结直肠癌侵袭转移过程中缺氧诱导因子1-α与FasL的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:结直肠癌是常见的恶性肿瘤,其预后较差,生存率低,其中结直肠癌的浸润转移是术后复发和导致患者死亡的重要原因。结直肠癌转移是一个多因素、多阶段、多步骤的复杂生物学过程,癌细胞对肿瘤内部缺氧微环境的耐受与适应是发生转移的基础。转录因子缺氧诱导因子-1α(hypoxia inducible factor-1 alpha,HIF-1α)作为感受不同氧环境下氧分压的中枢调控子,除调节细胞内氧稳态外,尚能够调节相关基因的转录活性,积极参与肿瘤的侵袭、转移等病理生理过程。因其作用机制复杂,目前仍缺乏深入了解。为此,本课题在既往对结直肠癌侵袭转移研究的基础上,探讨肿瘤发生发展过程中HIF-1α与FasL的表达,以期进一步了解结直肠癌的侵袭转移机制,为临床防治提供新的靶点与理论依据。
     方法:
     1.采用分子克隆方法,将我室已构建的FasL-pcDNA3.1(+)质粒与pcDNA3.1(-)质粒进行重组,得到新的FasL-pcDNA3.1(-)质粒并进行鉴定。通过脂质体转染法将空质粒、FasL-pcDNA3.1(+)与FasL-pcDNA3.1(-)质粒分别转染人直肠癌HR-8348细胞,构建侵袭力不同的结直肠癌细胞HR-8348_L、HR-8348_F和HR-8348_(As)并加以鉴定;以未转染细胞HR-8348_B为空白对照,观察细胞形态,检测各组细胞的侵袭能力与增殖速度。
     2.采用化学缺氧法构建四组直肠癌HR-8348细胞缺氧模型,免疫细胞化学方法检测各组细胞缺氧12h后HIF-1α表达水平,计算阳性表达百分率;Western blot方法定量检测缺氧0h、6h、12h及24h各组细胞内HIF-1α的表达;并在缺氧12h时相下,应用流式细胞仪测定各组细胞周期的分布,MTT法测定各组细胞增殖能力的改变,TUNEL法测定各组细胞凋亡状况。
     3.采用免疫组织化学方法,对120例结直肠癌组织及癌旁组织、30例结肠腺瘤组织及28例结直肠癌肝转移组织中HIF-1α与FasL的表达情况进行检测,并分析HIF-1α表达与结肠癌临床病理特征和FasL水平之间的关系。
     结果
     1.新构建质粒FasL-pcDNA3.1(-)符合要求,FasL酶切片断及PCR片断大小正确,测序正确率为99.2%;各质粒转染成功,RT-PCR方法可分别自HR-8348_F细胞和HR-8348_(As)细胞中得到FasL和As-FasL片断;倒置显微镜下观察各组细胞,见HR-8348_F细胞异型性更明显;单层细胞体外侵袭实验见HR-8348_F细胞穿透Transwell滤膜的细胞数目为12.930±2.434,显著多于HR-8348_B、HR-8348_L和HR-8348_(As)细胞(分别为8.133±1.959,7.670±2.093和7.870±1.685)(P<0.05);HR-8348_B、HR-8348_L、HR-8348_F和HR-8348_(As)细胞的群体倍增时间分别为28.3h、41.0h、24h和35.4h。
     2.缺氧12h后,HR-8348_F细胞HIF-1α蛋白阳性率为76.0%,显著高于HR-8348_B、HR-8348_L和HR-8348_(As)细胞(分别为48.5%,43.0%和39.5%)(P<0.05),而后三组细胞间无显著性差异(P>0.05)。Western blot检测示HIF-1α蛋白于120kD处显色;比较不同缺氧时相各组细胞内HIF-1α的表达水平,缺氧0h与6h,各组样品中HIF-1α表达微量;缺氧12h,HR-8348_F细胞内HIF-1α水平较0h和6h时明显增高(P<0.05),而HR-8348_B、HR-8348_L及HR-8348_(As)细胞内HIF-1α表达与6h时无明显变化(P>0.05);缺氧24h,HR-8348_F细胞内HIF-1α表达仍处于较高水平,但与缺氧12h表达量比较差别不显著(P>0.05),HR-8348_B、HR-8348_L及HR-8348_(As)细胞内HIF-1α表达水平则较缺氧12h略有下降,但不具备统计学意义(P>0.05);组间比较,缺氧0h、6h时各组细胞HIF-1α蛋白水平无显著性差异(P>0.05),缺氧12h、24h HR-8348_F细胞HIF-1α水平显著高于HR-8348_B、HR-8348_L及HR-8348_(As)细胞(P<0.01)。测定缺氧状态下的细胞生物学特性,见HR-8348_F细胞的增殖指数(60.43±3.61)显著高于HR-8348_B、HR-8348_L和HR-8348_(As)细胞(40.01±3.22,41.30±3.96和35.87±4.28)(P<0.05),增殖抑制率和凋亡指数(17.30±2.08和13.10±1.06)显著低于HR-8348_B、HR-8348_L、HR-8348_(As)细胞(33.70±4.56和21.60±1.33,34.20±4.12和20.10±1.17,38.00±4.79和23.90±1.25)(P<0.05)。
