1999,181: 95-102.
    [78]Ma X B, Li Z H, Wang B W, et al. Effect of Cu catalyst preparation on the oxidative carbonylation of methanol to dimethyl carbonate. React. Kinet. Catal. Lett.,2002, 76(1):179-187.
    [79]Han M S, Lee B G, Suh I, et al. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts. J. Mol. Catal. A: Chem.,2001,170:225-234.
    [80]Han M S, Lee B G, Ahn B S, et al. Surface properties of CuCl2/AC catalysts with various Cu contents:XRD, SEM, TG/DSC and CO-TPD analyses. Applied Surface Science,2003,211:76-81.
    [81]Han M S, Lee B G, Ahn B S, et al. The roles of copper chloride hydroxides in the oxidative carbonylation of methanol for dimethyl carbonate synthesis. J. Mol. Catal. A:Chem.,2003,203:137-143.
    [82]Wang Yanji, Zhao Xinqiang, Yuan Baoguo, et al. Synthesis of dimethyl carbonate by gas phase oxidative carbonylation of methanol on the supported solid catalyst I. catalyst preparation and catalytic properties. Appl. Catal. A:Gen.,1998,171(2): 255-260.
    [83]Jiang Ruixia, Wang Yanji, Zhao Xinqiang, et al. Characterization of catalyst in the synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol. J. Mol. Catal. A:Chem.,2002,185:159-166.
    [84]Jiang Ruixia, Wang Shufang, Zhao Xinqiang, et al. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate. Appl. Catal. A:Gen.,2003,238:131-139.
    [85]Manada N, Murakami M, Yamamoto Y, et al. Preparation of dimethyl carbonate in the gas-phase reaction. Nippon Kagaku Kaishi 1994,11,985-991.
    [86]张学元.二氧化碳腐蚀与控制.北京:化学工业出版社,2000.10.
    [87]孙智生.浅谈Cl-对金属件腐蚀的影响及防腐对策.真空电器技术,1999,1:19-21.
    [88]孙跃.金属腐蚀与控制.哈尔滨:哈尔滨工业大学出版社,2003.1-8.
    [89]张天胜.缓蚀剂.北京:化学工业出版社,2002.1-130.
    [90]肖纪美曹楚南.材料腐蚀学原理.北京:化学工业出版社,2002.1-2.
    [91]赵麦群冯拉骏.金属的腐蚀与防护.北京:国防工业出版社,2002.1-10.
    [92]黄建中,左禹.材料的耐蚀性和腐蚀数据.北京:化学工业出版社,2002.1-9.
    [93]黄畯.化学工业中的腐蚀问题与防腐蚀工作.腐蚀科学与防护技术,1995,7(2):93-96.
    [94]李远士,牛焱,吴维.Fe-Cr合金在450℃的KCl及KCl-ZnCl2盐膜中的腐蚀.金属学报,2001,7:961-964.
    [95]Rebak R B. Nickel alloy for corrosive environments. Advanced Materials and Processes,2000,157,2:37-42.
    [96]Birn J. Corrosion behavior of hign-Ni and Cr alloys in natural Baltic seawater. Corrosion,1999,55,10:977-983.
    [97]杨瑞成,聂福荣,郑丽平,等.镍基耐蚀合金特性、进展及其应用.甘肃工业大学学报,2002,28(4):29-33.
    [98]齐公台,孙菊梅,熊辉,李光兴.DMC合成反应器的腐蚀及选材研究.腐蚀与防护,2004,25(9):386-394.
    [99]David J C H. Homogeneous catalysis-new approaches to catalyst separation, recovery and recycling. Science,2003,299,5613:1702-1706.
    [100]卓立宏,郭应臣.简明配位化学.开封:河南大学出版社,2005.14-36.
    [101]Katritzky A R. Physical methods in heterocyclic chemistry. New York:Academic Press,1963.97.
    [102]Dean J A. Lang's Handbook of Chemistry.15th ed. New York:McGraw-Hill Book Co.,1999. Section 8,24-45.
    [103]Charton M. Substituent effects in 1,10-phenanthrolines, I. Equilibria. J Org Chem., 1966,31:3739-3745.
    [104]花文廷.杂环化学.北京:北京大学出版社,1991.176.
    [105]王庆文,杨玉桓,高鸿宾.有机化学中的氢键问题.天津:天津大学出版社,1993.39.
