掺复合型掺合料混凝土的耐久性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国大规模建设基础设施,水泥混凝土研究与应用技术得到较快发展。而矿物掺合料是现代混凝土必不可少的重要组成之一,开发新型高效的矿物掺合料以满足现代混凝土的发展与需求,已成为水泥混凝土研究的一个重要内容。
     本文通过将磨细钢渣粉、磨细矿渣粉和粉煤灰配制成复合型掺合料,取代水泥配制成混凝土,对混凝土的抗压强度和耐久性能进行研究。本文的主要工作及取得成果包括如下几个方面。
     1、研究了,复合型掺合料的取代量、掺合料比例、水胶比和减水剂用量与混凝土强度的关系。研究结果表明减水剂掺量为1.6%、水胶比为0.39~0.42的条件下,复合型掺合料取代水泥量以30%为最佳。在掺合料中,钢渣粉、矿渣粉和粉煤灰三者的比例1:2:1为最佳。
     2、氯离子渗透试验研究了,掺合料掺量及龄期对混凝土强度的影响。随着掺合料掺量的增加混凝土的抗氯离子渗透能力有着明显的改善。普通混凝土用28天作为评价龄期是合理的,而掺复合型掺合料混凝土采用45天作为评价龄期较为合理。
     3、通过混凝土碳化试验研究了掺复合型掺合料混凝土的碳化规律。普通混凝土的抗碳化性能要好于掺磨细钢渣粉复合掺合料混凝土,对掺复合型掺合料混凝土的抗碳化能力,在掺合料掺量在30%时效果较好,随着掺合料掺量的增加,抗碳化能力下降。
     4、抗渗试验结果表明,掺复合型掺合料混凝土的抗渗透能力要强于普通混凝土。当掺合料取代量为50%时效果最好。掺入复合型掺合料的混凝土的干缩性能要优于普通混凝土。
     5、通过腐蚀试验研究了复合型掺合料对混凝土抵抗盐腐蚀能力的影响。掺复合型掺合料的取代量为40%时,混凝土抵抗盐溶液的能力较好,掺合料比例在1:1:1时较好。
With the great construct of fundament in China, the use and study of concrete developed quickly. At the same time the study of compound mineral admixtures which used in concrete, become a very important part of it. To develop a new kind of mineral compound which can satisfied the development of mordant become a hot topic in the studying field of Portland cement.
     This thesis is a study about mineral compound with steel slag powder, blast furnace slag powder and fly ash, and to take part of cement, making concrete. Study concrete strength and long time durability of the concrete making with this kind of material. And there are same conclusions as follow.
     Study the relations between concrete strength and the ratio of compound mineral admixtures. And found that the water reducer used for 1.6%, the water cement ratio between 0.39 ~ 0.42, the compound mineral admixtures to take cement ratio 30% is best for the concrete strength. In the compound mineral admixtures steel slag, bounce power and fly ash under proportion of 1:2:1 is best.
     By concrete chloride ion permeation test, it is shows that the age and the use of mineral admixtures quantity have significantly effect to the concrete strength. With increasing the quantity of mineral admixtures, the quantity of concrete anti chloride ion permeation ability has serious improved. And to test the concrete’s anti chloride ion permeation ability, it is proper to common concrete use 28 day as its age, and 45 days as the evaluation age of compound mineral admixtures is reasonable.
     Also study the carbonization of the concrete with compound mineral admixtures. It is clear that the anti carbonization ability of common concrete is better than concrete with compound mineral admixtures, and the better proportion of admixtures is 30%, the more compound mineral admixtures use the worse of concrete anti carbonization.
     The test result of concrete anti water permeation shows that the concrete with compound mineral admixtures is better than common concrete. And when the admixtures proportion is 50% will be better. From corrosion test studied the compound mineral admixtures how to affect concrete anti salts corrosion ability. When the replace ratio is 40%, the proportion of compound mineral admixtures is 1:1:1, it is have a good ability to anti salts corrosion.