     3.HIF-1α阳性率在结直肠癌旁粘膜中为5.8%(7/120),在结肠腺瘤组织中为20.0%(6/30),在结直肠癌原发灶和转移灶中分别为71.7%(86/120)和89.3%(25/28);癌原发灶和肝转移灶中HIF-1α的表达水平显著高于腺瘤和癌旁组织(P<0.01),腺瘤组织中HIF-1α水平亦高于癌旁粘膜组织(P<0.05),而癌原发灶与肝转移灶中HIF-1α水平无明显差异(P>0.05)。FasL的阳性表达率在癌旁粘膜、结肠腺瘤、癌原发灶和肝转移灶中分别为15.0%(18/120)、23.3%(7/30)、69.2%(83/120)和100.0%(28/28);癌原发灶和转移灶中FasL的表达水平明显高于腺瘤和癌旁组织(P<0.01),而腺瘤和癌旁组织中、癌原发灶与肝转移灶中FasL水平均无显著性差异(P>0.05)。结直肠癌原发灶中HIF-1α的表达水平与患者性别、年龄、病理组织学类型及分化程度无关(P>0.05),而与区域淋巴结转移状况及Dukes分期密切相关(P<0.05)。发生肝转移患者的癌原发灶中HIF-1α和FasL阳性表达率分别为92.9%(26/28)和85.7%(24/28),与无肝转移组(分别为65.2%,60/92和64.1%,59/92)相比均差异显著(P<0.01);HIF-1α与FasL的表达强度有等级相关性(r=0.924,P<0.01)。
     结论:
     1.应用分子克隆技术将正义FasL片断转染入结直肠癌细胞内可构建具有高侵袭力的细胞,结直肠癌细胞内FasL的表达强度与其侵袭能力呈正相关;
     2.结直肠癌细胞内FasL表达增强可促进缺氧状态下细胞HIF-1α表达增高,促进细胞对微环境缺氧的适应,导致细胞的增殖加速,凋亡减少,侵袭能力进一步增强;
     3.结直肠癌组织中HIF-1α的表达水平与FasL水平呈正相关,并与肿瘤细胞的生物学行为关系密切,HIF-1α表达水平可作为预测结直肠癌侵袭转移情况的参考指标之
Background:Colorectal carcinoma is one of the common malignancies with poor prognosis and low survival rate,and the infiltration and metastasis are the key agents leading to death of patients.The metastasis of colorectal carcinoma is a comprehensive biological procedure with multiple factors,multiple stages and multiple steps.The tolerance and accommodation of cells to intratumoral hypoxia is the basement of tumor metastasis. Hypoxia inducible factor-1 alpha(HIF-1α),which is the center regulator of oxygen pressure, can adjust related genetic transcription,participate in tumor invasion and metastasis as well as adjust the intracellular oxygen steady state.The regulation mechanism of HIF-1αin invasion and metastasis of tumor is so complex that it hasn't been understood clearly.
     Objective:To study the expression of HIF-1αand FasL,to expolre the mechanisms of invasion and metastasis in colorectal carcinoma,and to provid a new target and theory basement for tumor therapy.
