基于计算机视觉的车架纵梁在线检测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合企业技术创新项目和吉林省科技应用基础研究基金项目《基于机器视觉的汽车车架纵梁检测系统的研究》(项目编号:20060534),以汽车车架纵梁为具体应用对象,研究了纵梁装配孔的孔径尺寸、位置尺寸和类型识别的视觉在线检测技术。
     论文分析了图像拼接方法,针对频域相位相关匹配算法,提出了基于区域重叠的图像拼接改进算法,该拼接算法的计算量只与图像尺寸的大小有关,而与图像之间平移量的大小无关,解决了车架纵梁图像拼接时,由于背景噪声的存在而导致的误匹配问题,且能有效地克服光照变化和镜头几何畸变所带来的影响,具有较强的抗噪声能力。
     针对拼接后的纵梁全景图像,提出了边界保持的加权平滑融合算法,使拼接后的纵梁图像,在保持边界特征的同时,自然缝合,解决了因图像采用简单的加权平滑融合算法而产生的拼接区域边界模糊的问题。为了提高对拼接后纵梁全景图像的处理速度,提出了基于局部区域的装配孔特征提取算法,对符合圆孔条件的区域进行局部区域标记,对圆的特征的提取,只在有装配孔的区域进行搜索,减少了搜索区域,可大大节省装配孔边缘检测时间,提高了纵梁检测速度。
     提出了一种基于非线性畸变校正和双线性变换相结合的方法,对摄像机内部参数的标定和图像的几何变形进行校正,解决了由于摄像机的成像面和待检测的纵梁平面不平行,有一定倾斜角,使得纵梁上的圆形孔图像变成椭圆孔图像的问题。通过利用标准试件作为参照物进行相对标定,使标定精度、可靠性均能达到设计要求。
     提出了采用ART神经网络的方法完成多种型号车架纵梁类型的识别,并对ART2神经网络结构和连接权值的算法做了改进,使神经网络能够识别纵梁检测中呈比例关系的输入向量,使网络的识别能力更强。通过将ART2神经网络与D-S证据理论相结合,完成多特征数据的证据积累,有效地降低纵梁识别的不确定性,弥补了因单特征模板信息的不足而无法判别的情况,提高了纵梁类型的识别率。
     根据纵梁在线检测的技术要求,研究开发了车架纵梁计算机视觉检测系统,对5种型号的纵梁试件进行了装配孔的孔径尺寸、孔的位置和纵梁类型进行了在线检测,检测结果准确。
     实验表明,本文研究开发的车架纵梁在线检测系统具有较高的检测精度,同时能够满足车架纵梁在线检测速度要求。本文研究所取得的成果,对于应用计算机视觉技术完成汽车车架纵梁质量在线检测具有理论意义和实用价值。
Computer vision is a modern detecting technology, the actual engineering project as research its object, computer vision method as its base, and adapts image processing, precise measurement, intelligent control and pattern recognition. It has the characters of gaining a great deal of information quickly, and being apt to integrate with design and manufacture control information. Intelligence, digitization, miniaturization, networking and multi-function can be realized. Hold the ability of online detecting, real-time analysis and control. At present, computer vision detecting technology is used as robot, industrial detecting, object recognition, medical image analysis, military navigation and traffic control etc.
     Automotive industry is used as the mainstay industry of national economy. Its manufacturing engineering reflects a level of a national basic industry. Whether detecting method and technology of automotive productive enterprise are advanced or not, they have become a very important factor of regulating realization of automobile manufacture and improvement of production quality.
     The automobile frame is a very important part of automobile steering system. It’s the major bearing structure; at the same time, motor, turn system, transmission system and brake system connect with the auto rack girders through the assembly holes in it. Before the total assembly of automobile, dimension, position and numbers of assembly holes are required to be detected. If auto rack girder with disqualified holes is put on assembly lines, this will lead to some parts or the whole automobile can’t be assembled and so on serious problems. So the detecting results of dimension, position and numbers of assembly holes affect the execution of automobile assembly technology. At present, there isn’t online detecting system of assembly holes quality for auto rack girders in my country. Due to missing manufacture of holes or disqualified dimension and etc, corporations break off production usually. This led to the huge economic loss.
     The goal of this item is to change the out-dated status of online detecting on domestic auto rack girders quality, and hopes to develop domestic technology and shorten overseas and domestic gap.
     This paper associated the technology innovative item of corporation with Jilin province technology application basic research funding item“Research of The Auto Rack Girders Detecting System”(item No.20060534), the auto rack girders being used as the applied objects, and researched online detecting technology of dimension, position and kinds recognition of the assembly holes.
