可塑性纤维增强树脂基复合材料根管桩的研制和相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔内残根、残冠的保存修复主要依赖于桩-核-冠修复技术,桩在其中起到至关重要的作用。在过去的临床工作中,多采用金属桩进行修复,由于金属桩的弹性模量远远大于牙本质的弹性模量,常常造成根折现象的发生。目前,弹性模量较为接近牙本质的纤维增强树脂基复合材料桩开始进入临床,有效地避免了牙折现象的发生,但此类桩都属于预成桩,无法实现根管桩的个性化制作,而且也无法满足牙冠改向的灵活性要求。所以,研究一种具有可塑性的、能够实现个性化制作的纤维增强树脂基复合材料桩显得尤为重要。在国外,仅有芬兰的Stick Tech公司研制出了一种符合上述要求的纤维桩,其商品名为Ever Stick;但在国内尚无该类桩的研究报道,因此,本研究尝试利用光固化技术、纤维增强技术和互穿聚合物网络技术研制出一种可塑性纤维增强树脂基复合材料桩,并对其机械性能、生物安全性和临床相关粘接性能进行初步评价,为该桩进一步完善并进入临床应用奠定实验基础。
     本研究采用如下技术路线:首先,制备互穿聚合物网络结构的树脂基体;其次,初步探求不同纤维含量对纤维增强树脂基复合材料力学性能的影响;然后,确定最佳光引发体系;再选择最佳光照时间,以求获得最佳力学性能;最后,合成光固化型可塑性纤维增强树脂基复合材料桩,并对材料的生物安全性及临床粘接性能进行了初步评价。
     研究内容和方法:
     1.互穿聚合物网络结构树脂基体的制备。选择口腔树脂材料中常用的Bis-GMA和MMA作为基体,通过不同比例配伍,在一定的工艺条件下形成共聚物,通过力学性能和各种相关的高分子结构检测手段,筛选出能够形成较为理想的互穿聚合物网络结构的树脂基体配比方案。
     2.不同纤维含量对纤维增强树脂基复合材料力学性能的影响及含量配方的确定。采用不同含量的玻璃纤维来增强树脂基体,通过合成材料的力学性能测试,探索其影响规律,确定其含量配方。
     3.不同光引发体系对纤维增强树脂基复合材料固化性能的影响及配方的确定。改变光引发体系中各组成成分的含量,通过力学性能和树脂单体转化率的测定,确定其配方。
     4.光照时间对纤维增强树脂基复合材料力学性能的影响。采用不同光照时间对纤维增强树脂基复合材料进行固化,通过力学性能的检测,确定最佳的光照时间。
     5.合成光固化型可塑性纤维增强树脂基复合材料桩。通过对其力学性能的评价,获得最佳配方和工艺,自行合成光固化型可塑性纤维增强树脂基复合材料桩。
     6.自行研制合成桩的生物安全性的评价。按照国家相关标准,采用实验手段,分别对自行研制合成的桩进行体外细胞毒性试验、溶血试验、粘膜刺激试验和短期全身毒性试验。
     7.自行研制合成桩与根管牙本质间粘接性能的研究。以Ever Stick桩为对照,利用三种不同牙本质粘接剂将自制桩和Ever Stick桩分别与根管牙本质进行粘接,采用微推出试验检测并比较粘接性能,并对断口形貌进行显微观察。
     8.自行研制合成桩与树脂核材料间粘接性能的研究。以Ever Stick桩为对照,利用三种不同树脂核材料将自制桩和Ever Stick桩分别进行堆塑、包埋,采用微推出试验检测并比较粘接性能,并对断口形貌进行显微观察。
     研究结果:
     1.Bis-GMA和MMA按不同比例共混,采用分步合成法形成互穿聚合物网络结构,并且在MMA含量为20%时,其结构和性能最佳。
     2.在已形成互穿聚合物网络结构的树脂基体中添加73.8wt%左右的玻璃纤维可以达到最理想的增强效果。
     3.CQ/EDB光引发体系的最佳配比为:CQ占0.5wt%,EDB占1.0wt%。
     4.综合考虑材料固化后的力学性能和临床操作的效率,合成材料的最佳光照时间为60S。
     5.自行合成并获得了可塑性纤维复合材料桩,其可塑性和可操作性较强,弯曲强度可达647.73Mpa,弹性模量达33.8GP,更接近于牙本质。
     6.自行研制合成桩无明显细胞毒性;溶血率仅为1.76%,不会引起急性溶血反应;对口腔粘膜无刺激性;不会引起短期全身毒性反应。
     7.在与牙本质和树脂核材料的粘接效果上,自行研制合成的FRC桩与国外同类产品——Ever Stick纤维桩之间无显著性差异。GC Fuji PLUS、Panavia F和3M ESPE RelyXtm Unicem的牙本质粘接剂在桩与牙本质的粘接中,也无显著性差异。
     8.Clearfil APX树脂核材料与自行研制合成桩之间的粘接强度显著高于3M ESPE Filtektm Z250和Dentsply Definite Core的核材料。
     结论:同时应用光固化技术、纤维增强技术和互穿聚合物网络技术可以制得力学性能较好的根管桩,该桩钉具有可塑性,能够实现个性化制作,同时可以满足牙冠自由改向的灵活性操作要求。与国外同类产品——Ever Stick纤维桩相比,其粘接性能无显著性差异。本研究中的工艺和配方尚属于实验室阶段,若经进一步完善和改进,则此类桩有望能够更快地进入临床工作中。
The post-core-crown system is mainly applied in restoration of the residual crown or root, in which the post plays an important role. In the past, the metal post was mostly applied in this procedure. However, it caused the root fracture at every turn, for the elastic module of the metal post is far larger than that of dentin. At present, the post of fibre reinforced composite (FRC) is applied in clinical procedure gradually, which can prevent the root from fracturing, for its elastic module is approximate to that of dentin. But the FRC post is prefabricated, it can not be shaped individually to fit the different figure of root canal, and can not meet the clinical needs of modifying crown direction flexibly. So, it is necessary to develop a kind of FRC post which possesses plasticity and can be shaped individually. At abroad,only a kind of fibre post named Everstick is developed by StickTeck company in Finland,which can meet the above needs.However,there is no studies on this kind of fibre post at home.In this research, a kind of plastic FRC post was developed with the light cure technology, fibre reinforced technology and interpenetrating polymer network (IPN) technology, and was evalued elementarily on some properties including mechanics performances, biological safety and adhesive abilities. This research laid an experimental foundation to introduce this kind of post to the clinical applications.