     Methods:
     1.With the method of molecular cloning,the FasL-pcDNA3.1(+) and pcDNA3.1(-) plasmid were reconstructed to get the new FasL-pcDNA3.1(-) plasmid which had been verificated.With the method of lipid infection,the empty plasmid,FasL-pcDNA3.1(+) and FasL-pcDNA3.1(-) were transfected into human rectal carcinoma cells HR-8348,then HR-8348 cells with different invasive ability,HR-8348_L,HR-8348_F and HR-8348_(As) were constructed and verificated,and the non-transfected cell HR-8348_B was blank.The cells shape were observed,the invasion ability and proliferation speed were detected in all groups.
     2.Hypoxia models for HR-8348_B,HR-8348_L,HR-8348_F and HR-8348_(As) were constructed with chemical modelling.Then the expression of HIF-1αin all groups was quantitated at 0h,6h,12h and 24h after hypoxia with Western blot.At 12h after hypoxia, the HIF-1αlevels were detected with immunocytochemistry and the percents of positive cell were calculated;besides,cell distributions of different cell life cycle were detected with flow cytometry;cell reproductive activities were detected with the method of MTT;and cell apoptosis status was assessed with TUNEL.
     3.The expression of HIF-1αand FasL were detected by immunohistochemistry in the specimens from 120 colon cancer patients and 30 colon adenoma patients,and the association of HIF-1αexpression level and clinical pathological characteristics,including FasL expression level of colorectal cancer were analyzed.
     Results
     1.The new constructed plasmid FasL-pcDNA3.1(-) was consistent with the requirement,which size of enzyme cutting parts was right,and the exactitude ratio of sequencing was 99.2%.The part of FasL and As-FasL could be got from HR-8348_F cell and HR-8348_(As) cell with RT-PCR,respectively,certificating the transfections of all plasmids were successful.With inverted microscope,the heteromorphism of HR-8348_F cell was more obviously.The number of HR-8348_F cells(12.930±2.434) which penetrated Transwell was significantly more than that of HR-8348_B(8.133±1.959),HR-8348_L(7.670±2.093) and HR-8348_(As) cells(7.870±1.685),respectively(P<0.05) in cell monolayer intrafiltration experiment in vitro.The population doubling time of HR-8348_B,HR-8348_L,HR-8348_F and HR-8348_(As) was 28.3h,41.0h,24h and 35.4h,respectively.
     2.At 12h after hypoxia,the positive rate of HIF-1αexpression was higher in HR-8348_F cells(76.0%) than in HR-8348_B(48.5%),HR-8348_L(43.0%) and HR-8348_(As) cells(39.5%),respectively(P<0.05),and there was no significant differences among those latter 3 groups(P>0.05).HIF-1αprotein was coloration at 120kD by Western blot,and the expression level of HIF-1αwas not markedly different in all groups at 0h and 6h after hypoxia(P>0.05),but was significantly higher in HR-8348_F cell than in HR-8348_B, HR-8348_L and HR-8348_(As) cell(P<0.01) at 12h and 24h after hypoxia.Under the environment of hypoxia,the proliferation index was significantly higher in HR-8348_F (60.43±3.61) than in HR-8348_B(40.01±3.22),HR-8348_L(41.30±3.96) and HR-8348_(As) cell (35.87±4.28),respectively(P<0.05),however,both inhibition rate of proliferation and apoptotic index were significantly lower in HR-8348_F(17.30±2.08 and 13.10±1.06) thanin HR-8348_B(33.70±4.56 and 21.60±1.33),HR-8348_L(34.20±4.12 and 20.10±1.17), HR-8348_(As)(38.00±4.79 and 23.90±1.25),respectively(P<0.05).