     This paper analyzed the image mosaic method; for phase related match algorithm in frequency domain, introduced an improved image matching algorithm based on overlapped region. Counting quantity is related to dimension of image, and unrelated to translation quantity among images. When carrying on image mosaic, this algorithm solved mismatching because of existence of background noises, conquered the effect of light transformation and lens geometric distortion, and had the stronger anti-noise ability.
     For having been matching auto rack girder panorama images, this paper introduced a weight smooth fusion algorithm based on boundary maintenance. This algorithm not only can keep boundary character, but also make region boundary clear. To improve the processing velocity, introduced an extraction algorithm of assembly holes based on local region, namely, carry on local region marking for the region of meeting holes condition; for character extraction of circles, only search in the region with assembly holes. By way of this method, decrease the searched regions, save the time of edge detection and improve the detecting velocity of auto rack girders.
     This paper proposed a method of combination non-linear distortion correction and double-linear transformation, to calibrate camera internal parameters and correct geometric distortion. The method solved the problem of circular holes becoming oval in the auto rack girders, because imaging plane of camera isn’t parallel to the under-detecting auto rack girder plane. Using standard template as reference, through the relative calibration, accuracy and reliability of calibration meet the design demands.
     This paper proposed a method of ART neural network to recognize the kinds of multi-type auto rack girders, and improved the network structure and joint weight of ART2 neural network. By this way, neural network can recognize the input vectors in proportional relation, recognition of network becomes stronger. Through the combination ART2 and D-S evidence theory, complete the evidence accumulation of multi-character data, to decrease the uncertainty of auto rack girders recognition, make up for the shortage of single-character template information and improve the recognition rate.
     According to the technology demands of the auto rack girders online detecting, this paper researched and developed the computer vision detecting system of auto rack girders, and found the standard database of auto rack girders images. Utilizing the research results of this paper, on-line detected the dimension and position of assembly holes and kinds of auto rack girders for 5 types auto rack girders test pieces. Detecting results are actual.
     Experimental results indicate, online detecting system of auto rack girders which was researched and developed by this paper has higher detecting accuracy, at the same time may meet the demands of online detecting velocity. The research outcome of this paper, for online detecting of the auto rack girder with computer vision, has the theoretical and practical value.
引文
[1] L Roberts. Machine perception of three-dimensional solids. Optical and Electron-Optical Information Processing, Cambridge MA:MIT Press,1965:159-197.
    [2]贾云得.计算机视觉.北京:科学出版社.2000:1-6.
    [3] Y Aloimonos, I Weiss and A Bandopadhay. Active Vision [J]. International Journal on Computer Vision, 1987:333-356.
    [4]祝世平,申功勋.工件特征点三维坐标非视觉测量方法综述.光学精密工程,1997,7(5):22-29.
    [5] B G Batchelor, D W Braggins. Commercial vision system in computer vision. Theory and Industrial Applications.1992:405-452.
    [6]王红军.机器视觉-现代工业的眼睛.机电一体化,1999,(3):26-27.
    [7]中国机器视觉未来发展趋势. http://www.gongkong.com/news.
    [8] A K Elshennawy. The role of inspection in automated manufacturing. Computer Industrial Engineering.1989, 17(4):327-331.
    [9] A Rosenfeld. Image Analysis and Computer Vision:1996, Computer Vision and Image Understanding.1997,66(1):33-93.
    [10] A Rosenfeld.Computer Vision Basic Principle. Proceeding of IEEE.1988,8:863-868.
    [11] Nello Zuech, Richard K. Miller, Cmfge. Machine Vision. Published by the Fairmont Press,Inc.1987,47-89.
    [12] Azriel Rosenfeld. Survey Image Analysis and Computer Vision:1994.Computer Vision and Image Understanding.1995,61(1):90-143.
    [13] T S Newman, A K Jain. A survey of automated visual inspection. Computer Vision and Image Understanding,1995,61(2):231-262.
    [14]段发阶,张健新,叶声华,王春和.计算机视觉技术在电子网板检测中的应用研究.光电工程,1996,23(2):66-72.
    [15]段发阶,叶声华,王春和,吴迈.拔丝模孔形计算机视觉检测技术.光电工程,1996,23(3):72-76.
    [16] T H Kim, T H Cho, Y S Moon, S H Park. Visual inspection system for the classification of solder joints. Pattern Recognition,1999,32(4):565-575.