     In this research, the Strategy and Procedure is studied from part to entirety and from process to properties. Firstly, we discussed the influence of different compose on the properties of composites, according to the basal mechanical properties of material matrix. At the same time, the synthesis process and formula is groped. Then the biology security of material was primary evaluated. At last, the adhesion which is closed contacted with clinic application was studied.
     The content and method are as follows:
     1. Preparation and formula of interpenetrating polymer network (IPN) of polymer were studied. The Bis-GMA and PMMA which is common material in oral cavity resin were used as matrix. Bis-GMA and PMMA were mixed with different ratio, then react in certain condition to form IPN polymer. The best ratio to form IPN polymer were confirmed according to the mechanical properties and Tg.
     2. The influence of glass fiber content on mechanical properties of fiber reinforced composites (FRC) was studied. Then the effect rules on mechanical properties were discussed.
     3. The influence of light initiation system on curing properties of fiber reinforced composite was studied. According to the mechanical properties and conversion of resin, the components content of light initiation system were confirmed.
     4. The influence of the light time on mechanical properties of fiber reinforced composites was studied. According to the mechanical properties, the light time of curing resin composites were confirmed.
     5. Dental plastical IPN posts polymer composites were synthesized, according to the above formula and process. The mechanical properties of IPN posts were studied.
     6. The biological safety of the post made by self-fabricated dental plastical IPN posts polymer composites was evalued by MTT test, hemolysis test in vitro, oral mucous membrane irritation test, acute general toxicity test.
     7. The micro push-out test was applied to evalue the adhesive abilities between the post made by self-fabricated dental plastical IPN posts polymer composites and dentin with three kinds dentin adhesive agent, which was compared with that of EverStick, and microscopy was applied to observe the structure of the fracture section.
     8. The micro push-out test was applied to evalue the adhesive abilities betwwen the post made by self-fabricated dental plastical IPN posts polymer composites and three kinds of resin core materials, which was compared with that of EverStick, and microscopy was applied to observe the structure of the fracture section.
     The results are as follows:
     1. In certain condition, Bis-GMA and MMA can form the better IPN structure. The structure and properties is best when the MMA content is 20%.
     2. When the glass fiber content is about 73.8%, the properties of IPN composites reached best.
     3. The best ratios of CQ and EDB in light initiation system are 0.5 wt% and 1.0 wt% respectively.
     4. According to the mechanical properties and clinic manipulation, the best light curing time is 60S.
     5. Dental IPN posts polymer composites are plastical and easy to clinic manipulation. In addition, the bend strength is 647.05MPa, and the bend modulus is 33.03GPa, which closed to the mechanical properties of dental essence.