     3.The positive rate of HIF-1αexpression was 71.7%(86/120) in colorectal cancer and 89.3%(25/28) in hepatic metastasis,which were obviously higher than that in colon adenoma(20.0%,6/30) and normal tissue(5.8%,7/120)(P<0.01).Similarly,the positive rate of FasL expression in colorectal cancer(69.2%,83/120) and hepatic metastasis(100.0%, 28/28) were obviously higher than that in colon adenoma(23.3%,7/30) and normal tissue (15.0%,18/120).There was no relation between HIF-1αexpression and the sex,age, pathohistology type and differentiation degree of colon cancer patients(P>0.05),but close relation with lymph nodes state and Dukes staging(P<0.05).Furthermore,the positive rate of HIF-1αand FasL expression in primary focus with hepatic metastasis(92.9%,26/28 and 85.7%,24/28) were markedly higher than those without hepatic metastasis(65.2%,60/92 and 64.1%,59/92)(P<0.01).Expression of HIF-1αand FasL were positive correlation in metastasis of colorectal carcinoma(r=0.924,P<0.01).
     Conclusions:
     1.The expression intensity of intracellular FasL is positive correlation with the invasive ability in colorectal carcinoma.
     2.The expression enhancement of intracellular FasL in colorectal carcinoma could increase the expression of HIF-1α,which could promote tumor cells to adapt hypoxia,and lead to accelerated proliferation and reduced apoptosis of cells.
     3.The expression level of HIF-1αin colorectal cancer tissue is positive correlated to the level of FasL,which is highly correlated to the cytobiologic characteristics of colorectal carcinoma,and may be a valuable reference to estimate tumor invasion and metastasis.
引文
1.Krishnamachary B,Berg-Dixon S,Kelly B,et al.Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1.Cancer Res,2003,63(5):1138-1143
    2.Volm M,Koomagi R.Hypoxia-inducible factor(HIF-1) and its relationship to apoptosis and proliferation in lung cancer.Anticancer Res,2000,20(3a):1527-1533
    3.Kuwai T,Kitadai Y,Tanaka S,et al.Expression of hypoxia-inducible factor-lalpha is associated with tumor vascularization in human colorectal carcinoma.Int J Cancer,2003,105(2):176-181
    4.Ogawa S,Nagao M,Kanehiro H,et al.The breakdown of apoptotic mechanism in the development and progression of colorectal carcinoma.Anticancer Res,2004,24(3a):1569-1579
    5.李世拥,于波,安萍,等.FasL基因表达对结直肠癌细胞肝转移影响的研究.中华外科杂志,2003,41(9):646-648
    6.左富义,李世拥,安萍等.蛋白质酵母双杂交系统的建立及其在大肠癌肝转移研究中的意义.中华外科杂志,2004,6(11):672-675
    7.左富义,李世拥,安萍等.FasL相互作用蛋白的筛选及其在大肠癌研究中的意义.中国现代医学杂志,2006,16(1):32-36
    8.De Paepe ME,Mao Q,Chao Y,et al.Hyperoxia-induced apoptosis and Fas/FasL expression in lung epithelial cells.Am J Physiol Lung Cell Mol Physiol,2005,289(4):L647-L659
    9.司徒镇强,吴军正.细胞培养.西安:世界图书出版公司,1996:58-90,173-196
    10.Albini A,Iwamoto Y,Kleinman HK,et al.A rapid in vitro assay for quantitating the invasive potential of tumor cells.Cancer Res,1987,47(12):3239-3245
    11.O'Brien DI,Nally K,Kelly RG,et al.Targeting the Fas/Fas ligand pathway in cancer.Expert Opin Ther Targets.2005,9(5):1031-1044
    12.Kim R,Emi M,Tanabe K,et al.The role of Fas ligand and transforming growth factor beta in tumor progression:molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy.Cancer,2004,100(11):2281-2291
    13.Ferguson TA,Griffith TS.A vision of cell death:Fas ligand and immune privilege 10 years later.Immunol Rev,2006,213(2):228-238
    14.Dayan CM,Elsegood KA,Maik R.FasL expression on epithelial cells:the Bottazzo-Feldman hypothesis revisited.Immunol Today,1997,18(5):203
    15.Niehans GA,Brunner T,Frizelle SP,et al.Human lung carcinomas express Fas ligand.Cancer Res,1997,57(6):1007-1012
    16.Murakami M,Sasaki T,Miyata H,et al.Fas and Fas ligand:Expression and soluble circulating levels in bile duct carcinoma.Oncol Rep,2004,11(6):1183-1186
    17.Ohta T,Elnemr A,Kitagawa H,et al.Fas ligand expression in human pancreatic cancer.Oncol Rep,2004,12(4):749-754
    18.Shimoyama M,Kanda T,Liu L,et al.Expression of Fas ligand is an early event in colorectal carcinogenesis.J Surg Oncol,2001,76(1):63-68