    [17] Y R Shiau, B C Jiang. Study of a measurement algorithm and the measurement loss in machine metrology. Journal of Advanced Manufacturing Systems,1999,18(1):22-34.
    [18]吴平川,路同浚,王炎.机器视觉与钢板表面缺陷的无损检测切.无损检测,2000,22(1):13-16.
    [19] Franci, Lahajnar et al. Machine vision system for inspecting electric plates. Computer in Industry,2002,47:113-122.
    [20] Bremner J F. Automatic vision inspection system for the inspection of shapes cut in sheet material, Pro. On Image Processing,1986:40-43.
    [21] M M Landman, S J Roberton. A flexible industrial system for automated three-dimensional inspection, SPIE,1986,728:203-209.
    [22] Mills R. Development of a line-scan camera for 2D high accuracy measurement. Machine Vision,1991:267-277.
    [23] Q Dahle. On-line inspection of extruded profile geometry, Vision'90.1990:1-17.
    [24] Lassoe J, et al. Future vision system for glass works. Glass Technology,1997,38(2):43-45.
    [25]周群,胡光锐.基于模板覆盖法的钢筋在线技术方法.上海交通大学学报,1999,33(11):1462-1464.
    [26] Dimitrios Kosmopoulos et al. Automated inspection of gaps on the automobile production line through stereo vision and specular reflection. Computer in Industry,2001,46:49-63.
    [27] Lu R S. On-line measurement of the straightness of seamless steel pipes using machine vision technique, Sensors and Actuators. 2001,94:417-427.
    [28] Mu-Chen Chen. Roundness measurement for discontinuous perimeters via machine vision, Computer in Industry. 2002,4:185-197.
    [29]张勇斌,陈晓怀,卢荣胜.工件孔心距的视觉测量.仪器仪表学报,2002,6:670-671.
    [30]张少军,苟中魁,李庆利.利用数字图像处理技术测量直齿圆柱齿轮几何尺寸.光学精密工程,2004,12(6),619-625.
    [31]张永军,刘经南,张祖勋.基于非量测CCD摄像机的钣金件误差检测.测绘学报,2002,33(2),132-137.
    [32]杨敏,叶邦彦,牟丽,朱若磊.基于机器视觉的圆轴直径精密检测算法.计算机工程与应用,2004,230-232.
    [33]路红,夏庆观.图像处理方法在多孔零件尺寸测量中的应用.组合机床与自动化加工技术,2004,3:88-89.
    [34]宋强,徐科,徐金梧等.基于图象处理的棒材自动计数技术[J].钢铁,2004,39(5):34-37.
    [35]张琳,岑豫皖,杜培明.一种基于边缘与分区的棒材端面图像的分割方法.安徽工业大学学报,2004,21(1):41-44.
    [36]李强,陈遵德.基于模糊圆周模板匹配方法的钢材数量自动计数系统.自动化技术与应用,2004,23(2):25-25.
    [37]漆随平,张宏建,骆志坚.基于虚拟多传感器信息融合的在线视觉检测.浙江大学学报,2005,39(9):1363-1367.
    [38]贺秋伟,王龙山等.基于支持向量回归的小尺寸零件精密测量.光学精密工程,2007,15(4).
    [39]成鹏飞,杨帆,言立强,张马林,王仲.基于机器视觉的钢棒自动计数系统.冶金自动化,2008,1:22-26.
    [40]张宇,黄亚博,焦建彬.一种基于机器视觉的圆型零件检测技术.计算机工程,2008,10:185-202.
    [41]基恩士公司. CV-2100数字图像感测器特性. Php,2006.11.08.
    [42] W A Perkins. A computer vision system which learns to inspect parts. IEEE Trans.PAMI-5:584-592.
    [43] W S Wilson. The role of vision in a dimensional control strategy. Proc.of the Society of Manufacturing Engineers Conf.on Vision.1985,7:43-55.
    [44] D W Whitney .Optical gauging—crankshaft, Proc.of the Society of Manufacturing Engineers Conf. on Vision.1985,7:8-12.
    [45] D German. Vision aided inspection techniques for the automotive industry, Proc.of the Society of Manufacturing Engineers Conf.on Vision.1985,7:8-12.
    [46] Zou D H . Structured-lighting surface sensor and its calibration[J].Optical Engineering,1995,34(10):3040-3043.
    [47]吴晓峰.激光自动聚焦三维形状测量系统的研究[J].仪器仪表学报,1996,17(2):129-131.
    [48]刘曙光,刘明远,何钺.基于机器视觉的汽车仪表板智能检测方法.机械科学与技术,1998,17(2):313-315.