     6. The post made by self-fabricated dental plastical IPN posts polymer composites was avirulent to cells, was considered to bring no hemolysis phenomena and be no influences on function of cruor, for the hemolytic rates of samples is 1.76%, have no mucous membrane irritations, could not induce acute general toxicities.
     7. There was no significant diference on adhesive effects to dentin between the post made by self-fabricated dental plastical IPN posts polymer composites and EverStick. There was no significant diference on adhesive effects among utilizing GC Fuji PLUS, Panavia F and 3M ESPE RelyXtm Unicem.
     8. Clearfil APX could adhere to the post made by self-fabricated dental plastical IPN posts polymer composites better than 3M ESPE Filtektm Z250 or Dentsply Definite Core.
     Conclusions: The new pattern FRC post can be fabricated with the light cure technology, fibre reinforced technology and interpenetrating polymer network (IPN) technology. It possesses good mechanics performances and plasticity, and can be shaped individually and meet the clinical needs of modifying crown direction flexibly. There is no significant diference between self-fabricated FRC post and EverStick. In this research, the technics and components buildup is at the experimental level, and need more improved.
引文
1. Ring ME. Dentistry, an Illustrated History. New York Abradale-Mosby, 1992:160-179
    2. Shilingburg H.T.Fisher D.W .Dewhirst R.B.Restoration of endodontically treated posterior teeth[J].J Prosthet Dent,1970,24:401.
    3. Fed erick D.R.An application of the dowel and composite resin core technique [J].ProsthetProsthet Dent,1974,32:420.
    4. Christensen G.J. Posts and cores: State of the art. JADA,1998;129:96
    5. 孙佳凝.牙科合金材料的生物相容性及影响合金离子析出的因素[J].国外医学口腔医学分册,2003,30(3):212~214.
    6. 邓旭亮,胡晓阳,李国珍等. 五种全冠修复合金材料的细胞毒性研究[J].现代口腔医学杂志,1999,13(3):173~175.
    7. 汪大林,徐君伍,于家斗.钛在口腔修复医学中的应用.稀有金属材料与工程,1993,22(3):61-66
    8. Akkayan B,Caniklioglu B. Resistance to fracture of crowned teeth restored with different post systems. Eur J Pro sthodont Restor Dent,1998,6(1):13-15
    9. Eskitascioglu G,Belli S, Kalkan M. Evaluation of two post core systems using two different methods (fracture strength test and a finite elemental stress analysis). J Endod, 2002,28(9):629-633
    10. 张文云,施长溪,陈吉华等.新型美容牙科纤维/树脂复合材料桩钉的研制[J].中国美容医学,2001,(1O):l3.
    11. Mclean JW,Odont D.Evolution of dental ceramics in the twentieth century [J].J Prosthet Dent,2001,85(1):61-66
    12. Kwiatkowski S.A preliminary consideration of the glasseeramic dowel post and core[J].Int J Prosthedont,1989,2:51.
    13. Helmer JD,Driekell TD. Research on bioceramics.In: Sypon Use of ceramica as surgical implants.South Carolina(USA):Clemson University,1969
    14. 何帅.牙科氧化锆增韧陶瓷材料的初步实验研究:[硕士学位论文].西安:第四军医大学,2001
    15. McLaren EA, White SN. Glass-infiltrated zirconia/alumina-based ceramic for crown and fixed partial dentures. Pract Periodontics Aesthet Dent,1999,1l(8):985-994
    16. Kin DJ,lee MH,lee DY,Han JS. Mechanical properties phase stability, and biocompatibility of (Y,Nb)-TZP/Al2O3 composite abutments for dental implant.J Biomed Mater, Res,2000,53(4):438-443
    17. Meyeberg K.H.Luth y H Scharer P.Zirconium posts.A new all ceramic concept for nonvital abutment teth[J].J Esthet Dent,1995,7:73.
    18. Duret P . B , Reynaud M Duret F . Un nouveau concept de reeonstitution corenoradiculaire:Le Composiposte(I)[J],Chirg Dent France,1990,540:131.
    19. King P.A,Setchell D.J.An in vitro evaluation of a prototype CFRC prefabricated post developed for the restoration of pulpleteth[J].J Oral Rehabil. l990.17:599.
    20. Sidoli G.E,King P.A,Setchell D.J.An in vitro evaluation of a carbon fiber—based post and core system[J].J Prosthet Dent,1997,78:5.
    21. Pul'ton D.G,Payne J.A.Comparison of carbon fiber and stainless steel root canal posts[J].Quint Int,l996,27:93.
    22. Fredriksson M,Asthack J,Pamenius M,et a1.A retrospective study of 236 patients with teth restored by carbon fiber—reinforeed epoxy resin posts[J].J Prosthet Dent,1998,80:l51.