    [106]Sunatsuki Y, Motoda Y, Matsumoto N. Copper(II) complexes with multidentate schiff-base ligands containing imidazole groups:ligand-complex or self-complementary molecular. Coord. Chem. Rev.,2002,226:199-209.
    [107]吴越.催化化学.北京:科学出版社,1995.426.
    [108]Cheng K L, Ueno K, Imamura T.有机分析试剂手册.王镇浦,王镇棣(译).北京:地质出版社,1985.242.
    [109]Merritt L L, Schroeder E D. The crystal structure of 2,2'-bipyridine. Acta. Cryst., 1956,9:801-804.
    [110]Nishigaki S, Yoshioka H, Nakatsu K. The crystal and molecular structure of phenanthroline. Acta. Cryst.,1978, B34:875-879.
    [111]Bontempi A, Alessio E, Chanos G, et al. Reductive carbonylation of nitroaromatic compounds to urethanes catalyzed by (di-1,10-phenanthroline)palladium bis(hexafluorophosphate) and related complexes. J. Mol. Catal.,1987,42:67.
    [112]Maruyama T, Yamamoto T. New copper complex with π-conjugated electrically conductive polymer chelating ligand, poly(6,6'-dialkyl-2,2'-bipyridine-5,5'-diyl), preparation and optical and electrochemical properties of the complex. Inorg Chim Acta,1995,238:9.
    [113]Liaw D J, Tsai J S. Copolymerization of carbon monoxide and 4-vinylcyclohexene with a palladium catalyst. J. Polym. Sci., Part A:Polym. Chem.,1997,35: 2759-2768.
    [114]Anastas P T, Kirchhoff M M, Williamson T C. Catalysis as a foundational pillar of green chemistry. Appl. Catal. A:Gen.,2001,221:3-13.
    [115]Anastas P T, Warmer J C. Green chemistry:theory and practice. New York:Oxford University Press,1998.30.
    [116]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc.,1992,114:10834-10843.
    [117]王波,顾彦龙,杨立明等.有机-无机杂化材料负载金属配合物催化剂-Sol-gel技 术的新应用.分子催化,2003,17(6):468-480.
    [118]McNamara C A, Dixon M J, Bradley M. Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem. Rev.,2002,102:3275-3300.
    [119]Lagasi M, Moggi P. Anchoring of Pd on silica functionalized with nitrogen containing chelating groups and applications in catalysis. J. Mol. Catal. A:Chem., 2002,182-183:61-72.
    [120]Yang H Q, Zhang G Y, Hong X L, et al. Dicyano-functionalized MCM-41 anchored palladium complexes as recoverable catalysts for Heck reaction. J. Mol. Catal. A: Chem.,2004,210(1-2):143-148.
    [121]Dallmann K, Buffon R. Sol-gel derived hybrid materials as heterogeneous catalysts for the epoxidation of olefins. Catal. Commun.,2000,1(1-4):9-13.
    [122]Luo H K, Kou Y, Wang X W, et al. Studies on Palladium-bisphosphine catalyzed alternating copolymerization of CO and ethylene. J. Mol. Catal. A:Chem.,2000, 151(1-2):91-113.
    [123]Xue W, Zhang J, Wang Y, et al. Effect of promoter copper on the oxidative carbonylation of phenol over the ultrafine embedded catalyst Pd CuO/SiO2. J. Mol. Catal. A:Chem.,2005,232(1-2):77-81.
    [124]Jia M J, Seifert A, Thiel W R. Mesoporous MCM-41 materials modified with oxodiperoxo molybdenum complexes:efficient catalysts for the epoxidation of cyclooctene. Chem. Mater.,2003,15:2174-2180.
    [125]Lagasi M, Moggi P. Anchoring of Pd on silica functionalized with nitrogen containing chelating groups and application in catalysis. J. Mol. Catal. A:Chem., 2002,182-183:61-72.
    [126]Song H Y, Park E D, Lee J S. Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts. J. Mol. Catal. A:Chem.,2000, 154(1-2):243-250.
    [127]李志强.有机-无机杂化材料负载CuCl催化剂的合成及对甲醇氧化羰化反应催化性能研究:[硕士学位论文].保存地点:华中科技大学图书馆,2007.
    [128]郑春满,李效东,余煜玺,等.聚铝碳硅烷纤维预氧化过程组成结构演变的研究.化学学报,2006,64(15):1581-1586.
    [129]亢宇,马鸿文,杨静.利用钾长石合成介孔分子筛Al MCM-41.非金属矿,2005,28(4):12-14.