    19.O'Connell J,Bennett MW,O'Sullivan GC,et al.Fas ligand expression in primary colon adenocarcinomas:evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer.J Pathol,1998,186(3):240-246
    20.Mann B,Gratchev A,Bohn C,et al.FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas.Br J Cancer,1999,79(7-8):1262-1269
    21.Kim R,Emi M,Tanabe K,et al.The role of Fas ligand and transforming growth factor beta in tumor progression:molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy.Cancer.2004,100(11):2281-2291
    22.张伟,丁尔迅,王强,等.Fas配体在大肠腺瘤、大肠癌及肝转移中的表达和意义.中国肿瘤临床,2004,33(1):12-14
    23.Jass JR.HNPCC and sporadic MSI-H colorectal cancer:a review of the morphological similarities and differences.Fam Cancer,2004,3(2):93-100
    24.Pawlak G,Helfman DM.Cytoskeletal changes in cell transformation and tumorigenesis.Curr Opin Genet Dev,2001,11(1):41-47
    25.许良中,杨文涛.免疫组织化学反应结果的判断标准.中国癌症杂志,1996,6(4):229-231
    26.左连富.流式细胞术样品制备技术.北京:华夏出版社,1991:46-104v27.Corley KM,Taylor CJ,Lilly B.Hypoxia-inducible factor lalpha modulates adhesion,migration, and FAK phosphorylation in vascular smooth muscle cells. J Cell Biochem, 2005, 96(5): 971-985
    28. Braliou GG, Venieris E, Kalousi A, et al. Reconstitution of human hypoxia inducible factor HIF-1 in yeast: a simple in vivo system to identify and characterize HIF-1 alpha effectors. Biochem Biophys Res Commun, 2006, 346(4): 1289-1296
    29. Semenza GL. Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol, 2006, 91(5): 803-806
    30. O' Donnell JL, Joyce MR, Shannon AM, et al. Oncological implications of hypoxia inducible factor-1alpha (HIF-1 alpha) expression. Cancer Treat Rev, 2006, 32(6): 407-416
    31. Brahimi Horn C, Pouyssegur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer, 2006, 93(8): E73-E80
    32. Qutub AA, Popel AS. A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci, 2006, 119(Pt 16): 3467-3480
    33. Dayan F, Roux D, Brahimi-Horn MC, et al. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res, 2006, 66(7): 3688-3698
    34. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001, 292(5516): 468-472
    35. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing.. Science, 2001, 292(5516): 464-468
    36. Hirsila M, Koivunen P, Gunzler, et al. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem, 2003, 278(33): 30772-30780
    37. Cioffi CL, Liu XQ, Kosinski PA, et al. Differential regulation of HIF-1α prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophys Res Commun, 2003, 303(3): 947-953
    38. McDonough MA, Li V, Flashman E, et al. Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA, 2006, 103(26): 9814-9819
    39. Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem, 2004, 279(37): 38458-38465
    40. Cockman ME, Lancaster DE, Stolze IP, et al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA, 2006, 103(40): 14767-14772
    41. Koivunen P, Hirsila M, Gunzler V, et al. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem, 2004, 279(11): 9899-9904
    42. Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med, 2003, 3(7):631-642
    43. Lee MH, Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci, 2001, 58(12-13):1907-1922
    44. Hernandez L, Kozlov S, Piras G, et al. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc Natl Acad Sci USA, 2003, 100(23):13344-13349
    45. Jiang H, Feng Y. Hypoxia-inducible factor 1alpha (HIF-1alpha) correlated with tumor growth and apoptosis in ovarian cancer, nt J Gynecol Cancer, 2006, 16(Suppl 1): 405-412
    46. Dang DT, Chen F, Gardner LB, et al. Hypoxia-inducible factor-1 alpha promotes nonhypoxia-mediated proliferation in colon cancer cells and xenografts. Cancer Res, 2006, 66(3): 1684-1936
    47. Yoo YG, Kong G, Lee MO. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1 alpha protein by recruiting histone deacetylase 1. EMBO J, 2006,25(6): 1231-1241
    48. Hupp TR, Lane DP, Ball KL, et al. Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem J, 2000, 352(Pt 1): 1-17