    23. Smith C.T,Schuman N.J.Wasson W .Biomechanical criteria for evaluating prefabricated post and core systems:A guide for the restorative dentist[J].Quint Int,l998,29:305.
    24. 赵云凤主编.口腔生物力学.北京医科大学中国协和医科大学联合出版社,1996:2-5
    25. Ho MH, Lee SY, Chen HH, Chen HH, Lee MC. Three-dimensional finite element analysis of the effects of posts on stress distribution in dentin. J Prosthet Dent, 1994,72(4):367-72
    26. Kantor ME, Pines MS. A comparative study of restorative techniques for pulpless teeth. J Prosthet Dent,1977,38(4):405-412
    27. Holmes DC, Diaz-Arnold AM, Leary JM. Influence of post dimension on stress distribution in dentin. J Prosthet Dent, 1996,75 (2):140-147
    28. 徐君伍主编.口腔修复学.第四版.北京:人民卫生出版社,2000:72
    29. Cailleteau JG, Rieger MR, Akin JE. A comparison of intracanal stresses in a post-restored tooth utilizing the finite element method. J Endod, 1992,18(11):540-544
    30. Cohen BI, Musikant BL, Deutach AS. Comparison of the photoelastic stress for a split-shank threaded post versus a threaded post. J Prosthodont, 1994,3(1):53-55
    31. Torbjorner A, Karlsson S, Odman PA. Survival rate and failure characteristics for two post designs.J Prosthet Dent, 1995,73(5):439-44
    32. Akkayan B, Caniklioglu B. Eur J Prosthodont Restor Dent,l998,6(1):13-18
    33. Raygot CG, Chai J, Jameson DL. Fracture resistance and primary failure mode of endodontically treated teeth restored with a carbon fiber-reinforced resin post system in vitro.Int J Prosthodont, 2001, 14(2): 141-145.
    34. Pegoretti A, Fambri L, Zappini G Bianchetti M. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials, 2002,23 (13):2667-2682
    35. 唐高妍,巢永烈,文志红等.四种桩材料对牙本质应力分布影响的三维有限元分析.华西口腔医学杂志,1998,l6(3) : 259-262
    36. 周峰,盛祖立,刘鹏飞.不同材料桩核修复后的牙本质应力分析.浙江医学,2004,26(12):903-907
    37. Newman MP, Yaman P, Dennison J, Rafter M,Billy F. Fracture resistance of endodontically treated teeth restored with composite posts.J Prosthet Dent, 2003,89(4): 360-367
    38. Pierrisnard L, Bohin F, Renault P, Barquins M. Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis. J Prosthet Dent, 2002,88(4):442-448.
    39. Wietske A, Fokkinga M, Vallittu PK. A structure analysis of in vitro failure loads and failure modes of fiber, metal and ceramic post-and-core systems. Int J Prosthodont 2004; 17:476-482
    40. Ukon S, Moroi H, Okimoto K, Fujita M,Ishikawa M,Terada Y,Satoh H. Influence of different elastic moduli of dowel and core on stress distribution in root. Dent Mater J, 2000,19(1):50-64.
    41. Tjan AH,Greive Jh.Effects of various cementation methods on the retention of prefabricated post[J].J Prostht Dent,1987, 58 (4):309.
    42. Rosin M,Splieth C,Wilkens M,edal.Effect of cement type on retention of a tapered post with a self-cutting double thread[J].J Dent,2000,28(8):577.
    43. Duncan JP,Pameijer CH.Retention of parallel-Sided titanium posts cemented with six luting agents:an in vitro study[J].J Prosthet Dent 1998, 80(4):423.
    44. Blair FW,Wassell RW,Steele JG..Crowns and other extra-coronal restorations:Preparations for full veneer crowns . Br Dent J,2002,192(10):561-564.
    45. Smith DC. Dental cements. Current status and future prospects.Dent Clin North Am, 1983, 27(4): 763-92
    46. White SN, Yu Z. Compressive and diametral tensile strengths of current adhesive luting agents.J Prosthet Dent, 1993, 69(6): 568-572.
    47. Swartz ML, Phillips RW Clark HE. Lone-term F release from glass ionomer cements .J Dent Res,1984, 63(2): 158-160.
    48. Smith DC. A new dental cement. Br Dent J, 1968, 124(9): 381-384
    49. 陈治清,管利民.口腔粘接学.1993,第一版,北京:北京医科大学中国协和医科大学联合出版社,66-80
    50. Strutz JM,White SN,Yu Z,et al.Luting cement metal surface physic cochemical interactions on film thickness [J].J Prosthet Dent,1994, 72(2):128_132.