引文
[1]成立,余其俊,林锦眉,長龍重龍.高炉矿渣细粉对粉煤灰硬化体中 CrⅥ溶出的抑制[J]. 华南理工大学学报(自然科学版),2005-4,33(4)
    [2]诸铮.高炉矿渣的处理和利用[J].科技情报开发与经济,2005,15(6)
    [3]刘新升,李伟,李西朝,魏玉民.高炉重矿渣在工业建筑地基加固处理中的应用[Z]. 生产实践,2003
    [4]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999-9:11-14
    [5]胡俊鸽.内外高炉炉渣综合利用技术的发展及对鞍钢的建议[J].鞍钢技术 2003(3)
    [6]凌庆璋.钢渣作混凝土高效掺合料[J].江苏建材,2005(1)
    [7]孙宝云.高炉矿渣在水泥和混凝土中的应用[Z].建筑石膏与胶凝材料,2003
    [8]牛季收.活性细粒混凝土的原理及结构性能[J].建筑技术开发,2003-7,30(7)
    [9]叶平,李文翔,陈广言.钢渣和高炉渣微粉做水泥和混凝土掺合料的研究[J].中国冶金,2004(3)
    [10] Juan M.Manso,Juan A.Polanco, Milagros Losanez,Javier J.Gonzalez. Durability of concrete made with EAF slag as aggregate [J]. Cement & Concrete Composites,2006(28):528–534
    [11]M. Maslehuddin, Alfarabi M.Sharif, M.Shameem, M.Ibrahim, M.S.Barry.Comparison of properties of steel slag and crushed limestone aggregate concretes [J/OL]. Construction and Building Materials,ScienceDirect,2002-8-28
    [12]isa Yúksel,Turhan Bilir,Omer Ozkan.Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate [J/OL].Building and Environment, ScienceDirect,2006-7-3
    [13]David Hester,Ciaran McNally,Mark Richardson. A study of the influence of slag alkali level on the alkali–silica reactivity of slag concrete [J/OL]. Construction and Building Materials,2005,(19):661–665,SienceDirect,2005-4-8
    [14]李金玉,曹建国,徐文雨,林莉,关遇时.混凝土冻融破坏机理的研究[J].水利学报,1999-1,(1)
    [15]潘庆林.粒化高炉矿渣的水化机理探讨[J].水泥,2004(9)
    [16] T.Cerulli, C.Pistolesi, C.Maltese, D.Salvioni.Durability of traditional plasters with respect to blast furnace slag-based plaster [J/OL]. Cement and Concrete Research 2003 ,(33) :1375-1383,SienceDirect,2003-2-18
    [17]杨荣俊,院功辉,张春林,朱海英.掺矿粉混凝土耐久性研究[J].混凝土,2004(11)
    [18]白玉香,张彤,张军,周云麟.用矿粉激发剂提高混凝土耐久性的试验研究[J].混凝土,2006(6)
    [19]许雅莹,孔卓.粒化高炉矿渣对混凝土耐久性影响[J/OL].www.cnki.net
    [20]邢世海.超掺粉煤灰混凝土耐久性研究与应用[J].混凝土,2004(7)
    [21]秦鸿根,潘钢华,孙伟等.掺粉煤灰高性能混凝土耐久性研究[J].混凝土与水泥制品,2000,10(5)
    [22]王红喜.中低标号磨细钢渣粉防渗抗裂混凝土的研究[D].武汉理工大学硕士论文,2004:47-48,53-54
    [23]孙家瑛.矿渣钢渣复合超代技术对混凝土力学性能的影响[J].科学研究,2003
    [24]何子样,周桂起,聂辉丽.掺粒化高炉矿渣预拌混凝土及其在工程中的应用[J].科学研究,2006
    [25]宋小川,陈启泰,柴志华.高炉矿渣与高钙粉煤灰复合在流态混凝土中的强度效应[J].科学研究,1999(6)
    [26]汪冬冬,周士琼,田伟丽.利用粉煤灰和矿渣配制高性能混凝土[J].混凝土,2006(5)
    [27]盛黎.矿物掺合料对高性能混凝土力学性能和耐久性的影响[D].浙江工业大学硕士论文,2004-03-19:25-27