    [49] Schmidberger, E J and Ahlers, R J Quality control with a robot-guided electro-optical sensor.Ibid:27-36.
    [50]邾继贵,王仲,周富强等. IVECO车身视觉检测系统现场溯源研究[J].计量学报,2000,21(1):28-33.
    [52]闵新力,朱训生,万德安.应用CMM实现非接触视觉测量的改造[J].机械研究与应用,2003,16(1):23-25.
    [52]胡兴军,唐向阳,张勇.机器视觉技术及其在汽车制造质量检测中的应用.现代零部件,2005,11:96-100.
    [53]苏建,翟乃斌,宋秀年,刘玉梅,陈友谊.汽车整车尺寸计算机视觉测量系统的研究[J].公路交通科技,2007,4(4),145-149.
    [54] Micchalopoubs P G. Vehicle detection through video image processing, Auto scope System. IEEE Transactions on Vehicular Technology.1991,40(1):21-29.
    [55] J Versavel, et al..Camera and computer aided traffic sensor, IEEE the 2th International Conference on Road Traffic Monitoring.1989:21-29.
    [56] M Takatoo. Traffic Measuring System Using Inage Processing, SPIE, 1989, 1:1190-1197.
    [57] J M Blosseville. Titan: A traffic measurement system using image processing techniques, IEEE the 2th International Conference on Road Traffic Monitoring,1989:56-62.
    [58] Hongjiang Zhang,Yihong Gong,et al. Moving object detection tracking and recognition. The 3th International Conference on Automation, Robotics and Computer Vision, 1994.
    [59] Kameda,Yoshinari,Minoh Michihiko. A human motion estffnation method using 3-successive video frames, Proceedings of International Conference on Virtual Systems and Multffnedia,1996:135-140.
    [60] J B Kffn, H S Park, et aL A real-time region-based motion segmentation using adaptive thresholding and K-means clustering. M Brooks, D Cotbett, M Stumpiner Springer. 2001,30(6):213-224.
    [61] N Paragios, R Deriche Geodesic. Active contours and level sets for the detection and tracking of moving objects, IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000,22(3):266-280.
    [62] P G M ichalopoulos. Vehicle detection video through image processing, The Autoscope System. IEEE Trans on Vehicular Technology.1991,40(1):21-29.
    [63] Takaba S, et al. A traffic flow measuring system using a solid state sensor .Proc, IEEE Conf.on Road Traffic Data Collection.London,UK.1984:45-56.
    [64] Hoose N.MPACT: An image analysis tool for motor analysis and surveillance, Traffic Engineering Control.1992,23(4):140-147.
    [65] S Mantri,D Bullock. Analysis of feed forward-back propapation neural networks used in vehicle detection, Transportation Research, Part C.1995,3(3):161-174.
    [66] M P Dubuisson, S Lakshmanan, A K Jain. Vehicle segmentation and classification using deforrnable tempfates. IEEE Transactions on Pattern Analysis and Machine Intelligence.1996,18(3):293-308.
    [67] J Ferryman, A Worrall, et al. A generic deforrnable model for vehicle recognition, Proceedings of British Machine Vision Conference.1995:127-136.
    [68]夏庆观,盛党红,路红,陈桂.零件图像特征提取和识别的研究.中国机械工程,2005,16(22):2031-2033.
    [69]查英,刘铁根,杜东.图像识别技术在零件装配自动识别中的应用.计算机工程,2006,32(10):178-179.
    [70]王艳斌.汽油发动机曲轴输出轴类型识别系统的研制. 2007,4:10-14.
    [71]张洛平,权欢欢,周英梅.零件图像识别特征的研究.河南科技大学学报(自然科学版),2008,29(6):7-9.
    [72] Nair M,D S Jayas.Dockage identification in wheat using machine vision,Canadian Agricultural Engineering.1998,40(4):293-298.
    [73] Paliwal J,N S Shashidhar,D S Jayas.Grain kernel identification using kernel signature, Trans of the ASAE.1999,42(6):1921-1924.
    [74] Luo X,D S Jayas, N R Bulley. Comparison of statistical and neural network methods for classification of cereal grains using machine vision.In:1997 ASAE Annual International Meeting, Minnesota:ASAE.1997,No.973106.
    [75] Shatadal P,S J Symons,J E Dexter. Detecting hard vitreous kernels in durum wheat by using image histogram.In: 1998 ASAE Annual International Meeting, Florida: ASAE, 1998, No.986028.