    51. Mitchell CA ,Orr JF,Orr JF,Russell MD.Capsulated versus hand-mixed glassionomer luting cements for ost retention [J].J Dent,1998, 26 (1):47.
    52. 陈治清.口腔材料学.北京:人民卫生出版社,1995.127-135
    53. Mojon P, Kaltio R, Feduik D,Hawbolt EB, MacEntee MI. Short-term contamination of luting cements by water and saliva. Dent Mater, 1996, 12(2): 83-87
    54. Ana MDA,Marcos AV,Debra RH.Current status of luting agents for fixed prosthodontics[J].J Prosthet Dent,1999,81(2):135-141.
    55. Trope M, Maltz DO,Tronstad L. Resistance to fracture of restored endodontically treated teeth. Endod Dent Traumatol, 1985,1(3):108-111
    56. Assif D,Bleicher S. Retention of serrated endodontic posts with a composite luting agent: effect of cement thickness. J Prosthet Dent, 1986, 56(6): 689-691
    57. Yanagida H, Taira Y, Shimoe S, Atsuta M,Yoneyama T,Matsumura H. Adhesive boding of titanium-aluminum-niobium alloy with nine surface preparations and three self-curing resins. Eur J Oral Sci,2003,111(2):170-174
    58. Taira Y,Imai Y. Primer for bonding resin to metal. Dent Mater,1995,11(1):2-6
    59. Ohkubo C, Watanabe I, Hosoi T, Okabe T. Shear bond strengths of polymethyl methacrylate to cast titanium and cobalt-chromium frameworks using five metal primers. J Prosthet Dent, 2000,83(1):50-5
    60. 周强,王迎捷,王辉,赵蕊妮.帕娜碧亚 F 粘结系统在烤瓷贴面粘结中的应用.中国美容医学,2005,14(4):79-82
    61. Bayindir YZ, Yildiz M. Surface hardness properties of resin-modified glass ionomercements and polyacid-modified composite resins. J Contemp Dent Pract, 2004, 15:5(4): 42-49
    62. Liberman R,Ben-Amar A,Urstein M,Gontar G,Fitzig S. Conditioning of root canals prior to dowel cemdntation with composite luting cement and two dentine adhesive systems. J Oral Rehabil, 1989, 16(6):597-602
    63. Obermayr G, Walton RE, Leary JM, Krell KV. Vertical root fracture and relative deformation during obturation and post cementation[J]. J Prosthet Dent,1991,66(2): 181-187
    64. Eakle WS, Staninec M, Lacy AM. Effect of bonded amalgam on the fracture resistance of teeth. J Prosthet Dent,1992,68(2):257-260
    65. O'Keefe KL, Miller BH, Powers JM. In vitro tensile bond strength of adhesive cements to new post materials. Int Prosthodont, 2000, 13(1): 47-51
    66. 林芸.复合材料的发展和应用研究.贵阳金筑大学学报,2003,3:105-108
    67. 王汝敏,郑水蓉,郑亚萍. 聚合物基复合材料及工艺.北京:科学出版社.2004; 1: 1-21
    68. 孙曼灵.增强塑料-细观结构与力学性能.西安:西北工业大学出版社.1990; 3-41
    69. McMullen P. Fiber/resin composites for aircraft primary structures: a short history, 1936~1984. Composites, 1995; 15(3): 222-229
    70. 赵稼祥.先进复合材料的发展与展望.材料工程,2000; (10): 40-44
    71. Lewis SJ. The use of carbon fiber composites on military aircraft. Composite Manufacturing, 1994; 5(10): 95-103
    72. Ekstrand K, Ruyter IE, Wellendorf H. Carbon/graphite fiber reinforced poly(methyl methacrylate): properties under dry and wet conditions. J Biomed Mater Res. 1987;21(9):1065-80.
    73. Lovel DR. Carbon and High Performance Fiber. Directory and Data Book(1995 3th ed). London: Chapman & Hall
    74. 吴人洁.复合材料.天津:天津大学出版社.2000; 31-84
    75. Nograro FF. Dynamic and mechanical properties of epoxy networks obtained with PPO based amines/PDA mixed curing agents. Polymer 1996; 37(9):589
    76. Ellakwa A, Shortall A, Shehata M, et al. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR). Oper Dent 2001; 26 (5):467-75
    77. Eliane, Urbaczewski, Espuche.Influence of chain flexibility and crosslink on mechanical properties of epoxy/amine networks. Polymer Engineering and Science1991;31(22):1572
    78. Chawla. Composites Materials: Science and Engineering. 1998.2nd ed. New York: Spring-Verlag Inc
    79. 陈治清.口腔生物材料学.北京:化学工业出版社,2004,305
    80. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials, 2002, 23: 1819~1829
    81. 乔生儒.复合材料细观力学性能. 西安:西北工业大学出版社 1997.