    [130]NIST X-ray photoelectron spectroscopy database (SRD20) Version 4.0,2005, Gaithersburg, MD, USA. http://www.nist.gov/srd/nistweb20v4.htm.
    [131]Wang S F, Cui Y M, Zhao X Q,et al. Analysis of deactivation of PdCl2-CuCl2-KOAc/AC catalyst for synthesis of dimethyl carbonate. Chin. J. Chem. Ind. Eng.2004,5:2008-2013.
    [132]Pollard A M, Thomas R G, Williams P A. Synthesis and stabilities of the basic copper(Ⅱ) chlorides atacamite, paratacamite and botallackite. Mineral Mag.1989,53: 557.
    [133]Fleet M E. The crystal structure of paratacamite, Cu2(OH)3Cl. Acta. Cryst. B 1975, 31:183.
    [134]Richardson H W. Handbook of copper compounds and applications. New York: Marcel Dekker INC.,1997.53-92.
    [135]Jambor J, Dutrizac J, Roberts A, et al., Clinoatacamite, a new polymorph of Cu2Cl(OH)3, and its relationship to paratacamite and anarakite, Can. Mineral,1996, 34:61.
    [136]Grice J, Szymanski J, Jambor J. Crystal structure of clinoatacamite, a new polymorph of Cu2Cl(OH)3, Can. Mineral,1996,34:73.
    [137]Parise J B, Hyde B G. The structure of atacamite and its relationship to spinel. Acta. Crystal. Ogr.,1986, C42:1277-1280.
    [138]Iitaka Y, Locchi S, Oswald H R, et al. CuOHCl. Helvetica Chimica Acta,1961,44: 2095-2103.
    [139]Zheng X G. Antiferromagnetic transitions in polymorphous minerals of the natural cuprates atacamite and botallackite Cu2Cl(OH)3, Phys. Rev. B,2005,71(17): 174404-8.
    [140]Zhang Z, Ma X b, Zhang J, et al. J. Mol. Catal. A:Chem.,2005,227:141-146.
    [141]Edwards A, Osborne C, Webster S. Mechanistic studies of the corrosion inhibitor oleic imidazoline. Corrosion Science,1994,36(2):315.
    [142]Chen L S, Lei S H, et al. Investigation on some Schiff base as HC1 corrosion inhibitors for copper. Corrosion Science,1999,41:1273-1287.
    [143]吴庆余.几种杂化化合物对低碳钢腐蚀的影响.腐蚀与防护,1996(1):9-11.
    [144]Martin J A, Valone F W. Corrosion,1985,5:281-465.
    [145]间宫富士雄著.缓蚀剂及其应用技术.高继轩译.北京:国防工业出版社,1984.52.
    [146]吴庆余.缓蚀剂的复合作用.材料保护,1996,29(10):16-18.
    [147]Moshier W C, Davis G D. Interaction of molybdate anions with the passive film on aluminium. Corrosion,1990,46(1):43-50.
    [148]Mcnallan G, Liang M J, Kim W. High temperature corrosion, NACE,1983:316-320.
    [149]Schmid G M, Huang H J. Spectroelectrochemical studies of the inhibition effect of 4,7-diphenyl-1,10-phenanthroline on the corrosion of 304 stainless steel. Corrosion Science,1980,20:1041.
    [150]Wei Z Q, Duby P, Somasundaran P. Pitting inhibition of stainless steel by surfactants:an electrochemical and surface chemical approach. J. Colloid Interface Sci.,2003,259:97.
    [151]Kitagawa S, Munakata M, Miyaji N. The affinity for carbon monoxide and electrochemical and spectral properties of binuclear copper (I) complexes. Bulletin of the Chemical Society of Japan 1983,56(8):2258.
    [152]林凡,张少宗.高铬镍不锈钢的腐蚀电化学特性.材料保护,2000,33(3):50-52.
    [153]Mast R. Corrosion behavior & resulting industrial application of Ni-Cr-Mo alloy. Europe Corrosion.,1999,55(1):204-210.
    [154]陆世英.镍基及铁镍基耐蚀合金.北京:化学工业出版社,1989.51.
    [155]Veda M. Application of resistance Ni-base alloy for sour service. Europe Corrosion, 1999,55(2):278-286.
    [156]Kritzer M. Review of the corrosion of Nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subritical and supercritical temperatures. Corrosion,2000,56(11):1093-1104.
    [157]Elatham D B, Meadowerroft L P. The effect of coal chlorine on fireside corrosion. Chlorine in Coal,2000,100(6):225-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700