    [76]郑南宁著.计算机视觉与模式识别[M].北京:国防工业出版社,1998.
    [77]漆随平.基于计算机视觉的检测方法与应用研究[D]. 2005,5:4-5.
    [78]陈向伟.机械零件计算机视觉检测关键技术的研究[D]. 2005,6:13-14.
    [79]翟乃斌.基于计算机视觉的汽车整车尺寸测量系统的研究[D]. 2007,6:15-16.
    [80] Tian Q, Huhns M N. Algorithm for sub-pixel registration [J]. CVGIP: Graphical Model and Image Processing, 1986, 35(2):220-22.
    [81] Frischholz R W, Spinnler K P. Class of algorithm for real-time sub-pixel registration [A]. In: Proceedings of SPIE, Europto Conference[C], Munich, Germany, 1993: 1989: 50-59.
    [82] Seitz P. Optical super resolution using solid-state cameras and digital signal processing [J]. Optical Engineering, 1988, 27(7):535-540.
    [83] Chalermwat P. High performance automatic image registration for remote sensing [D], Virginia: George Mason University ,1999.
    [84] Shekarforoush H, Berthod M, Zerubia J. Sub-pixel image registration by estimating the polyphase decomposition of cross power spectrum [R]. TR2707, France, INRIA Technical Report, 1995.
    [85] Forooh H, Zerubia JB, Berthod M. Extension of phase correlation to sub-pixel registration [J]. IEEE Transactions on Image Processing, 2002,11 (3): 188-200.
    [86] Stone H S, Orchard M, Chang E C. Sub-pixel Registration of images [A]. In: Conference Record of the Thirty-Third Asilomar Conference on Signal Systems, and Computers [C], Pacific Grove, CA, USA, 1999:2: 1446-1452.
    [87] Stone H S, Wolpov R. Blind cross-spectral image registration using prefiltering and Fourier-based translation detection [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3):637-649.
    [88] Thevenaz P, Ruttimann U E, Unser M. A pyramid approach to sub-pixel registration based on intensity [J]. IEEE Transactions on Image Processing, 1998,11(7): 27-41.
    [89] Wolberg G, Zokai S. Image registration for perspective deformation recovery [ A ]. In: Proceedings of SPIE Automatic Target Recognition X[C], Orlando, FL, USA, 2000,4050:259-270.
    [90] Thevenaz P, Unser M. Optimization of mutual information for multiresolution image registration [J]. IEEE Transactions on Image Processing, 2000,9(12):2083-2099.
    [91] Plattard D, SoretM, Troccaz J,et al. Patient set-up using portal images: 2D /2D image registration using mutual information [J].Computer Aided Surgery, 2000,5(4): 246-262.
    [92] Kagadis G C, Delibasis K K, Matsopoulos G K,et al. A comparative study of surface-and volume-based techniques for the automatic registration between CT and SPECT brain images [ J].
    [93]黎俊,彭启民,范植华.亚像素级图像配准算法研究.中国图象图形学报,2008, 13(11):2070-2075.
    [94]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [95]夏良正.数字图像处理[M].南京:东南大学出版社,1999.
    [96]陈敏.一种自动识别最优阈值的图像分割方法[J].计算机应用与软件,2006,23(4):85-86.
    [97]陈宇,庞全.局部自适应的细胞图像分割方法[J].杭州电子科技大学学报, 2005,25(2):57-60.
    [98] OTSU N. A threshold selection method from gray level histogram[J].IEEE Trans on SystMan, Cybern, 1979,9(1): 62-66.
    [99]章毓晋.图像分割[M].北京:科学出版社,2001.
    [100]章毓晋.图像处理和分析基础[M].北京:高等教育出版社,2002.
    [101]荆仁杰,等.计算机图像处理[M] .浙江:浙江大学出版社,1990.
    [102]王兆华.计算机图像处理方法[M].北京:宇航出版社,1993.
    [103] J C Bezdek, R Chandrasekhar, Y Attikiouzel. A new fuzzy model for edge detection. In Applications of Fuzzy Logic Technology, Proc. SPIE Bellingham, WA,1996,2761:11-28.
    [104] K.Muramoto, T Yamauchi: Classification of polar satellite data using image features and decision tree classifier, Proc.NIPR SYMP. Polar Meteoric.Glacial.1996(10):127-137.
    [105] R.C.Hardie, C.G.Boncelet.Gradient-based edge detection using nonlinear edge enhancing filters, IEEE Transactions on Image Processing.1995(4):1572-1577.