    82. 沃丁柱等.复合材料大全. 北京:化学工业出版社 2000.
    83. 于祺,陈平,陆春. 纤维增强复合材料的界面研究进展. 绝缘材料,2005,02:50-07
    84. P G Pape, E P Plueddemann. Improvements in saline coupling agents for more durable bonding at the polymer reinforcement interface[J].ANTEC,1991:1870~1875.
    85. A Crespy, J P Franon, S Turenne, et al. Effect of silanes on the glass fiber/ polypropylene matrix interface[C].Macromolecular Chemistry, Macromolecular Symp.
    86. H Salehir, Mobarakeh, J Brisson, A Ait Kadi. Ionic interphase of glass fiber/ polyamide
    6,6 composites[J]. Polym Composites,1998,19(3):264~274.
    87. 薛志云,胡福增,郑安呐,等.玻璃纤维表面的乙烯基单体接枝聚合[J].功能高分子学报,1996,9(2):177~182.
    88. 杨卫疆,郑安呐,戴干策.过氧化物偶联剂在玻璃纤维表面上接枝高分子链的研究[J].华东理工大学学报,1996,22(4):429~432.
    89. 李志军,程光旭,韦玮.离子体处理在玻璃纤维增强聚丙烯复合材料中的应用[J].中国塑料,2000,14(6):45~49.
    90. Fouassier JP, Rabek JF. Radiation Curing in Polgymer [M]. Vol.1. New York: Elsevier Applied Science,1993.1-47
    91. 张文云.齿科纤维/树脂复合材料桩钉的研制及实验研究. 第四军医大学博士学位论文. 2001, 45-52
    92. Vallittu. Survivalrates of resin-bonded, glass fiber-reinforced composite fixed partial dentures with a mean follow-up of 42 months: A pilot study. J Prosthet Dent 2004;91:241-6
    93. Le Bell AM, Johanna Tanner, Lassila LVJ, et al. Depth of light-initiated polymerization of glass fiber rein- forced composite in a simulated root canal. Int J Prosthodont 2003; 16:403-408
    94. 陈明,陈其道,肖善强等. 混杂光固化体系的原理及应用. 感光科学与光化学,2001; 19(3): 208-216
    95. Pappas SP. Photoinitiation of cationic and concurrent radical-cationic polymerization [J], PartⅤ. J. Imag.Technol, 1985; 11(4): 146
    96. Pappas SP. UV curing: Science and Technology [M]. Vol.2. 1985; 1-25
    97. Fouassier JP, Rabek JF. Radiation Curing in Polgymer [M]. Vol.3. New York: Elsevier Applied Science, 1993.435-471
    98. 张存林,李军,杨永源. 光聚合引发剂研究进展. 功能高分子学报,1998;11:573-579
    99. 陈汉佳,黄家贤,王志军. 安息香衍生物对 LEPB 丙烯酸羟基酯的光固化反应. 汕头大学学报,1999;14(2):14-20
    100. 梁驻军,杨洪梅,顾欣宇. 大分子光引发剂研究进展(一). 精细与专用化学品, 2003; 19:15-18
    101. 王德海,黄兴耀,范文春. UV 固化涂料固化速度的影响因素.涂料工业, 2004; 34(3):34-37
    102. 孙凯,杨光,黄鹏程. 用紫外光固化复合材料制备充气展开器件的研究.宇航材料工艺, 2003, 6:25-29
    103. Zak G, Haberer M, Park CB, et al. Mechanical properties of short-fiber layered composites: prediction and experiment. Rapid Prototyping Journal 2000; 6(2):107~118.