    49. Luo F, Liu X, Yan N, et al. Hypoxia-inducible transcription factor-1alpha promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway.BMC Cancer,2006,6:26
    50.Zhang Q,Zhang ZF,Rao JY,et al.Treatment with siRNA and antisense oligonucleotides targeted to HIF-1 alpha induced apoptosis in human tongue squamous cell carcinomas.Int J Cancer,2004,111(6):849-857
    51.Yoshida D,Kim K,Noha M,et al.Anti-apoptotic action by hypoxia inducible factor 1-alpha in human pituitary adenoma cell line,HP-75 in hypoxic condition.J Neurooncol,2006,78(3):217-225
    52.Akakura N,Kobayashi M,Horiuchi I,et al.Constitutive expression of hypoxia-inducible factor-lalpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation.Cancer Res,2001,61(17):6548-6554
    53.Ravi R,Mookerjee B,Bhujwalla ZM,et al.Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor-1 alpha.Genes Dev,2000,14(1):34-44
    54.蔡文琴主编.现代实用细胞与分子生物学实验技术.北京:人民军医出版社.2003:91-163
    55.江从庆,刘志苏,钱群,等.大肠腺瘤和腺癌组织中缺氧诱导因子-1α的表达及其与VEGF、微血管密度的关系.癌症,2003,22(11):1170-1174
    56.任学群,索智敏,傅侃达,等.结直肠腺瘤及癌组织中缺氧诱导因子-1α的表达.郑州大学学报(医学版),2004,39(4):648-650
    57.Semenza GL.HIF-1 and tumor progression:Pathophysiology and therapeutics.Trends Mol Meal,2002,8(4 Suppl):S62-S67
    58.Semenza G.Signal transduction to hypoxia-inducible factor 1.Biochem Pharmacol,2002,64(5-6):993-998
    59.Zhu H,Franklin H.Signal transduction.How do cells sense oxygen? Science,2001,292(5516):449-451
    60.Fukuda R,Hirota K,Fan F,et al.Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression,which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells.J Biol Chem,2002,227(41):38205-38211
    61.Kuwai T,Kitadai Y,Tanaka S,et al.Expression of hypoxia-inducible factor-1α is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer, 2003, 105(2): 176-181
    62. Lu XG, Xing CG, Feng YZ, et al. Clinical significance of immunohistochemical expression of hypoxia-inducible factor-1alpha as a prognostic marker in rectal adenocarcinoma. Clin Colorectal Cancer, 5(5): 350-353
    63. Zhong H , Agani F , Baccala AA , et al. Increased expression of hypoxia inducible factor-1alpha in rat and human prostate cancer. Cancer Res, 1998, 58 (23): 5280-5284
    64. Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res, 2003, 63(5): 1138-1143
    65. Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res, 2006, 66(5): 2725-2731
    1. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst, 1990, 82(1): 4-6
    2. Kunz M, Ibrahim SM. Molecular response to hypoxia in tumor cells. Mol Cancer, 2003, 2(1): 23-35
    3. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001, 294(5545): 1337-1340
    4. Jiang BH, Rue E, Wang GL, et al. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem, 1996, 271(30): 17771-17778
    5. Minet E, Michel G, Remacle J, et al. Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis (review). Int J Mol Med, 2000, 5(3): 253-259
    6. Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA, 1997, 94(15): 8104-8109
    7. Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med, 2004, 36(1): 1-12
    8. Caro J. Hypoxia regulation of gene transcription. High Alt Med Biol, 2001, 2(2): 145-154
    9. Kiang JG, Tsen KT. Biology of hypoxia. Chin J Physiol, 2006, 49(5): 223-233
    10. Semenza GL. HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends Mol Med, 2002, 8(4 Suppl): S62-S67
    11. Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res, 1999, 59 (22): 5830-5835
    12. Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia- inducible factor 1. Cancer Res, 2003, 63(5): 1138-1143
    13. Kuwai T, Kitadai Y, Tanaka S, et al. Expression of hypoxia-inducible factor-lalpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer, 2003,105(2): 176-181
    14. Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia-inducible factor-1alpha during breast carcinogenesis. J Natl Cancer Inst, 2001, 93(4): 309-314
    15. Birner P, Schindl M, Obermair A, et al. Overexpression of hypoxia-inducible factor 1 alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res, 2000, 60(17): 4693-4696