    [28]李永鑫.含钢渣掺合料的水泥混凝土组成结构与性能的研究[D].中国建筑材料科学研究院硕士论文,2003-6:177-178
    [29]姬永生.粉煤灰复合水泥对改善混凝土性能的试验研究[J].中国矿业大学学报,2006-5,35(3)
    [30]顾韬.绿色高性能外加剂在绿色高性能混凝土中的应用[J].江苏建筑,2005(3)
    [31]孙世国,崔恒忠,林国棋,李晖. 钢渣混凝土与普通混凝土的强度对比研究[J].粉煤灰综合利用,2005(3)
    [32]路新赢,张华新,土晓睿.混凝土渗透性电测方法评述[J].混凝土与水泥制品,2003-8,(4)
    [33]Tang Luping, Lars-Olof Nilsson. Rapid determination of the Chloride diffusivity in concrete by applying an electrical field [J]. ACI Material Joural,1992(49)
    [34]Hansen, M.R Lemiing, M.L Zia P.Chloride Permeability and AC Impedence of High Performance Concrete [J]. ACI SP-140,1993
    [35]Feldman R F,Chan G W,Brousseau,RJ,etal.Investigation of the Rapid Chloride Permeability Test [J].ACI Materials Journal,1994(91)
    [36]赵铁军.高性能混凝土的渗透性研究[J].工业建筑,2003,33(1)
    [37]Lu xinying.Application of the Nernst-Einstein Equation to Concrete [J]. Cement and Concrete Research,1997(27)
    [38]王昌义,赵翠花,王家顺.快速检测氯离子渗透性能的试验方法[J].南京水利科学研究院材料结构研究所,1993-8:11
    [39]巴恒静,张武满,邓宋卫.评价高性能混凝土耐久性综合指标—抗氯离子渗透性及其研究现状[J].混凝土,2006(3)
    [40]路新赢,张华新,土晓睿.混凝土渗透性电测方法评述[J].混凝土与水泥制品,2003-8,(4)
    [41]施惠生,施韬,陈宝春,姚玉梅.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报(自然科学版),2006-1,36(1)
    [42]冯乃谦,邢锋.高性能混凝土的氯离子渗透性和导电量[J].混凝土,2001(11)
    [43]陈驹.氯离子侵蚀作用下混凝土构件的耐久性[D].浙江大学硕士论文,2003-4:23
    [44]刘荣桂,陆春华.海工预应力混凝土氯离子侵蚀模型及耐久性[J].江苏大学学报(自然科学版),2005-11,26(6)
    [45]柳俊哲,吕丽华,李玉顺.碳化与混凝土(碳化的影响因素)[J].混凝土,2005(12)
    [46]郭成举.混凝土的物理和化学[M].2004:27-31
    [47]沈威,黄文熙,阂盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991:7
    [48]刘志勇.混凝土气体扩散系数测试方法理论研究[J].混凝土,2003(12)
    [49]刘嘉璐.高性能混凝土工作性及渗透性评价方法研究[D].大连理工大学硕士论文,2005-3:130-131
    [50]李志勇,姚佳良,张宇.关于混凝土抗渗性试验方法的研究[J].混凝土,2006(2)
    [51]赵旭光,赵三银.转炉钢渣对矿渣-硅酸盐水泥混合胶砂的收缩补偿效应[J]. 西安建筑科技大学学报(自然科学版),2006-4,38(2)
    [52]洪乃丰.腐蚀与混凝土耐久性预测的发展和难点讨论[J].混凝土,2006(10)
    [53]李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究[J].混凝土与水泥制品,2004,4(2)
    [54]李金玉,曹建国,徐文雨,林莉,关遇时.混凝土冻融破坏机理的研究[J].水利学报,1999-1,(1)
    [55]黄孝衡.高性能混凝土的抗冻性[J].中国港湾建设,2002-10,(5)
    [56]陈国林,李宁,傅沛兴.抗冻混凝土的试验研究与工程应用[J].混凝土,2003(3)
    [57]杨荣俊,院功辉,张春林,朱海英.掺矿粉混凝土耐久性研究[J].混凝土,2004(11)
    [58]巴恒静,张武满,邓宋卫,评价高性能混凝土耐久性综合指标-抗氯离子渗透性及其研究现状[J].混凝土,2006(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700