    104. Cheah CM, Fuh JYH, Nee AYC, et al. Mechanical characteristics of fiber-filled photo-polymer used in stereolithography. Rapid Prototyping Journal 1999; 5(3):112~119
    105. 徐卫兵, 金荣福, 黄双武等. 碳纤维增强聚砜颅骨修补材料制备新工艺.纤维复合材料,1994;(2):15
    106. 徐卫兵, 金荣福, 黄双武等. 碳纤维增强聚砜颅骨修补材料耐介质老化性能的研究.纤维复合材料, 1995;(4): 33
    107. 李元素. 医用高分子增强材料颅骨成形技术.中华神经外科,1991;(1):56
    108. Smith D.C. Recent developments and prospects in dental polymer. J Prosthet Dent, 1962; 12: 1066
    109. Schreiber CK. Polymethylmethacrylate reinforced with carbon fibers. Br Dent J, 1971;130:29-30
    110. Schreiber C.K. The clinical application of carbon fiber/polymer denture bases. Br DentJ, 1974;137: 21
    111. Bowman A.J Manley T.R The elimination of breakages in upper dentures by reinforcement with carbon fiber. Br Dent J, 1984;156:87-89
    112. Yazdanie N, Mahood M. Carbon fiber acrylic resin composite: An investigation of transverse strenth. J Prosthet Dent, 1985;54:543-547
    113. DeBoer J,Vermilyea SG,Brady RE. The effect of carbon fiber orientation on the fatigue resistance and bending properties of two denture resins, J Prosthet Dent, 1984;51:119-121
    114. Skirvin D.R Vermilyea S.K Brady R.E. Polymethylmethacrylate reinforce ment:effect on fatigue failure. Military medicine, 1982;147: 1037-1040
    115. Wylegala R T.Reinforcing denture base material with carbon fibers. Dent Tech, 1973;26:97-100
    116. Ruyter IE, Ekstand K, Bjork N. Development of carbon/graphite fiber reinforced poly(methylmethacrylate) suitable for implant-fixed dental bridges. Dent Mater, 1986;2:6-9
    117. Manley TR, Bowman AJ, Cook M. Denture bases reinforced with carbon fiber. Br Dent J,1979;146:25
    118. Yazdanie N, Mahood M. Carbon fiber acrylic resin composite: An investigation of transverse strenth. J Prosthet Dent, 1985;54:543-547
    119. Smith D.C. The non-metal denture base recent developments. Dental Practitioner and Dental Record, 1957;8:73-80
    120. Solnit G.S. The effect of methyl methacrylate reinforcement with silane-treated and untreated glass fibers.J Prosthet Dent,1991;66:310-4
    121. Galan D Lynch E. The effect of reinforcing fibers in denture acrylics. J Ir Dent Asso, 1989;35:109
    122. Vallittu P.K. Comparison of two different silane compounds used for improving adhesion between fibers and acrylic denture base material. J Oral Rehabil, 1993;20:533-9
    123. Vallittu P.K Lassila V.P Lappalainen R. Acrylic resin-fiber composite. PartⅠ:The effect of concentration on fracture resistance. J Prosthet Dent,1994;71:607-12
    124. Vallittu P.K. Acrylic resin fiber composite. Part Ⅱ:The effect of polymerisation shrinkage of poly methylmethacrylate applied to fiber roving on transverse strength. J Prosthet Dent, 1994;71:613-7
    125. Vallittu P.K Narva K. Impact strength of a modified continuous glass fiber poly methylmethacrylate. Int J Prostho, 1997;10:142-8
    126. Mullarky RH. Aramid fiber reinforcement of acrylic appliances. J Clin Orthod, 1985;19:655-8
    127. Berrong J.F Stafford G.D Huggett R,et al. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate)resin:a preliminary study. Int J Prostho, 1990;3:391-5
    128. 周永明 施长溪 赵信义.芳纶纤维增强聚甲基丙烯酸甲酯基托的机械性能.实用口腔医学杂志, 1998;14(4):271
    129. Grave AMH,Chandler HD,Wolfaardt JF. Denture base acrylic reinforced with high modulus fiber. Dent Mater, 1985;1:185-187
    130. Malquarti G Berruet R.G Bois D. Prosthetic use of carbon fiber-reinforced epoxy resin for esthetic crowns and fixed partial dentures. J Prosthet Dent, 1990;63:251-7
    131. Viguie G, Malquarti G, Vincent B. Epoxy/carbon composite resins in dentistry: Mechanical properties related to fiber reinforcement. J Prosthet Dent, 1994;72:245-9
    132. Larson W.R Dixon D.L Aquilino S.A,et al. The effect of carbon graphite fiber reinforcement on the strength of provisional crown and fixed partial denture resin. J Prosthet Dent,1991;66:816