    [106] Ramesh Jain, Rangachar Kasturi. Machine Vision. The McGraw-Hill Companies, 1995.
    [107] J M S Prewitt. Object Enhancement and Extraction. In: Picture Processing and Psychopictorics. Academic Press, New York, 1970,75-149.
    [108] Irwin Sobel. Camera models and machine perception. Technical Report AIM-21, Stanford University Artificial Intelligence Lab, Stanford, California, May 1970.
    [109] R Kirsch. Computer Determination of the Constituent Structure of Biological Images. Computers and Biomedical Research,1971,4(3):315-328.
    [110] D Marr. Vision: A computational Investigation into the Human Representation and Processing of Visual Information. W H Freeman and Company, San Francisco,1982.
    [111] J Canny. A Computational Approach to Edge Detection. IEEE transactions on Pattern Analysis and Machine Intelligence,1986,18(6):679-698.
    [112] http://www.fmrib.ox.ac.uk/~steve/susan/susan/susan.html.
    [113]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998
    [114] Davies E R. Chord bisection strategy for fast ellipse location Electron Lett, 1999, 35:703-705.
    [115] Jian Ye, Gongkang Fu and Upendra P. Poudel. High-accuracy edge detection with blurred edge model[J]. Image and Vision Computing, 2005, 23:453-467.
    [116] E P Lyvers, O R Mitchell. Precision edge contrast and orientation estimation [J]. IEEE Trans on PAMI, 1988, 10(6):927-937.
    [117] D H Bafad . Computer Vision[M], Prentice—Hall, Englervood CUM, NJ, 1982.
    [118] R D Duda and P E Hart.Us of the Hough transform to detect lines and curves in pictures[J], Commuun.ACM, 1972,15:11-15.
    [119]解凯,郭恒业,张田文.图像Mosaic技术综述[J].电子学报,2004,32(4):630-633.
    [120] Qinfeng Zheng and Rama Chellappa . A Computational Vision Approach to Image Registration . IEEE Trans.on Image processing,1993,2(3):311-325.
    [121] C F Lin and C L Lee. An Accurate Method for Image Registration . Pattern Recognition and Image Analysis .2000,10(3):343-355.
    [122]樊庆文,王小龙,侯力,黄成祥.基于等距序列图像的快速拼接技术[J].四川大学学报(工程科学版),2005,37(1):140-142.
    [123]钟力,胡晓峰.重叠图像拼接算法[J].中国图像图形学报,1998,3(5):365-369.
    [124]李志刚.边界重叠图像的一种快速拼接算法[J].计算机工程,2000,26(5):37-38.
    [125] B S Reddy and B N Chatterji. An FFT-based technique for translation, rotation, and scale-invariant image registration, IEEE Trans.ImageProcessing, 1996,5(8):1266-1271,.
    [126]赵唯,李端义.基于小波变换与形态学的一种边界重叠图像的拼接算法[J].微机发展,2001,6:3-6.
    [127]李红,彭嘉雄,李国宽,高健.向量小波在图像拼接中的应用[J].华中理工大学学报,1999,26(11):21-22.
    [128] Shekarforoush H, Zerubia J B, Berthod M. Extension of phase correlation to subpixel registration[J]. IEEE TransactionsonImageProcessing, 2002,11(3):188-200.
    [129] Raymond J .Althof,Marco G J.Wind,James T. Dobbins. A Rapid and Automatic Image Registration Algorithm with Sub-pixel Accuracy [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING 1997,16(3):308-316.
    [130]王卫东,俎栋林,包尚联,王泽华.基于边缘提取的医学图像配准方法[J].中国体视学与图像分析,1998,3(12):204-207.
    [131] George Wolberg, Siavash Zokai. Robust image registration using log-polar transform [A]. IEEE International Conference on Image Processing[C], 2000,9.
    [132] S. Alliney and C. Morandi, Digital Image Registration using Projections, IEEE Trans. On Pattern Analysis and Machine Intelligence, PAMI-8, 1986,3(2) :222-223.
    [133] S. Alliney, Spatial registration of multispectral and multitemporal digital imagery using fast-Fourier transform techniques. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993, 15(5):499-504.
    [134] WEN Miao-li. Gabor function-based fingerprint enhancement algorithm in wavelet domain。Journal of Computer Applications, 2006, 26(3).
    [135] TANG Le-min.Medical Image Denoising Method Based on Wavelet Transformation. Chinese Journal of Medical Physics, 2004, 24(4).
    [136] Trucco E, Verri A. Introductory techniques for 3-D computer vision [M].Prentice Hall, 1998.