    16. Volm M, Koomagi R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res, 2000, 20(3a): 1527-1533
    17. Piret JP, Mottet D, Raes M, et al. Is HIF-1 alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol, 2002, 64(5-6): 889-892
    18. Zhang Q, Zhang ZF, Rao JY, et al. Treatment with siRNA and antisense oligonucleotides targeted to HIF-1 alpha induced apoptosis in human tongue squamous cell carcinomas. Int J Cancer, 2004, 111(6): 849-857
    19. Zaman K, Palmer LA, Doctor A, et al. Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1. Biochem J, 2004, 380(Pt 1): 67-74
    20. Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor-1 alpha. Genes Dev, 2000, 14(1): 34-44
    21. Mohamed KM, Le A, Duong H, et al. Correlation between VEGF and HIF-1 alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol, 2004, 76(2): 143-152
    22. Resar JR, Roguin A, Voner J, et al. Hypoxia-inducible factor-1α polymorphism and coronary collaterals in patients with ischemic heart disease. Chest, 2005, 128(2): 787-791
    23. Chavez JC, LaManna, JC. Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci, 2002, 22(20): 8922-8931
    24. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of HIF system. Nat Med, 2003, 9(6): 677-684
    25. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002, 62(12): 3387-3394
    26. Ogiso Y, Tomida A, Lei S, et al. Proteasome inhibition circumvents solid tumor resistance to topoisomerase Ⅱ -directed drugs. Cancer Res, 2000, 60(9): 2429-2434
    27. Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res, 2005, 65(2): 613-621
    28. Palissot V, Morjani H, Belloc F. Form molecular characteristics to cellular events in apoptosis-resistant HL-60 cells. Int J Oncol, 2005, 26(3): 825-834
    29. Fantappie Q, Masini E, Sardi I, et al. The MDR phenotype is associated with the expression of COX-2 and iNOS in a human hepatocellular carcinoma cell line. Hepatology, 2002, 35(4): 843-852
    30. Fabbro D, Ruetz S, Bodis S, et al. PKC412 - a protein kinase inhibitor with a broad therapeutic potential. Antieaneer Drug Des, 2000, 15(1): 17-28
    31. Klement G, Huang P, Mayer B, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an axenografts. Clin Cancer Res, 2002, 8(1): 221-232
    32. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002, 62(12): 3387-3394
    33. Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tomor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell, 2003, 3(4): 363-375
    34. Isaacs JS, Jung YJ, Mimnaugh EG, et al. Hsp90 regulates a von Hippie Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem, 2002, 227(33): 29936-29944
    35. Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathwasy. Cancer Res, 2002, 62(15): 4316-4324
    36. Rapisarda A, Uranchimeg B, Sordet O, et al. Topoisomerase I -mediated inhibition of hypoxia-inducible factor 1: mechanism and the therapeutic implications. Cancer Res, 2004, 64(4): 1475-1482
    37. Welsh S, Willams R, Kirkpatrick L, et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1 alpha. Mol Cancer Ther, 2004, 3(3): 233-244
    38. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor la expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/ FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res, 2000, 60(6): 1541-1545
    39. Liu H, Savaraj N, Priebe W, et al. Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochem Pharmacol, 2002, 64(12): 1745-1751
    40. Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res, 2005, 65(2): 613-621
    41. Sun X, Kanwar JR, Leung E, et al. Regression of solid tumors by engineered overexpression of von Hippel-Lindau tumor suppressor protein and antisense hypoxia-inducible factor-1 alpha. Gene Ther, 2003, 10(25): 2081-2089
    42. Uchida T, Rossignol F, Matthay MA, et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem. 2004, 279(15): 14871 -14878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700