    133. Altieri J.V, Burstone C.J, Goldberg A.J. Longitudinal clinical evaluation of fiber- reinforced composite fixed partial dentures: A pilot study. J Prosthet Dent, 1994;71:16-22
    134. Freilich MA, Karmaker AC, Burstone CJ, et al. Flexure strength of fiber-reinforced composites designed for prosthodontics application. J Dent Res,1997;76:138
    135. Rosentritt M Behr M Lang R,et al. Experimental design of FPD made of all-ceramics and fiber-reinforced composite. Dent Mater,2000;16:159-165
    136. Duncan J.P Freilich M.A Latvis C.J. Fiber-reinfored composite framework for implant-supported overdentures. J Prosthet Dent,2000;84:200-4
    137. Torbj?rner A, Karlsson S, Syverud M, et al. Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties. Eur J Oral Sci, 1996; 104: 605-611
    138. Assif D, Bitenski A, Pilo R, et al. Effect of post design on res- istance to fracture of endodontically treated teeth with compl- ete crowns. J Prosthet Dent 1993; 69:36-40
    139. Robbins JW, Earnest LA, Schumann SD. Fracture resistance of endodontically-treated cuspids. American Journal of Dentistry 1993; 6:159-61
    140. Duret B, Reynaud M, Duret F. Un noveau concept de reconsituition coronoradiculaire: le composipost.Ⅰ. Le Chirurgien-Dentist de France 1990; 540:131
    141. Hull D. An Introduction to Composite Materials. 1996 2nd ed. Cambridge: Cambridge University Press
    142. Akkayan B, Gulmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent, 2002,87(4):431-437
    143. 李伟,陈吉华,郑亚萍等. 新型齿科纤维/树脂桩钉的应用设计及性能研究. 口腔医学研究 2004; 20(6): 623-625
    144. Mannocci F, Sherriff M, Watson, et al. Penetration of bonding resins into fiber- reinforced composite posts: a confocal micros- copic study. International Endodontic Journal 2005; 38:46-51
    145. 张留成, 刘玉龙编著. 互穿网络聚合物. 北京: 烃加工出版社,1990
    146. Miller J.R. Interpenetrating polymer networks styrene-diving benzene copolymers with two and three interpenetrating networks and their sulphonates.J.Chem.Soc.,1960, 26 (3): 1311-1317
    147. 付晏彬. 聚氨酯IPN的研究——制备方法与性能的关系[J].中国计量学院学报, 2002 , 13 (3) : 221-224.
    148. 胡巧玲, 方征平.PU/EP 互穿网络聚合物的协同效应[J].浙江大学学报(理学版) , 2001, 28(2):179-184
    149. 于浩, 路太平.环氧树脂/聚氨酯互穿网络的研究I——不同聚合物配比的互穿网络性能比较[J].热固性树脂,1996,11(1): 13-16
    150. 陈莉, 陈苏. 聚氨酯互穿网络聚合物的研究进展[J].粘接, 2002, (23) : 4.
    151. Patrich R L. Trcatise on Adhesion and Adhesive. Marcel Dekker, New York, 1973, 3: 2
    152. Isidor F, Brondum K. Intermittent loading of teeth with taped, individual cast or prefabricated, parallel-sided posts. Int J Prosthodont 1992; 5:257-261
    153. Sperling L H. Interpenetrating Polymer Networks and Related Materials, Plenum Press, 1981, Chap. 5, 6
    154. rish K C, KlempnerD P. Glass translation of topologically interpenetrating polymer network. Polym Eng Sci, 1974, 14 (9): 646 -65
    155. 斯珀林 L.H. 互穿聚合物网络和有关材料, 第一版;黄宏慈,欧玉春 译 北京:科学出版社 1987,P1
    156. Sperling H. Interpenetrating Polymer Networks: a new class of materials. MaterialsEngineering, 1980, (9): 66-70
    157. 马德柱,何平笙等.高聚物的结构与性能(第二版),科学出版社,1995
    158. D.赫尔著.张双寅译.复合材料导论.北京:中国建筑工业出版社,1989.160,107.
    159. 国家医药管理局 中华人民共和国医药行业标准,口腔材料生物学评价 1995.
    160. GB/T 16886.1-2001 医疗器械生物学评价, 第一部分:评价与试验
    161. GB/T 16886.5-2002 医疗卫生器械生物学评价第五部分, 细胞毒性试验:体外法
    162. Mosmann T.Rapid calorimetric assay for cellar growth and survival;Application to pro- liferation and cytotoxicity assay[J].J Immunol Methods,1993,65:55
    163. Sabita Stivastava,Stephen DG.Screening of in vitro cytoxicity by the adhesive test[J]. Biomaterials,1990;11(3):133
    164. YY-T0127.1-1993. 中华人民共和国医药行业标准, 口腔材料生物试验方法: 溶血试验
    165. YY-T0279-1995. 中华人民共和国医药行业标准, 口腔材料生物实验方法:口腔粘膜刺激试验
    166. GB/16886-10:医疗器材生物学评价技术要求.第十部分:刺激与致敏试验;2005.
    167. YY-T0244-1996 中华人民共和国国家标准, 口腔材料生物试验方法:短期全身毒性试验:经口途径.
    168. 俞长路.纤维桩研究进展[J].国外医学生物医学工程分册,2005,28(3):172-174.
    169. Ying-jie Wang. Effect of diffierent bonding procedures on micro-tensile bond strength between a fiber post and resin-based luting agents.Journal of Oral Science, 2007,49(2):155-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700