    [137]田梦倩.机器人视觉系统标定问题研究综述.工业仪表与自动化装置,2006,(2):14-17.
    [138] Ji Q, Dai S. Self-Calibration of a rotating camera with a translational offset [J]. IEEE Transactions on Robotics and Automation,2004,20(1): 1-14.
    [139] W.Faig, Calibration of Range Close Photogrammetric System: Mathematical Formulation , Photogrammetric Eng .Remote Sensing,1975,41:1497-1486.
    [140]马颂德,张正友.计算机视觉—计算理论与实践.北京:科学出版社,1998.
    [141] S D Ma. A self-calibration technique for active vision system. IEEE Trans. Robotics and Automation, 1996,12(1):114-120.
    [142] Tasi R.Y.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses, IEEE Journal of Automation,1987,3(4):323-334.
    [143] Faugeras O D,Toscani G..The calibration problem for stereo [A].Proc of IEEE Conference of Computer Vision and Pattern Recognition[C].New York: IEEE,1986:15-20.
    [144] Z.Y. Zhang. A flexible new technique for camera calibration [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22(11):1330-1334.
    [145] GOLUB G,LOAN C V. Matrix computations [M].3rd ed. Baltimore: The John Hopkins Univ Press, 1996.
    [146] ZHANG Z. Camera calibration with one-dimensional objects[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2004,26(7):Pages 892-899.
    [147] Martins H A,Birk J R,Kelley R B. Camera models based no data from two calibration planes. Computer Graphics and Imaging Processing,1981, 17:173-180.
    [148] R I Hartley. Estimation of relative camera position for uncalibrated camera. Proc. of the ECCV’92,Santa Margherita Ligure,Itaky,1992:379-387.
    [149] Maybank S J, Faugeras O D, A theory of self-calibration of a moving camera[J]. Int. J.Computer Vision,1992, 8(2):123-151.
    [150] HARTLEY R.Kruppa’s equations derived from the fundamental matrix[J].PAMI, 1997,19(2):133-135.
    [151] LOURAKIS M, DERICHE R. Camera self-calibration using the kruppa equations and the svd of the fundamental matrix: the case of varying intrinsic parameters[R]. Riviera,France:INRIA,Sophia-Antipolis,2000.
    [152] HABED A, BOUFAM A B S. Self-calibration of a simplified camera using,kruppa equations, 1st Canadian Conference on Computer and Robot Vision. Washington : IEEE Computer Society Press, 2004: 446-450.
    [153]雷成,吴福朝,胡占义. Kruppa方程与摄像机自标定.自动化学报,2001,27(5): 621-633
    [154] Hartley R. Self-calibration of stationary cameras [J]. Int. J. of Computer Vision, 1997, 22(1): 5-23.
    [155] HARTLEY R I. Euclidean reconstruction from uncalibrated views. Proceedings of the Second Joint European-US Workshop on Applications of Invariance in Computer Vision. London: Springer-Verlag,1994:237-256.
    [156] POLLEFEYS M, GOOL L V. A stratified approach to metric self-calibration International Conference on Computer View and Pattern Recognition. Washington: IEEE Computer Society Press,1997:407-412.
    [157] HEYDEN A, ASTROM K. Euclidean reconstruction from images equences with varying and unknown focal length and principal poin Proc of the IEEE Confon Computer Vision and Pattern Recognition. Washington: IEEE Computer Society Press,1997:438-443.
    [158]杨长江,江威,胡占义.一种基于主动视觉的摄像机内参数自标定方法[J].计算机学报,1998,21(5):428-435.
    [159]李华,吴福朝,胡占义.一种新的线性摄像机自标定方法[J].计算机学报,2000,23(11):1121-1129.
    [160] Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(10): 965-980.
    [161] Heikkila J. Geometric camera calibration using Circular control points [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(10): 1066-1077.
    [162] WEI G, MA S. Implicit and explicit camera calibration: theory and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(5): 469-480.
    [163] ZHANG Zhengyou, MEMBER S. A flexible new technique for camera calibration [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (11):1330-1334.
    [164] ZHANG Zhengyou. Flexible camera calibration by viewing a plane from unknown orientations[C] //Proceedings of IEEE International Conference on Computer Vision, IEEE, 1999, 11 (1): 666-673.
    [165] Richard O D, Peter E H, David G S等著,李宏东,姚天翔等译.模式分类(第二版)[M].北京:机械工业出版社,2003.
    [166]刘秉瀚,王伟智,方秀端.协同模式识别方法综述[J].工程系统与电子技术,2003,25(6) :758-762.
    [167]刘秉瀚,方秀端,王伟智.图像分类识别协同算法的研究[J].计算机科学,2001,28(9) :128-130.
    [168] Nieman H著.周冠雄,李梅译.模式分类[M].北京:科学出版社,1988.
    [169] Carpenter G A , Grossberg S. The ART of adaptive pattern recognition by a self-organizing neural network . [J] Trans IEEE on Computer, 1988,21 (3) :77-78
    [170] Carpenter G A , Grossberg S. ART2 :Self - organization of stable category recognition codes for analog input patterns .[ J ] Applied Optics ,1987,26 (23) :4 919 -4 930.
    [171] Carpenter G A , Grossberg S. ART3 : hierarchical search chemical transmitters in self-organizing pattern recognition architecture. [J] Neural Network,1990,3 (2) :129 -152.
    [172] Carpenter G A , Grossberg S, Rosen D B. Fuzzy ART: fast stable learning and categorization of analog pattern by an adaptive resonance system. [J]. Neural Network ,1991 ,4(9) :759 -771.
    [173] Pacella, Massimo, Semeraro Quirico, Anglani Alfredo. Manufacturing quality control by means of a Fuzzy ART network trained on natural process data Engineering, Applications of Artificial Intelligence, 2004, 17(1): 83-96.
    [174] Davenport M P, Titus A.“Multilevel category structure in the ART2 network”. Neural Networks, 2004,15 (1):145~158.
    [175] Davenport M P, Titus A H. Multilevel Category Structure in the ART-2 Network. IEEE Transactions on Neural Networks, 2004,15: 145-158.
    [176] Fujila M, Bavarian B. An ART2-TPM neural network for automatic pattern classification. Neural Networks, 1991,15:479-484.
    [177] Sayeh M R, Ragu A, Szu H H. Design of unsupervised classifier. Neural Networks, 1991,2:417-422.
    [178] Aradhye H, Davis J, Bakcshi B R. Art-2 and multiscale ART-2 for on-line process fault detection-Validation via industrial case studies and Monte Carlo simulation. Annual Reviews in Control, 2002, 26(1):113-127.
    [179] Mallat S G. A Theory for multiresolution signal decomposition the wavelet representation. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [180] Smith S M, Brady J M. SUSAN-A new approach to low level image processing.Intemational Journal of Computer Vision,1997,23(1):45-78.
    [181] TANG Hong-wei. Research and improvements of ART-2 neural network. Infrared and Laser Engineering,2004,33 (1).
    [182] Wang Yunqiong,You Zhisheng. Moving shadow segmentation algorithm based on wavelet transform[J]. Journal of Sichuan University(Natural Science Edition),2003,40(4): 667-671.
    [183] SUN Hui. Data fusion for image based on wavelet transforms. Optics and Precision Engineering,2000,8(6):551-553.
    [184]何友,王国宏等编著.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [185] Dempster A P. Upper and lower probabilities induced by a multi-valued mapping[J] . Annals of Mathematical Statistics,1967,38(2): 325 - 339.
    [186] Shafer G. A Mathematical Theory of Evidence [M]. Princeton : Princeton University Press ,1976.
    [187]王莉莉,郝爱民,何兵.基于D-S证据理论的城市航拍道路提取方法[J].软件学报,2005, 16(9):1534-1541.
    [188]黄文斌,陈颜辉.基于D-S证据理论的潜艇威胁判断方法研究[J].哈尔滨工程大学学报,2005,26 (2) :164-168.
    [189]程咏梅,潘泉,张洪才,王刚.信息融合图像识别算法及其在三维飞机图像识别中的应用研究[J].航空学报,2005,25(2),177-180.
    [190]那彦,杨万海,吴艳.图像模糊信息融合算法的性能评价[J].西北师范大学学报,2002,38(2):44-46.
    [191]王海晖,彭嘉雄,吴巍.基于证据理论的信息融合在图像分类中的应用[J].计算机工程与应用,2003,33:11-14.
    [192]杨阳,程咏梅,潘泉,张洪才,苗壮.一种新的证据组合规则应用于序列图像目标识别.计算机应用研究,2007,24(4):170-172.
    [193]丘敏,廖惜春.证据理论在车辆身份识别中的应用研究.计算机工程与应用,2007, 43( 2):241-243.
    [194]夏庆观,赵茜,王东霞.基于证据理论的零件图像识别.中国制造业信息化,2006,35(9):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700